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Introduction

Total weighting

Edge weighting
An edge weighting f assigns to each edge e a real number f(e)
as its weight.

Figure: Edge weighting of Cs.
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The vertex sum at v is

Figure: Corresponding vertex sums.



Introduction

f is proper if for every edge uv € E,

St(u) # Si(v).

Figure: A proper edge-weighting.
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Proper edge weighting using weights 1,2, 3

Figure: A proper edge-weighting.

Using weights 1,2 is not enough.



Introduction

1-2-3 Conjecture

Observation

If G has an isolated edge, then G has no proper edge
weighting.




Introduction

1-2-3 Conjecture

Observation
If G has an isolated edge, then G has no proper edge
weighting.

A graph is nice if it has no isolated edges.



Introduction

1-2-3 Conjecture

Observation
If G has an isolated edge, then G has no proper edge
weighting.

A graph is nice if it has no isolated edges.

1-2-3 Conjecture

Every nice graph has a proper 3-edge weighting, i.e., using
weights 1,2, 3.
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Results on 1-2-3 Conjecture

Theorem [Karonski, Luczak and Thomason (2004)]

There exists 183 real numbers so that every nice graph has a
proper edge weighting using the 183 real numbers as weights.

Theorem [ Addario-Berry, Dalal, McDiarmid, Reed and
Thomason (2005)]

Every nice graph has a proper 30-edge weighting.

Theorem [Addario-Berry, Dalal and Reed (2008)]
Every nice graph has a proper 16-edge weighting.

Theorem [Wang and Yu (2008)]
Every nice graph has a proper 13-edge weighting.
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Best result on 1-2-3 Conjecture

Best result [Kalkowski, Karonski and Pfender (2010)]
Every nice graph has a proper 5-edge weighting.

Every nice graph has a proper edge weighting

f:E—{1,2,3,4,5}.

How about

f:E—{0,2,3,4,5}?
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Total weighting

Total weighting

A total weighting f assigns to each z € V U E a real number
f(z) as its weight.

Figure: Total weighting of Cs.
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Vertex-sum of a total weighting

Figure: Corresponding vertex sums.
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Proper total weighting

Proper
f is proper if S¢(u) # S¢(v) for all uv € E.

Figure: Not proper!
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Using weights 1,2

Figure: A proper total weighting of Cs, using weights 1, 2.
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1-2 Conjecture

1-2 Conjecture [Przybylo and Wozniak 2011]

Every graph has a proper total weighting using weights 1, 2.
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Best result on 1-2 conjecture

Best result [Kalkowski 2010]

Every graph has a proper total weighting f, such that
f(v) e {1,2}forv e Vandf(e) € {1,2,3} fore € E.
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Best result on 1-2 conjecture

Best result [Kalkowski 2010]

Every graph has a proper total weighting f, such that
f(v) e {1,2} forv e Vand f(e) € {1,2,3} fore € E.

How about f(v) € {0,2} for v € V and f(e) € {1,2,3} for
ecE?
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List version

List edge weighting

L assigns to each edge e a set L(e) of permissble weights. A
proper L-edge weighting is f : E — R such that

f(e) € L(e)Ve € E, S¢(u) # S¢(v)Vuv € E.
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List version

List edge weighting

L assigns to each edge e a set L(e) of permissble weights. A
proper L-edge weighting is f : E — R such that

f(e) € L(e)Ve € E, S¢(u) # S¢(v)Vuv € E.

| A

List total weighting
L(z)forze VUE.

f(z) e L(z)Vze VUE, S¢(u) # S¢(v)Vuv € E.

A
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Conjectures

3-edge weight choosable conejcture [ Bartnicki, Grytczuk
and Niwczyk (2009)]

Every nice graph is 3-edge weight choosable.

(1,3)-choosable conjecture [Wong and Zhu (2011)]
Every nice graph is (1,3)-total weight choosable.

(2,2)-choosable conjecture [Wong and Zhu (2011)]
Every graph is (2,2)-total weight choosable.
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Weaker conjecture

[Wong and Zhu (2011)] There are constants k, k' such that
(A) every graph is (k, k’)-choosable.

(B) every nice graph is (1, k’)-choosable.

(C) every graph is (k,2)-choosable.
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[Wong and Zhu (2011)] There are constants k, k' such that
(A) every graph is (k, k’)-choosable.

(B) every nice graph is (1, k’)-choosable.

(C) every graph is (k,2)-choosable.

Each of (B) and (C) implies (A).
Theorem [Wong-Zhu (2012)]

Every graph is (2, 3)-choosable.
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Weaker conjecture

[Wong and Zhu (2011)] There are constants k, k' such that
(A) every graph is (k, k’)-choosable.

(B) every nice graph is (1, k’)-choosable.

(C) every graph is (k,2)-choosable.

Each of (B) and (C) implies (A).
Theorem [Wong-Zhu (2012)]

Every graph is (2, 3)-choosable.

Best result [Kalkowski 2010]

Every graph has a proper total weighting f, such that
f(v) e {1,2}forv e Vandf(e) € {1,2,3} fore € E.
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Theorem [Chao (2021)]

Every nice graph is (1, 17)-choosable.

Theorem [Zhu (2021)]

Every nice graph is (1,5)-choosable.

Best result [Kalkowski, Karonski and Pfender (2010)]

Every nice graph has a proper 5-edge weighting.

Every nice graph has a proper edge weighting

f:E—{1,2,3,4,5).

But it was not known if we can choose

f: E—{0,2,3,4,5}.
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Combinatorial Nullstellensatz

Theorem [Zhu (2021)]

Every nice graph is (1,5)-choosable.

Pe({x;:ze VUE}) = ] (( > xe+x,> - ( > xe+)(,)) :
{ij}eE,i<j ecE(i) ecE(j

For¢o: VUE — R,
Pa(#) = Pa(¢(e) : e € E}).

¢ is a proper total weighting iff Pg(¢) # 0.



Combinatorial Nullstellensatz

Combinatorial Nullstellensatz

Assume F is a field,




Combinatorial Nullstellensatz

Combinatorial Nullstellensatz

Assume F is a field, f(x1, X2, ..., Xn) € F[X1, X2, ..., Xn].




Combinatorial Nullstellensatz

Combinatorial Nullstellensatz
Assume F is a field, f(x1, X2, ..., Xn) € F[X1, X2, ..., Xn].

If x™ =TI, x,”' is a highest degree monomial of 7, with
coe(x ', f) # 0 (non-vanishing),




Combinatorial Nullstellensatz

Combinatorial Nullstellensatz

Assume F is a field, f(x1, X2, ..., Xn) € F[X1, X2, ..., Xn].

If x™ =TI, x,”' is a highest degree monomial of 7, with
coe(x ', f) # 0 (non-vanishing),

SiCF,|S|>t+1fori=1,2,...,n,




Combinatorial Nullstellensatz

Combinatorial Nullstellensatz
Assume F is a field, f(x1, X2, ..., Xn) € F[X1, X2, ..., Xn].

If xT = [T, x,”' is a highest degree monomial of f, with
coe(x ', f) # 0 (non-vanishing),
SiCF,|S|>t+1fori=1,2,...,n,
then

3(s1,...,81) € Sy X -+ x Sp,




Combinatorial Nullstellensatz

Combinatorial Nullstellensatz
Assume F is a field, f(x1, X2, ..., Xn) € F[X1, X2, ..., Xn].

If xT = [T, x,”' is a highest degree monomial of f, with
coe(x ', f) # 0 (non-vanishing),
SiCF,|S|>t+1fori=1,2,...,n,
then

3(s1,...,81) € Sy X -+ x Sp,




Combinatorial Nullstellensatz

mon(Pg) = { non-vanishing monomials of Pg}.



Combinatorial Nullstellensatz

mon(Pg) = { non-vanishing monomials of Pg}.

P is a homogenous polynomial.
All monomials are of the highest degree.
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Combinatorial Nullstellensatz

By Combinatorial Nullstellensatz, if

H XZ ) € mon (Pg),

zeVUE

and
IL(z)] > K(2) + 1

then G has a proper total L-weighting.
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zeVUE
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Theorem [Zhu (2021)]
Every nice graph is algebraic (1,5)-choosable.
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Theorem [Zhu (2021)]

Every nice graph is algebraic (1,5)-choosable.

H XZ ) € mon PG),

zeVUE

K(i)=0VieV, Kle)<4 VecE.
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Theorem [Zhu (2021)]

Every nice graph is algebraic (1,5)-choosable.

H XZ ) € mon PG),

zeVUE

K(i)=0 VieV, K(e)<4 Yec E.

H Xe ) € mon(Pg),

ecE

K(e) <4 Vec E.

{ijYeE, i<j \e€E() ecE())

Pe({xe:ec E}) = ] (erer).
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=11 XK ¢ mon(Pg) & x¥ =11 xX(® ¢ mon(Pg).
ecE ecE

Definition

K € NE is sufficient for G if there exists K’ € N|E\ such that
K' < K and xX" € mon(Pg).




Combinatorial Nullstellensatz

H Xe ) e mon(Pg) < xK H Xe ) € mon (Pg).
ecE ecE

Definition

K € NE is sufficient for G if there exists K’ € N|E\ such that
K' < K and xX" € mon(Pg).

| \

Observation

G is algebraic (1, b + 1)-choosable <
3K e NFE such that K is sufficient for G and K(e) < b for e € E.
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Combinatorial Nullstellensatz

Pe({xe:ecE})= ] (Z Xe = Y xe/).

e={ij}€E,i<j \€e€E(i) e’ cE())
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Pe({xe:ecE})= ] (Z Xe = Y xe/).

e={ij}€E,i<j \€e€E(i) e’ cE())

Pe({xe:ec E}) =[] D_ coerXer

ecEecE
Cg = (Cee’) is @n |E| x |E| matrix.
Fore={i,j} € E,i </,
1, if € is adjacent with e at /,

Ceer = { —1, if € is adjacent with e at J,
0, otherwise.
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Given a matrix

A= (aij)mxna
m n
Fa(xi,..ox) =D apx
i=1 j=1
Foragraph G= (V,E),
Pg = Fc,.

All information about the polynomial Fp is contained in the
matrix A.
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Coefficient of xX in F,

a1 a2 - @in
a1 dpp -+ Aap
am1 dm2 -*° @mpn
Fa = (ai1xq +ai2Xe + -+ a1 nXn)

(82,1X1 + @22X2 + - -+ + 82, nXn)

(am,1X1 + amoXo + -+ + am,nXn).

CO@(X{", FA) =ayq1az1...4am,(



Combinatorial Nullstellensatz

a1 a2 - @
a1 dap -+ Aap
A=1| . . .
ami 8m2 -+ Aamn
—1
COG(X1m Xo, FA) = ay2d821..-4m/1

+ a1a2...4m1

+ a1 ...amo-
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a1 a2 - @
a1 &2 - an
A= ) .
am,1 am72 e am7n
—1
Coe(X1m X2, FA) = aipd21...-8m1

+ a1a2...4m1

+ a1 ...amo-

coe(xK, Fp) = coe(x1k1 ng cexf Fy) =
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per(A) = Z H 8jo(i)-

o j=1

A(K): the matrix consists of K (i) copies of the ith column of A.

coe(xX, Fp) = %per(A(K)).

K = f[K(i)!.
i=1
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per(A) = 3" T iy

o j=1

A(K): the matrix consists of K (i) copies of the ith column of A.

coe(xX, Fp) =
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Ag = (@ei)ecE,icv,

where for e = {s,t} € E,s < t,

1, ifi=s,
aei=1< —1, ifi=t,
0, otherwise.

BG = (bei)eeE,ie v

where
1, ifiisincidentto e,

bei = .
0, otherwise.

Cg = AcBE,
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1
€s €1
5 2
e, e,

4 e3 3

Figure: G = Cs.
i -1 0 0 O 11000
o 1t -1 0 O 01100
As=10 0 1 -1 0 Bc=]10 0 1 1 0
o o o 1 -1 00 0 11
1 0 0 0 -1 1 0 0 0 1
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Combinatorial Nullstellensatz

Ca(K) = AcBalK]".
Bg[K]: The matrix consisting of K(/) copies of the ith row of Bg.

Recall that

Ck(K): The matrix consisting of K (i) copies of the ith column
of Cg.
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Combinatorial Nullstellensatz

coe(x’, Pe) = per(Ca(K)) = pyper(AcBalK]").

Assume A, B € My n(C).

AB* = (by1coly(A)+. . .+byncolp(A), ..., bpicoli (A)+. . .4+bmncoln(A)).
For o € [n]™,
My = (b15(1)c0l(1)(A), - - - s Bmo(m)cOl(m) (A))-

Permanent is linear with respect to its columns. So

per(AB) Z per(M,

o€g[n)m
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For K = (ki)ie[n] S Nnm, let

S(K)={o € [n": o7 ())| = ki}.
For o € S(K),

per(M,) = (
J

As Y,y [T21 bogjy = coe(xK, Fp),

> per(M,) = (Z Hbjag)per K))

3

bja(/)) per(A(K)).

Il
R

oeS(K) oeS(K) j=1
= coe(xK, Fg)per(A(K)).
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per(AB*) = > coe(xK, Fg)per(A(K))
KeN7,
= Y Kicoe(xK, Fg)coe(xX, F).
KeN7,

per(AB*) = Z Kicoe(xK, Fg)coe(xK, Fa).
KeNp,
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C[xq,...,Xn]m is @ complex linear vector space,
with basis: {xX : K € N},

f(x) =) coe(x, f)x¥.

KeNn

f(x)= > coe(x, Nx*.

KeNg

Define an inner product in C[x, ..., Xp|m as:

(f,g) = Z Kicoe(xX, f)coe(xK, g).

KeNp,

per(AB*) = (Fa, Fg)
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Ca(K) = AgBglK]" = Ac(BalK])".

coe(XK, Pg) = %PBF(CG(K))

1
— m<FAga Fagik))-
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Combinatorial Nullstellensatz

Ag = (@ei)ecE,icv, Where for e = {s,t} € E,s < t,

1, ifi=s,
aei =< —1, ifi=t,
0, otherwise.

Bg = (bei)eeE,ieva where

1, ifiisincidentto e,
bei = .
0, otherwise.

Fas=J] xi—x)=CQe
e={ij}eE.i<j

Fogg = 1] (xi+x)@= HE.
e={ij}cE
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G is algebraic (1,5)-choosable

==

For some K € Ni, K(e) < 4for e € E,

coe(xX, Pg) #0

(QE, Hg) # 0.
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Definition
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A Key Lemma

Subgraphs associated to a subset J of V

Find F € WE such that
<F7 QE) 7& 0.

F, Qg are polynomials in {x; : i € V(G)}.

Observation

If F = FiF, and E = Ey U E; (and hence Qe = Qg, Qg,), and Fq
and F», Qg, have no variables in common, > and Qg, have no
variables in common, then

<F’ QE> = <F17QE1><F27 QEz>'




A Key Lemma

Assume G = (V, E) is a graph and J is a subset of V.
@ E,; the set of non-isolated edges in G — J.
@ E, . the set of isolated edges in G — J.
© E, 3 the set of edges with exactly one end vertex in J.
©Q E, 4 the set of edges with both end vertices in J.
G,,i be the subgraph induced by E, ;.




A Key Lemma

Subgraphs associated to a subset J of V

V-] Ji

Figure: A subset J of V(G).
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Subgraphs associated to a subset J of V

V-] Ji

Figure: Edge set E, 5.
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Subgraphs associated to a subset J of V

V-] Ji

Figure: Edge set E, ».



A Key Lemma

Subgraphs associated to a subset J of V

V-] Ji

Figure: Edge set E, 3.



A Key Lemma

Subgraphs associated to a subset J of V

Figure: Edge set E, 4.
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Figure: An E, >-covering family.
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An E, 4-covering family

Coa={Ce:e€ Eys}
Ce: a closed walk of odd length containing e.
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Ce: a closed walk of odd length containing e.

Figure: An E, 4-covering family.
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@ Fori,j € J, an even number of even length i-j-paths; and
an even number of odd length j-j-paths.
@ Foreach i€ J, dg,(i) > 2dg, (/).
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An E, 3-covering family C, 3

@ Fori,j € J, an even number of even length i-j-paths; and
an even number of odd length j-j-paths.
@ Foreach i€ J, dg,(i) > 2dg, (/).
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A Key Lemma

An E, 3-covering family C, 3

@ Fori,j € J, an even number of even length i-j-paths; and
an even number of odd length j-j-paths.
@ Foreach i€ J, a,,(i) > 2dg, (/).



A Key Lemma

A J-covering family C

C= CJ72 U CJ,Q U CJ74.

Figure: Part of a J-covering family.



A Key Lemma

For a graph H of G, Ky : E — N is defined as
1, ifee E(H)
0, Otherwise.

K: = ZKH.

Hec

Ku(e) = {

Kcz(e) = number of subgraphs in C containing e.



A Key Lemma

Assume G = (V,E) is agraph, and J is a subset of V, Cis a
J-covering family. If K € NF is sufficient for Gy1,then K+ Kc is
sufficient for G.




A Key Lemma

Key Lemma

Assume G = (V,E) is agraph, and J is a subset of V, Cis a
J-covering family. If K € NF is sufficient for Gy1,then K+ Kc is
sufficient for G.

Corollary

If G,.1 is algebraic (1, b+ 1)-choosable, and there exists a
J-covering family C such that K¢(e) < bfor e € E — E; 4 and
Kc(e) = 0for e € E; 1, then Gis algebraic (1, b+ 1)-choosable.




A Key Lemma

Proof by induction

V-] ]

Figure: K + K¢ is sufficient for G.
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Every nice graph is (1,5)-choosable.

J-cover Lemma

There is a subset J, and a J-covering family C such that
Ke(e) <4forec E—E;iand Ke(e) =0forec E, 1.
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Proof of Main Theorem

Every nice graph is (1,5)-choosable.

J-cover Lemma

There is a subset J, and a J-covering family C such that
Ke(e) <4forec E—E;iand Ke(e) =0forec E, 1.

By induction hypothesis, G, 1 is algebraic (1,5)-choosable.
Some K is sufficient for G, 1, K(e) < 4 for e € E; 1, and
K(e)=0fore¢ E, 1.

(K+ Ke)(e) < 4forall e.

K + K¢ is sufficient for G.

So Gis (1,5)-choosable.



Proof of Main Theorem

Proof of a weaker version of J-cover Lemma

Weaker version J-cover Lemma

There is a subset J, and a J-covering family C such that
Kc(e) <5forec E—E;1and K:(e) =0forec E ;.




Proof of Main Theorem

Proof of a weaker version of J-cover Lemma

Weaker version J-cover Lemma

There is a subset J, and a J-covering family C such that
Kc(e) <5forec E—E;1and K:(e) =0forec E ;.

J C V(G) is good, if
@ Gy 4 has maximum degree < 1.
@ Each vertex i € J has at most 1 private neighbour in G, 3.

@ If jis an edge in G, 4, then none of i, has a private
neighbour and /i, j have a common neighbour.




Proof of Main Theorem

There is a good subset J.
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If j € J has more than one private neighbours,
then the set S of private neighbours of j induces a clique.

Move one vertex of S to J.



There is a good subset J.

Choose a maximum independent set J of G

so that G, 3 has no isolated edges.

If j € J has more than one private neighbours,

then the set S of private neighbours of j induces a clique.
Move one vertex of S to J.

Repeat this for each j € J with more than one private
neighbours, we obtain a nice subset J.



Proof of Main Theorem

V-] ]

Figure: Private neighbor.



Proof of Main Theorem

V-] ]

Figure: j has more than 1 private neighbor.



Proof of Main Theorem

v-J J v-J J

Figure: private neighbors of a vertex form a .
cliquge ¢ Flgure: Move one private neighbor to J



Proof of Main Theorem

Figure: This set J is good.



Proof of Main Theorem

V-] J

Figure: This set J is good.

If J is good, then there is a J-covering family C such that
Kc(e) < 5foreach eand K:(e) =0forec E; .



Proof of Main Theorem

Figure: E, »>-cover and E, 4-cover.



Proof of Main Theorem

V-] Ji

Figure: One path in C, 3.



Proof of Main Theorem

Figure: Another path in C, 3.



Proof of Main Theorem

Figure: Three paths in C, 3 incident to a vertex v € V — J of degree 3
in GJ’3.
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Figure: 3 paths incident to a vertex v € V — J of degree 3 in G, 3.



Proof of Main Theorem

Figure: 3 paths incident to a vertex v € V — J of degree 3 in G, 3.

Double each of the 3 paths.



Proof of Main Theorem

Figure: 3 paths incident to a vertex v € V — J of degree 3 in G, 3.

Double each of the 3 paths.
Each vertex v € V — J of degree d contributes 2d paths to C, 3.



Proof of Main Theorem

Assume
e={i,j} €Eyz,icV-Jdjecd



Proof of Main Theorem

Assume
e={i,j} €Eyz,icV-Jdjecd

If i is not a private neighor of j, then e contributes

4 to dCJ.,B ()

110 dg,,(J)-

If i is a private neighor of j, then e contributes

0to ch’3 (j)

110 dg,,(J)-

As j has at most one private neighbor, and at least one
non-private neighbor,

de,5(J) = 2dg, 5 (J)-



Proof of Main Theorem

Each edge in E, 3 is contained in at most 4 paths in C, 3,
At most 1 edge in C, 2,
At most 1 odd cycle in C, 4.

Moreover, a little care shows that if e € E, 3 is contained in C, 4,
then it is contained in at most 2 paths in C, 3.



Proof of Main Theorem

Each edge in E, 3 is contained in at most 4 paths in C, 3,

At most 1 edge in C, 2,

At most 1 odd cycle in C, 4.

Moreover, a little care shows that if e € E, 3 is contained in C, 4,
then it is contained in at most 2 paths in C, 3.

So K:(e) < 5 for each edge e,
Ke(e) =0if e E 5.



Proof of Key Lemma
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Assume G = (V, E) is a graph, and J is a subset of V, Cis a
J-covering family. If K € NE is sufficient for Gy1,then K+ K is
sufficient for G.




Proof of Key Lemma

Proof of Key Lemma

Assume G = (V, E) is a graph, and J is a subset of V, Cis a
J-covering family. If K € NE is sufficient for Gy1,then K+ K is
sufficient for G.

Need to find F € WK< so that

<F7 QE) #0



Proof of Key Lemma

E:EJJ UEJ72UEJ73UEJ74.
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Proof of Key Lemma

E:EJJ UEJ72UEJ73UEJ74.

Qe = QEJ,1 QEJ,z QEJ,a QEJ,4

We shall find

Fi e WE,
Ke

F2 (S WE J’Z,
Ke

F3 S WE J’a,
Ke

F2 S WE J’4,

F = FiFaFsFy € WETKe,
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E:EJJ UEJ72UEJ73UEJ74.

Qe = QEJ,1 QEJ,z QEJ,a QEJ,4

We shall find

Fi e WE,
Ke

F2 (S WE J’Z,
Ke

F3 S WE J’a,
Ke

F2 S WE J’4,

F = FiFaFsFy € WETKe,

(F,Qe) #0.
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Assume G = (V,E) is agraph, and J is a subset of V, Cis a
J-covering family. If K € N is sufficient for G, 1, then K + K is
sufficient for G.




Proof of Key Lemma

Assume G = (V,E) is agraph, and J is a subset of V, Cis a
J-covering family. If K € N is sufficient for G, 1, then K + K is
sufficient for G.

By hypothesis,

IF; € WE, (Fy, Qg,) #0.



Proof of Key Lemma

For each edge e = {i,j} of G, let

Fe = x; + x;.



Proof of Key Lemma

For each edge e = {i,j} of G, let
Fe = x; + x;.

K
Fo = H Fc, € WEC‘/’z.

eck,
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Proof of Key Lemma

For P € C 3 connecting /,j € J with i < j, let

Let ¢(P) be the length of P.
For/=1,...,¢(P), let ¢(P) be the /th edge of P.

Fs = [ (xspy+ (=1 P xyp))
PGCJys
£(P)

= I D 1)"TFp € We

PeCy 5 I=1



Proof of Key Lemma

.. Ko,
Fore = {ji,jo} € Eja, Xj, X, € W™°.
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ore={ji.jo} € Eja, X, X, € W™°.

Let Ce is an odd length ¢(C,) closed walk connectaining
e={j,j2}-
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. K,
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Let Ce is an odd length ¢(C,) closed walk connectaining
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. K,
For e = {j1,o} € Eja, Xj,, X, € Wg.

Let Ce is an odd length ¢(C,) closed walk connectaining

e={ji o}
Choose je € {j1,/2}-

Forl=1,2,...,¢(Ce), let e/(C¢) be the /th edge of Ce.

Choose the labeling so that the 1st edge and the last edge of
Ce are incident to je.



Proof of Key Lemma

. K,
For e = {j1,o} € Eja, Xj,, X, € Wg.

Let Ce is an odd length ¢(C,) closed walk connectaining

e={ji o}
Choose je € {j1,/2}-

Forl=1,2,...,¢(Ce), let e/(C¢) be the /th edge of Ce.

Choose the labeling so that the 1st edge and the last edge of
Ce are incident to je.

Then



KCe

Let Ce is an odd length ¢(Ce) closed walk connectaining

e={ji o}
Choose je € {j1,/2}-

Forl=1,2,...,¢(Ce), let e/(C¢) be the /th edge of Ce.

Choose the labeling so that the 1st edge and the last edge of
Ce are incident to je.
Then

K(CE)

Fa= 11 %=1I 35 Z AT A

ec EJ’4 ec EJ 4 /=1



Proof of Key Lemma

o EI,:‘l € WK’<F1)QE1> ?éo
Ke
QO FR= HeeEJvz,ce:{ie,/e}ecJ,z(X/‘e +X,) € W2
Ke
Q F3=Tlpec,,(Xs(p) + (=) P xyp)) € We .

Key s
0 F4 :HGEEJA)(jG S WE .



Proof of Key Lemma

Q@ 3F € WK (Fy, Q) #0.
Q Fo=1Ilect, o Comtioerecso (Xie T %) € WgcJ’z_
Q Fs =TIlpec,,(Xs(p) + (=1)" P Txyp)) € AL
Q Fu=1lece,, %0 € W,i—(c“.

It remains to show that

(F1FoF3Fy, QEJ’1 QEJ’2 QEJ,S QEJ74> #0.
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Proof of Key Lemma

F1 and Qg,, are polynomials in variables x; for i € V(G 1).

None of the other polynomials involves variables x; for
i€ V(Gya).

So

(F1F2F3F4, Qg,, QE, ,QE, , QE, )
= (F1,Qg,,)(F2F3F4, Qg,, QE, , QE, ,)

By assumption, (Fy, Qg,,) # 0.
It remains to show that

(FoF3Fy, QEJ,2 QEJ’3 QEJ,4> = 0.
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Proof of Key Lemma

Qk, , is a polynomial in variables x; for i € V(G 2).
None of F3, F4 involves variables x; for i € V(G 2).
Recall that

Key o
Fo = 1T (X +X5,) € Wg ™.
ecEyp,Co={le,je}€Cy 2

Hence
deg(Qk,,) = deg(F2) = |E,2|.

In the expansion of F»>F3F4, we only need to consider those
monomials in which F, only contributes to variables x; for
ieV(Gyz2).

We can replace F, by

Il %

eEEJ,g



Proof of Key Lemma

(FoFsFa, Qg,,QE,,Q,,) = (][] X Qe,.)(FsFa Qg,,QE,,)

eeE‘j’g

= *+(F3F4, Qg ,Qk,,)

The monomial [[ g, , Xi, has coefficient 1 or —1in Qg ,.
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Proof of Key Lemma

Assume for i,j € J, there are

21‘,;r even length paths in C, 3 joining / and j.
2t,.j‘ odd length paths in C, 3 joining / and j.
Then

+ - KC
V(xi+ x)% e W

Fo= ]I (xi—x)

ijeL,i<j
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Proof of Key Lemma

F3, F4 and Qg, , are polynomials in variables x; for i € J.

In the expansion of Qg, , Qg ,, we only need to consider those
monomials in which Qg, , only contributes to variables x; for

ied.
We can replace Qk, , by

H Xje‘

e={le.je}€Ey 3
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Proof of Key Lemma

@ Foreach i€ J, a,,(i) > 2dg, (/).

By adding some arbitrary edges to G, 3, we may assume that

o, (i) = 2dg, (i)

T %= T1 Gon ™

e:{/'eyje}EEJ,S I?j7€J7I<j

Let

2tF 2t Tt
o= TI =X 0a+x)% w=T[ (ix) ™.

ijeLi<j ij,€d,i<j



Proof of Key Lemma

We need to show that

<¢F47¢0EJ,4> 7& 0.



Proof of Key Lemma

We need to show that
<¢F47 ¢QEJ)4> 7& 0.

Recall that

F4 = H Xje c mOI’l(QEJA).

ec EJ74

It suffices to show

For any nonzero polynomial R(x) € C|[xq, ...
3xK € mon(R(x))

7Xn],

(px*,¥R(x)) # 0.
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Assume
mon(R) = {xN:i=1,2,... 1}

I
R(x) = ax".
i=1
Assume to the contrary that for each 1 < i </,
(p(x)xK (x)R(x)) = 0.
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Proof of Lemma 1.
Assume

/
= Z Oé,'XK
i=1
Assume to the contrary that for each 1 < i </,

($(xX)x", p(x)R(x)) = 0.
Then for any (5)1<i<s € c/,

Zﬂ/ ﬂﬁ )>:O-

For 1 < i <1, (x)xK is also a monomial x.

mon(y(X)R(x)) = {xK 1 i=1,...,1.



Proof of Key Lemma

Recall the inner product in C[xq, X, ..., Xa]m is defined as

(f,g) = Z Kicoe(xX, f)coe(xK, g).

KeNp,



Proof of Key Lemma

Recall the inner product in C[xq, X, ..., Xa]m is defined as

(f,g) = Z Kicoe(xX, f)coe(xK, g).

KeNp,

We define another inner product

(f,g9) = Z coe(XK, f)coe(xK, g),Vf, g € C[x1, ..., Xn|m-
KeNp,



Proof of Key Lemma

Lemma A

Assume f,g € C[Xy,..., Xp]m. Let f € C[x1, ..., Xp]m be a
polynomial such that for each xK € mon(g),
coe(xK, ) = K,coe( xK f). Then

<?7 g> = (f? g)




Proof of Key Lemma

There exist (8)1<i<s € C' such that for 1 < j </,

~ I ~
coe (XK/,QS;@'XK’) = rlj!coe (XKI',QSR(X)) .




Proof of Key Lemma

There exist (8)1<i<s € C' such that for 1 < j </,

~ I ~
coe (XK/,QS;@'XK’) = rlj!coe (XKI',QSR(X)> .

There exists (5j)1<i</ € C' such that

¢Zﬁ, ', YR(X)) = (pR(x), pR(x)).




Proof of Key Lemma

Assume P = (py,...,pn), Q=1(q1,...,qn) € N".



Proof of Key Lemma

Assume P = (py,...,pn), Q=1(q1,...,qn) € N".

n

27 27 n

(X", xQ) = (27)" / / [[e*"]] e de; ... do
9:1=0 0n=0 j_4 e

n 2w

H 2r)~ 1/ e'(P=a) g,

j=1

6;=0

1, itP=Q,
~ 10, otherwise.



Proof of Key Lemma

Assume P = (py,...,pn), Q=1(q1,...,qn) € N".

n

2
(xP.x9) = (27)" / /9 He’pfefHe’q/gd&
n 2
[I@r)~ ‘/ e'(P=a)0% g
i1 6,=0

1, itP=Q,
~ 10, otherwise.

2m 2m
(f.g) = (27r)‘”/ / f(e,...,e%)g(e? ... e)dby...db,.
0

1=0 =0



Proof of Key Lemma

Assume Claim A is true.



Proof of Key Lemma

Assume Claim A is true.
By Lemma A,

0= ¢Zﬁ, L R(X)) = (9R(X), YR(x)).



Proof of Key Lemma

(¢R(x), ¥ R(x))
27 27
~ (2n)" / [ GTIRGO b, .. o,

On=

o (e — )2 &
- e ) / I (-5
1= n= O1</<]<n

(ele, +e/0) 0 0,
<el€,e/9/ |F(el1,... / )| da‘] d

27 27 "
= +(2n)” / / (2 — 2cos(6; — 6;))"
01= n=0 1</</<n
(24 2cos(f; — 0;))" |F(e,..., e")2dby ...do,
# 0,



Proof of Key Lemma

It remains to prove Claim A.



Proof of Key Lemma

It remains to prove Claim A.




Proof of Key Lemma

Let
A= (&j)ix

aj = (6x",9xM) = (ox19, x5) = coe(xi, ox*).
Let ’ )
b = (—=—coe(x, pR(x))1<i</.

(0% ,'!




Proof of Key Lemma

Let
A= (@j)ix
aj = (", ux1%) = (ox*, xK) = coe(x¥, x*).
Let 1 N
b = (——coe(x", pR(x))1<i</.
Qi ,'!
Claim A says

38 e C!,AB = b.



Proof of Key Lemma

Let
A= (@j)ix
aj = (ox,9xM) = (¢x%, xK1) = coe(x, 5xK).
Let 1 ,
b = (—=—coe(xX, dR(X))1<i<-
Qi ,'!
Claim A says
38 e C!,AB = b.

It suffices to show that A is non-singular.



Proof of Key Lemma

We prove this by showing Va € C/,

aAa® # 0.



Proof of Key Lemma

We prove this by showing Ya € C/,
aAa* #0.
Let /
Fa(x) = ax".
i=1



Proof of Key Lemma

We prove this by showing Ya € C/,
aAa* #0.
Let /
Fa(x) = ax".
i=1

aAa* = Z a/@j(qﬁ(X)XK’,w(X)XKf)

1<ij<i

= (9Fa(X), PFa(X)).



Proof of Key Lemma

2 2T ) ) . ' ' ~

= (271.)*”/ B / (ele,‘ _ el@;)Qtij (ele,' + elej)Zt,j
0 6,=0 1

(eze,ele,)t 5 |F,

(€'
- 0=0 Jo ) eiti et it gif]

|F.(e,..., &%) ?d
. 27 271' "
= (-T2 / / (2 — 2cos(f; — 6;))"
0120 =0 1</</<I
(24 2cos(0; — 0;))' |Fa(e?,...,€e")2db;...do,
# 0.






