Ramsey upper density of infinite graphs

Ander Lamaison

Masaryk University

22nd April, 2021

・ 回 ト ・ ヨ ト ・ ヨ ト …

YES: by Ramsey's theorem, Ψ contains a monochromatic infinite clique. Find a copy of H within the clique.

向下 イヨト イヨト

YES: by Ramsey's theorem, Ψ contains a monochromatic infinite clique. Find a copy of H within the clique.

BUT: the copy of H obtained using this procedure might be very sparse in \mathbb{N} .

向下 イヨト イヨト

YES: by Ramsey's theorem, Ψ contains a monochromatic infinite clique. Find a copy of H within the clique.

BUT: the copy of *H* obtained using this procedure might be very sparse in \mathbb{N} .

In a red-blue-coloring of K_n , we can always find a monochromatic path with more than 2n/3 vertices (Gerencsér-Gyárfás, 1967), but cannot guarantee a clique larger than $\Theta(\log n)$ (Erdős, 1947).

- 4 回 ト 4 ヨ ト 4 ヨ ト

Ramsey upper density

We want to find a dense monochromatic copy of H in $K_{\mathbb{N}}$.

・ロト ・四ト ・ヨト ・ヨト

We want to find a dense monochromatic copy of H in $K_{\mathbb{N}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We want to find a dense monochromatic copy of H in $K_{\mathbb{N}}$.

Definition Let $S \subset \mathbb{N}$ be a set. We define the upper density of S to be $\overline{d}(S) = \limsup_{n \to \infty} \frac{|S \cap [n]|}{n}.$

Definition

Let H be a countably infinite graph. We define its Ramsey upper density $\rho(H)$ as the supremum of the values of λ with the following property: in every red-blue coloring of $E(K_{\mathbb{N}})$, there exists a monochromatic copy H' of H with $\overline{d}(V(H')) \geq \lambda$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$rac{2}{3} \leq
ho(P_\infty) \leq rac{8}{9}$$
 (Erdős-Galvin, 1993)

イロン 不同 とくほと 不良 とう

크

 $\frac{2}{3} \le \rho(P_{\infty}) \le \frac{8}{9}$ (Erdős-Galvin, 1993) $\frac{3}{4} \le \rho(P_{\infty})$ (DeBiasio-McKenney, 2019)

• (1) • (2) • (3) • (3) • (3)

 $\frac{2}{3} \le \rho(P_{\infty}) \le \frac{8}{9}$ (Erdős-Galvin, 1993)

 $\frac{3}{4} \le \rho(P_{\infty})$ (DeBiasio-McKenney, 2019)

 $0.82019\ldots=rac{9+\sqrt{17}}{16}\leq
ho(P_\infty)$ (Lo-Sanhueza-Wang, 2018)

• (1) • (

 $\frac{2}{3} \le \rho(P_{\infty}) \le \frac{8}{9}$ (Erdős-Galvin, 1993)

 $\frac{3}{4} \le
ho(P_{\infty})$ (DeBiasio-McKenney, 2019)

 $0.82019... = \frac{9+\sqrt{17}}{16} \le \rho(P_{\infty})$ (Lo-Sanhueza-Wang, 2018)

Theorem (Corsten-DeBiasio-L-Lang, 2019)

$$\rho(P_{\infty}) = \frac{12 + \sqrt{8}}{17} = 0.87226\dots$$

イロト イポト イヨト イヨト

$\rho(H)$ for general H

Let *H* be a (locally finite) graph. What properties about *H* have the biggest influence in the value of $\rho(H)$?

イロト イヨト イヨト イヨト

æ

Let *H* be a (locally finite) bipartite graph. What properties about *H* have the biggest influence in the value of $\rho(H)$?

イロト イヨト イヨト イヨト

Let *H* be a (locally finite) bipartite graph. What properties about *H* have the biggest influence in the value of $\rho(H)$?

Let $\omega \cdot F$ denote the disjoint union of infinitely many copies of F• $\rho(\omega \cdot K_2) = \frac{12+\sqrt{8}}{17} = 0.87226...$

・ 回 ト ・ ヨ ト ・ ヨ ト

Let *H* be a (locally finite) bipartite graph. What properties about *H* have the biggest influence in the value of $\rho(H)$?

Let $\omega \cdot F$ denote the disjoint union of infinitely many copies of F• $\rho(\omega \cdot K_2) = \frac{12 + \sqrt{8}}{17} = 0.87226...$

•
$$\rho(\omega \cdot K_{1,t}) = \frac{7t^2 + 3t + 2 + 2\sqrt{t^4 + t^3}}{9t^2 + 4t + 4} \xrightarrow{t \to \infty} 1.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Let *H* be a (locally finite) bipartite graph. What properties about *H* have the biggest influence in the value of $\rho(H)$?

Let $\omega \cdot F$ denote the disjoint union of infinitely many copies of F• $\rho(\omega \cdot K_2) = \frac{12 + \sqrt{8}}{17} = 0.87226...$

•
$$\rho(\omega \cdot K_{1,t}) = \frac{7t^2 + 3t + 2 + 2\sqrt{t^4 + t^3}}{9t^2 + 4t + 4} \xrightarrow{t \to \infty} 1.$$

•
$$\rho(P_{\infty}) = \frac{12 + \sqrt{8}}{17}$$

(本部) (本語) (本語) (二語)

Let *H* be a (locally finite) bipartite graph. What properties about *H* have the biggest influence in the value of $\rho(H)$?

Let $\omega \cdot F$ denote the disjoint union of infinitely many copies of F• $\rho(\omega \cdot K_2) = \frac{12 + \sqrt{8}}{17} = 0.87226...$

•
$$\rho(\omega \cdot K_{1,t}) = \frac{7t^2 + 3t + 2 + 2\sqrt{t^4 + t^3}}{9t^2 + 4t + 4} \xrightarrow{t \to \infty} 1.$$

•
$$\rho(P_{\infty}) = \frac{12 + \sqrt{8}}{17}$$
.

• $\rho(\text{infinite binary tree}) \stackrel{conj}{=} \frac{21+\sqrt{12}}{33} = 0.74133...$

(本部) (本語) (本語) (二語)

Let *H* be a (locally finite) bipartite graph. What properties about *H* have the biggest influence in the value of $\rho(H)$?

Let $\omega \cdot F$ denote the disjoint union of infinitely many copies of F• $\rho(\omega \cdot K_2) = \frac{12 + \sqrt{8}}{17} = 0.87226...$

•
$$\rho(\omega \cdot K_{1,t}) = \frac{7t^2 + 3t + 2 + 2\sqrt{t^4 + t^3}}{9t^2 + 4t + 4} \xrightarrow{t \to \infty} 1.$$

•
$$\rho(P_{\infty}) = \frac{12 + \sqrt{8}}{17}$$
.

• $\rho(\text{infinite binary tree}) \stackrel{conj}{=} \frac{21+\sqrt{12}}{33} = 0.74133...$

•
$$\rho(\text{infinite } k\text{-ary tree}) \stackrel{conj}{=} \frac{k+1}{2k}$$
 for $k \ge 3$.

(本部) (本語) (本語) (二語)

Expansion of independent sets

Given $S \subseteq V(H)$, we define $N(S) = \bigcup_{v \in S} N(v)$. We define

 $\mu(n, H) = \min\{|N(I)| : I \subset V(H) \text{ independent}, |I| = n\}.$

イロト イヨト イヨト イヨト 三日

Expansion of independent sets

Given
$$S \subseteq V(H)$$
, we define $N(S) = \bigcup_{v \in S} N(v)$. We define

$$\mu(n, H) = \min\{|N(I)| : I \subset V(H) \text{ independent}, |I| = n\}.$$

 $\frac{\mu(n,H)}{n}$ is a measure of the expansion of the independent sets of H.

白 ト イヨ ト イヨ ト

Expansion of independent sets

Given
$$S \subseteq V(H)$$
, we define $N(S) = \bigcup_{v \in S} N(v)$. We define

$$\mu(n, H) = \min\{|N(I)| : I \subset V(H) \text{ independent}, |I| = n\}.$$

 $\frac{\mu(n,H)}{n}$ is a measure of the expansion of the independent sets of *H*. $\frac{\mu(n,H)}{n}$ and $\rho(H)$ are related through a certain function,

白マ イヨマ イヨマ

Given
$$S \subseteq V(H)$$
, we define $N(S) = \bigcup_{v \in S} N(v)$. We define

$$\mu(n, H) = \min\{|N(I)| : I \subset V(H) \text{ independent}, |I| = n\}.$$

 $\frac{\mu(n,H)}{n}$ is a measure of the expansion of the independent sets of H.

 $\frac{\mu(n,H)}{n}$ and $\rho(H)$ are related through a certain function, which satisfies

$$\frac{x+1}{2x+1} \le f(x) \le \begin{cases} \frac{2x^2+3x+7+2\sqrt{x+1}}{4x^2+4x+9} & \text{for } 0 \le x < 3, \\ \frac{x+1}{2x} & \text{for } x \ge 3. \end{cases}$$

The upper bound is tight in [0, 1], and conjectured to hold elsewhere.

◆□ → ◆□ → ◆ □ → ◆ □ →

æ

f(x)

Definition

Let $\gamma \in (-1,1)$. For a continuous function $g(x) : [0, +\infty) \to \mathbb{R}$, define

$$\Gamma_{\gamma}^{+}(g,t) = \min\{x : \gamma x + g(x) \ge t\}$$

$$\Gamma_{\gamma}^{-}(g,t) = \min\{x : \gamma x - g(x) \ge t\},$$

where we take the minimum of the empty set to be $+\infty$. Let $h(\gamma)$ be the infimum, over all 1-Lipschitz functions g with g(0) = 0, of

$$h(\gamma) = \inf_{g} \limsup_{t \to \infty} rac{\Gamma_{\gamma}^+(g,t) + \Gamma_{\gamma}^-(g,t)}{t}.$$

Define $f:[0,+\infty)\to \mathbb{R}$ as

$$f(\lambda) = 1 - rac{1}{rac{2\lambda}{(1+\lambda)^2} h\left(rac{\lambda-1}{\lambda+1}
ight) + rac{2\lambda}{1+\lambda}},$$

Let H be a locally finite graph. Then

$$\rho(H) \leq \limsup_{n \to \infty} f\left(\frac{\mu(n,H)}{n}\right).$$

イロン 不同 とくほと 不良 とう

Ð,

Let H be a locally finite graph. Then

$$\rho(H) \leq \limsup_{n \to \infty} f\left(\frac{\mu(n,H)}{n}\right).$$

Theorem

Let H be a locally finite bipartite graph. Suppose that H contains infinitely many pairwise disjoint independent sets $I_1, I_2, ...$ with $|I_i| = r > 0$ and $|N(I_i)| = s$. Then $\rho(H) \ge f(s/r)$.

Let H be a locally finite graph. Then

$$\rho(H) \leq \limsup_{n \to \infty} f\left(\frac{\mu(n, H)}{n}\right).$$

Theorem

Let H be a locally finite bipartite graph. Suppose that H contains infinitely many pairwise disjoint independent sets $I_1, I_2, ...$ with $|I_i| = r > 0$ and $|N(I_i)| = s$. Then $\rho(H) \ge f(s/r)$.

Corollary

The upper bound is tight for every locally finite bipartite graph in which every orbit of the automorphism group on V(H) is infinite.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let H be a locally finite graph. Then

$$\rho(H) \leq \limsup_{n \to \infty} f\left(\frac{\mu(n, H)}{n}\right).$$

Theorem

Let H be a locally finite bipartite graph. Suppose that H contains infinitely many pairwise disjoint independent sets $I_1, I_2, ...$ with $|I_i| = r > 0$ and $|N(I_i)| = s$. Then $\rho(H) \ge f(s/r)$.

Corollary

The upper bound is tight for every locally finite bipartite graph in which every orbit of the automorphism group on V(H) is infinite.

Corollary

The upper bound is tight for every locally finite forest.

For non-bipartite graphs, other factors come into play:

•
$$\rho(P_{\infty}) = f(1),$$

直 とう ゆう く いちょう

For non-bipartite graphs, other factors come into play:

回 とう ヨン うちとう

For non-bipartite graphs, other factors come into play:

•
$$\rho(2 \cdot P_{\infty} + K_3) = f(1)$$
,

直 とう ゆう く いちょう

For non-bipartite graphs, other factors come into play:

For non-bipartite graphs, other factors come into play:

•
$$\rho(P_{\infty}) = f(1)$$
,
• $\rho(2 \cdot P_{\infty}) = f(1)$,
• $\rho(2 \cdot P_{\infty} + K_3) = f(1)$,
• $\rho(P_{\infty} + K_2) \le 1/2$

Theorem

Let H be a graph with $\chi(H) \ge a$, such that there is a finite set $S \subseteq V(H)$ with $V(H) \setminus S$ being contained in b components. Then $\rho(H) \le b/(a-1)$.

Theorem

Let H be a locally finite graph.

• If H has infinitely many components, then $\rho(H) \ge 1/2$.

(日本)(日本)(日本)

Theorem

Let H be a locally finite graph.

- If H has infinitely many components, then $\rho(H) \ge 1/2$.
- If H has finitely many components and finite chromatic number, let a = χ(H) and b be the number of infinite components of H. Then

 $\min\{b/(2a-2), 1/2\} \le \rho(H) \le \min\{b/(a-1), 1\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・
Non-bipartite graphs

Theorem

Let H be a locally finite graph.

- If H has infinitely many components, then $\rho(H) \ge 1/2$.
- If H has finitely many components and finite chromatic number, let a = χ(H) and b be the number of infinite components of H. Then

 $\min\{b/(2a-2), 1/2\} \le \rho(H) \le \min\{b/(a-1), 1\}.$

 If H has finitely many components and infinite chromatic number, then ρ(H) = 0,

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-bipartite graphs

Theorem

Let H be a locally finite graph.

- If H has infinitely many components, then $\rho(H) \ge 1/2$.
- If H has finitely many components and finite chromatic number, let a = χ(H) and b be the number of infinite components of H. Then

 $\min\{b/(2a-2), 1/2\} \le \rho(H) \le \min\{b/(a-1), 1\}.$

• If H has finitely many components and infinite chromatic number, then $\rho(H) = 0$, but in every two-coloring of $E(K_N)$ there exists a monochromatic copy of H with positive density.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

Non-bipartite graphs

Theorem

Let H be a locally finite graph.

- If H has infinitely many components, then $\rho(H) \ge 1/2$.
- If H has finitely many components and finite chromatic number, let a = χ(H) and b be the number of infinite components of H. Then

 $\min\{b/(2a-2), 1/2\} \le \rho(H) \le \min\{b/(a-1), 1\}.$

• If H has finitely many components and infinite chromatic number, then $\rho(H) = 0$, but in every two-coloring of $E(K_{\mathbb{N}})$ there exists a monochromatic copy of H with positive density.

Conjecture (DeBiasio-McKenney, 2019)

For every $k \in \mathbb{N}$ there exists $c_k > 0$ such that $\rho(H) \ge c_k$ for every graph H with $\Delta(H) \le k$.

Theorem

Let H be a locally finite graph, a, b, r, s be positive integers with a > b, and $\Psi : V(H) \rightarrow [a]$ be a proper coloring. Suppose that there exist infinitely many pairwise disjoint independent sets l_1, l_2, \ldots in H, not concentrated in fewer than b components, such that $|I_i| = r$, $|N(I_i)| \leq s$, and $\Psi(N(I_i)) = 1$. Then

$$\rho(H) \geq \frac{b}{a-1} f\left(\frac{s}{r}\right).$$

A > < > > < > > -

Theorem

Let H be a locally finite graph, a, b, r, s be positive integers with a > b, and $\Psi : V(H) \rightarrow [a]$ be a proper coloring. Suppose that there exist infinitely many pairwise disjoint independent sets I_1, I_2, \ldots in H, not concentrated in fewer than b components, such that $|I_i| = r$, $|N(I_i)| \leq s$, and $\Psi(N(I_i)) = 1$. Then

$$\rho(H) \geq \frac{b}{a-1} f\left(\frac{s}{r}\right)$$

Theorem

Let F be a finite graph and let I be an independent set such that N(I) is independent. Then $\rho(\omega \cdot F) \ge f\left(\frac{|N(I)|}{|I|}\right)$.

• • = • • = •

Theorem

Let F be a finite graph and let I be an independent set such that N(I) is independent. Then $\rho(\omega \cdot F) \ge f\left(\frac{|N(I)|}{|I|}\right)$.

Theorem (Corollary to Burr-Erdős-Spencer)

$$\rho(\omega \cdot F) \geq \frac{|V(F)|}{2|V(F)| - \alpha(F)} = \overline{f}\left(\frac{|V(F)|}{\alpha(F)} - 1\right), \quad \overline{f}(x) = \frac{x+1}{2x+1}.$$

向下 イヨト イヨト

Theorem

Let F be a finite graph and let I be an independent set such that N(I) is independent. Then $\rho(\omega \cdot F) \ge f\left(\frac{|N(I)|}{|I|}\right)$.

Theorem (Corollary to Burr-Erdős-Spencer)

$$\rho(\omega \cdot F) \geq \frac{|V(F)|}{2|V(F)| - \alpha(F)} = \overline{f}\left(\frac{|V(F)|}{\alpha(F)} - 1\right), \quad \overline{f}(x) = \frac{x+1}{2x+1}.$$

Theorem (Balogh-L, 2021+)

$$\rho(\omega \cdot F) \ge f\left(\frac{|V(F)|}{\alpha(F)} - 1\right).$$

★週 ▶ ★ 注 ▶ ★ 注 ▶

Theorem

Let F be a finite graph and let I be an independent set such that N(I) is independent. Then $\rho(\omega \cdot F) \ge f\left(\frac{|N(I)|}{|I|}\right)$.

Theorem (Corollary to Burr-Erdős-Spencer)

$$\rho(\omega \cdot F) \geq \frac{|V(F)|}{2|V(F)| - \alpha(F)} = \overline{f}\left(\frac{|V(F)|}{\alpha(F)} - 1\right), \quad \overline{f}(x) = \frac{x+1}{2x+1}.$$

Theorem (Balogh-L, 2021+)

$$\rho(\omega \cdot F) \ge f\left(\frac{|V(F)|}{\alpha(F)} - 1\right).$$

Corollary

For all
$$n \ge 2$$
, $\rho(\omega \cdot K_n) = f(n-1)$ and $\rho(\omega \cdot C_{2n-1}) = f\left(\frac{n}{n-1}\right)$

We have shown that $\rho(\omega \cdot K_3) = f(2)$, but we do not know the exact value of f(2). From the bounds we know so far,

$$\frac{3}{5} \le f(2) \le \frac{21 + \sqrt{12}}{33} = 0.74133\dots$$

白 ト イヨト イヨト

We have shown that $\rho(\omega \cdot K_3) = f(2)$, but we do not know the exact value of f(2). From the bounds we know so far,

$$\frac{3}{5} \le f(2) \le \frac{21 + \sqrt{12}}{33} = 0.74133\dots$$

Theorem (Balogh-L, 2021+)

$$ho(\omega \cdot K_3) \geq 1 - rac{1}{\sqrt{7}} = 0.62203\ldots$$

We have shown that $\rho(\omega \cdot K_3) = f(2)$, but we do not know the exact value of f(2). From the bounds we know so far,

$$\frac{3}{5} \le f(2) \le \frac{21 + \sqrt{12}}{33} = 0.74133\dots$$

Theorem (Balogh-L, 2021+)

$$f(2) =
ho(\omega \cdot K_3) \ge 1 - \frac{1}{\sqrt{7}} = 0.62203...$$

(人間) とうけん ほう

Conjecture

For every finite graph F,

$$\rho(\omega \cdot F) = f\left(\min_{\substack{I \text{ indep. in } F}} \frac{|N(I)|}{|I|}\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

臣

Conjecture

For every finite graph F,

$$\rho(\omega \cdot F) = f\left(\min_{\substack{I \text{ indep. in } F}} \frac{|N(I)|}{|I|}\right)$$

Theorem

The conjecture holds if a non-empty independent set I that minimizes $\frac{|N(I)|}{|I|}$ satisfies that

• N(1) is independent, or

Conjecture

For every finite graph F,

$$\rho(\omega \cdot F) = f\left(\min_{\substack{I \text{ indep. in } F}} \frac{|N(I)|}{|I|}\right)$$

Theorem

The conjecture holds if a non-empty independent set I that minimizes $\frac{|N(I)|}{|I|}$ satisfies that

- N(1) is independent, or
- I is maximal.

Conjecture

For every finite graph F,

$$\rho(\omega \cdot F) = f\left(\min_{\substack{I \text{ indep. in } F}} \frac{|N(I)|}{|I|}\right)$$

Theorem

The conjecture holds if a non-empty independent set I that minimizes $\frac{|N(I)|}{|I|}$ satisfies that

- N(1) is independent, or
- I is maximal.

In the linear regime, to show $\rho(H) \leq \limsup f\left(\frac{\mu(n,H)}{n}\right)$, consider the following coloring, where the color of each edge is the color of its leftmost endpoint.

In the linear regime, to show $\rho(H) \leq \limsup f\left(\frac{\mu(n,H)}{n}\right)$, consider the following coloring, where the color of each edge is the color of its leftmost endpoint.

In the linear regime, to show $\rho(H) \leq \limsup f\left(\frac{\mu(n,H)}{n}\right)$, consider the following coloring, where the color of each edge is the color of its leftmost endpoint.

In the non-linear regime, to show $\rho(H) \leq \limsup f\left(\frac{\mu(n,H)}{n}\right)$, consider the following coloring, where the color of each edge is the color of its leftmost endpoint.

In the non-linear regime, to show $\rho(H) \leq \limsup f\left(\frac{\mu(n,H)}{n}\right)$, consider the following coloring, where the color of each edge is the color of its leftmost (not its smallest) endpoint.

向下 イヨト イヨト

 There is a red-blue coloring of V(K_N) such that, for every finite set S of vertices of color C there are infinitely many vertices joined to every element of S through edges of color C.

• • = • • = •

- There is a red-blue coloring of V(K_N) such that, for every finite set S of vertices of color C there are infinitely many vertices joined to every element of S through edges of color C.
- There exists a subgraph $F \subseteq K_N$ with $\overline{d}(V(F)) \ge f(s/r)$, and a color C of the form below.

向下 イヨト イヨト

- There is a red-blue coloring of V(K_N) such that, for every finite set S of vertices of color C there are infinitely many vertices joined to every element of S through edges of color C.
- There exists a subgraph $F \subseteq K_N$ with $\overline{d}(V(F)) \ge f(s/r)$, and a color C of the form below.
- There is a copy of H in color C, with $\overline{d}(V(H')) \ge \overline{d}(V(F))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Step 1: color the vertices.

回 とう モン・ モン

Step 1: color the vertices.

・日・・ ヨ・・ モ・

臣

Step 1: color the vertices.

通 とう ほ とう ほう

Step 1: color the vertices.

・ 同 ト ・ ヨ ト ・ ヨ ト

Step 1: color the vertices.

(4回) (4回) (日)

臣

Step 1: color the vertices.

In this coloring, it is easy to put red vertices into a red copy of H, and vice versa.

白 と く ヨ と く ヨ と …

3

伺 ト イヨト イヨト

A B K A B K

.

This reduces the $K_{r,s}$ packing problem to a max-flow problem.

Step 2: solve the max-flow \rightarrow min-cut problem. By looking at the degree sequence in each color, we can further reduce the problem to the following lemma:

• • = • • = •
Sketch of the proof: lower bound

Step 2: solve the max-flow \rightarrow min-cut problem. By looking at the degree sequence in each color, we can further reduce the problem to the following lemma:

Lemma

Let $g: [0, +\infty) \to [0, \infty)$ be a non-decreasing continuous function. Let $\lambda > 0$. Define

$$\ell^+_\lambda(g,t) = \min\left\{x: g(\lambda x) - x \ge t\right\},$$

$$\ell_{\lambda}^{-}(g,t) = \min\left\{x: x - \frac{g(x)}{\lambda} \ge t\right\},$$

where $\min \emptyset = +\infty$. Then

$$\limsup_{t \to \infty} \frac{\ell^+(g,t) + \ell^-(g,t)}{t} \geq \frac{f(\lambda)}{1 - f(\lambda)}$$

э

回 とうほう うほとう

• Isolated vertices of F are mapped to individual vertices of H.

• • = • • = •

- Isolated vertices of F are mapped to individual vertices of H.
- $K_{r,s}$ components of F are mapped to sets of the form $I \cup N(I)$.

• • = • • = •

- Isolated vertices of F are mapped to individual vertices of H.
- $K_{r,s}$ components of F are mapped to sets of the form $I \cup N(I)$.
- Individual vertices v of H are mapped to either arbitrary vertices of color C, or common neighbors of the preimage of N(v) through edges of color C.

向下 イヨト イヨト

Sketch of the proof: non-bipartite H

What goes wrong when H is not bipartite?

通 とう ほ とう ほう

Sketch of the proof: non-bipartite H

What goes wrong when H is not bipartite?

通 とう ほ とう ほう

Sketch of the proof: non-bipartite H

What goes wrong when H is not bipartite?

We can use a coloring of Elekes-Soukup-Soukup-Szentmiklóssy instead.

• • = • • = •

Suppose that you stand at the position x = 0 in a street that is infinite on both sides. Let $\sigma \in (-1, 1)$ be a "friendship factor".

向下 イヨト イヨト

.

Let *T* be the time it takes you to meet your friend. If your maximum speed is 1, how should you move in order to maximize the effective speed $\frac{|x_0|}{T}$ in the worst case?

ヨマ イヨマ イヨマ

A function g is 1-Lipschitz if it satisfies $|g(x) - g(y)| \le |x - y|$ for every x, y.

・ 回 ト ・ ヨ ト ・ ヨ ト …

크

A function g is 1-Lipschitz if it satisfies $|g(x) - g(y)| \le |x - y|$ for every x, y.

Definition

Let $g : [0, +\infty) \to \mathbb{R}$ be a 1-Lipschitz function with g(0) = 0. Define $\Gamma^+_{\sigma}(g, s) = min\{t : g(t) + \sigma t = s\}$

$$\Gamma_{\sigma}^{-}(g,s) = \min\{t : g(t) - \sigma t = s\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

A function g is 1-Lipschitz if it satisfies $|g(x) - g(y)| \le |x - y|$ for every x, y.

Definition

Let $g : [0, +\infty) \to \mathbb{R}$ be a 1-Lipschitz function with g(0) = 0. Define

$$f_{\sigma}^{+}(g,s) = min\{t:g(t) + \sigma t = s\}$$

$$\Gamma_{\sigma}^{-}(g,s) = \min\{t : g(t) - \sigma t = s\}$$

Problem

For a fixed σ , minimize

$$\limsup_{s \to \infty} \frac{\max\{\Gamma_{\sigma}^+(g,s), \Gamma_{\sigma}^-(g,s)\}}{s}$$

where g is 1-Lipschitz and g(0) = 0.

イロン 不聞と 不同と 不同と

э

A function g is 1-Lipschitz if it satisfies $|g(x) - g(y)| \le |x - y|$ for every x, y.

Definition

Let $g : [0, +\infty) \to \mathbb{R}$ be a 1-Lipschitz function with g(0) = 0. Define

$$f_{\sigma}^{+}(g,s) = min\{t:g(t) + \sigma t = s\}$$

$$\Gamma_{\sigma}^{-}(g,s) = \min\{t : g(t) - \sigma t = s\}$$

Problem

For a fixed σ , minimize

$$\limsup_{s\to\infty}\frac{\Gamma_{\sigma}^+(g,s)+\Gamma_{\sigma}^-(g,s)}{s}$$

where g is 1-Lipschitz and g(0) = 0.

イロン イヨン イヨン イヨン

э

ヘロト 人間 とくほど 人間とう

æ

ヘロト 人間 とくほとう ほとう

æ,

・ロト ・四ト ・ヨト・

æ

Theorem (Elekes-Soukup-Soukup-Szentmiklóssy, 2017)

The vertex set of every 2-edge-colored $K_{\mathbb{N}}$ can be partitioned into four squares of (finite or infinite) paths.

同 ト イヨト イヨト

Theorem (Elekes-Soukup-Soukup-Szentmiklóssy, 2017)

The vertex set of every 2-edge-colored $K_{\mathbb{N}}$ can be partitioned into four squares of (finite or infinite) paths.

Corollary (DeBiasio-McKenney, 2019)

 $ho(P_\infty^2) \geq 1/4$

A (10) × (10) × (10) ×

Theorem (Elekes-Soukup-Soukup-Szentmiklóssy, 2017)

The vertex set of every 2-edge-colored $K_{\mathbb{N}}$ can be partitioned into four squares of (finite or infinite) paths.

Corollary (DeBiasio-McKenney, 2019)

 $ho(P_\infty^2) \geq 1/4$

Problem

What is the value of $\rho(P_{\infty}^2)$? Improve either the previous bound or $\rho(P_{\infty}^2) \leq 1/2$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶