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Introduction

Fix a countably infinite graph H (say P∞). In a red-blue coloring
Ψ of the edges of KN, is it possible to find a monochromatic
subgraph isomorphic to H?

YES: by Ramsey’s theorem, Ψ contains a monochromatic infinite
clique. Find a copy of H within the clique.

BUT: the copy of H obtained using this procedure might be very
sparse in N.

In a red-blue-coloring of Kn, we can always find a monochromatic
path with more than 2n/3 vertices (Gerencsér-Gyárfás, 1967), but
cannot guarantee a clique larger than Θ(log n) (Erdős, 1947).
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Ramsey upper density

We want to find a dense monochromatic copy of H in KN.

Definition

Let S ⊂ N be a set. We define the upper density of S to be

d̄(S) = lim sup
n→∞

|S ∩ [n]|
n

.

Definition

Let H be a countably infinite graph. We define its Ramsey upper
density ρ(H) as the supremum of the values of λ with the
following property: in every red-blue coloring of E (KN), there
exists a monochromatic copy H ′ of H with d̄(V (H ′)) ≥ λ.
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ρ(P∞)

The Ramsey upper density, for the particular case H = P∞, was
introduced by Erdős and Galvin.

2
3 ≤ ρ(P∞) ≤ 8

9 (Erdős-Galvin, 1993)

3
4 ≤ ρ(P∞) (DeBiasio-McKenney, 2019)

0.82019 . . . = 9+
√
17

16 ≤ ρ(P∞) (Lo-Sanhueza-Wang, 2018)

Theorem (Corsten-DeBiasio-L-Lang, 2019)

ρ(P∞) =
12 +

√
8

17
= 0.87226 . . .
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ρ(H) for general H

Let H be a (locally finite) graph. What properties about H have
the biggest influence in the value of ρ(H)?

Let ω · F denote the disjoint union of infinitely many copies of F

ρ(ω · K2) = 12+
√
8

17 = 0.87226 . . .

ρ(ω · K1,t) = 7t2+3t+2+2
√
t4+t3

9t2+4t+4

t→∞−−−→ 1.

ρ(P∞) = 12+
√
8

17 .

ρ(infinite binary tree)
conj
= 21+

√
12

33 = 0.74133 . . .

ρ(infinite k-ary tree)
conj
= k+1

2k for k ≥ 3.
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ρ(H) for bipartite H

Let H be a (locally finite) bipartite graph. What properties about
H have the biggest influence in the value of ρ(H)?

Let ω · F denote the disjoint union of infinitely many copies of F
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Expansion of independent sets

Given S ⊆ V (H), we define N(S) =
⋃
v∈S

N(v). We define

µ(n,H) = min{|N(I )| : I ⊂ V (H) independent, |I | = n}.

µ(n,H)
n is a measure of the expansion of the independent sets of H.

µ(n,H)
n and ρ(H) are related through a certain function, which

satisfies

x + 1

2x + 1
≤ f (x) ≤


2x2+3x+7+2

√
x+1

4x2+4x+9
for 0 ≤ x < 3,

x+1
2x for x ≥ 3.

The upper bound is tight in [0, 1], and conjectured to hold
elsewhere.
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f (x)
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f (x)

Definition

Let γ ∈ (−1, 1). For a continuous function g(x) : [0,+∞)→ R,
define

Γ+
γ (g , t) = min{x : γx + g(x) ≥ t}

Γ−γ (g , t) = min{x : γx − g(x) ≥ t},

where we take the minimum of the empty set to be +∞. Let h(γ)
be the infimum, over all 1-Lipschitz functions g with g(0) = 0, of

h(γ) = inf
g

lim sup
t→∞

Γ+
γ (g , t) + Γ−γ (g , t)

t
.

Define f : [0,+∞)→ R as

f (λ) = 1− 1

2λ
(1+λ)2

h
(
λ−1
λ+1

)
+ 2λ

1+λ

.
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Theorem

Let H be a locally finite graph. Then

ρ(H) ≤ lim sup
n→∞

f

(
µ(n,H)

n

)
.

Theorem

Let H be a locally finite bipartite graph. Suppose that H contains
infinitely many pairwise disjoint independent sets I1, I2, . . . with
|Ii | = r > 0 and |N(Ii )| = s. Then ρ(H) ≥ f (s/r).

Corollary

The upper bound is tight for every locally finite bipartite graph in
which every orbit of the automorphism group on V (H) is infinite.

Corollary

The upper bound is tight for every locally finite forest.
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Non-bipartite graphs

For non-bipartite graphs, other factors come into play:

ρ(P∞) = f (1),

ρ(2 · P∞) = f (1),

ρ(2 · P∞ + K3) = f (1),

ρ(P∞ + K3) ≤ 1/2.

odd

even

. . .

. . .

Theorem

Let H be a graph with χ(H) ≥ a, such that there is a finite set
S ⊆ V (H) with V (H) \ S being contained in b components. Then
ρ(H) ≤ b/(a− 1).
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Non-bipartite graphs

Theorem

Let H be a locally finite graph.

If H has infinitely many components, then ρ(H) ≥ 1/2.

If H has finitely many components and finite chromatic
number, let a = χ(H) and b be the number of infinite
components of H. Then

min{b/(2a− 2), 1/2} ≤ ρ(H) ≤ min{b/(a− 1), 1}.

If H has finitely many components and infinite chromatic
number, then ρ(H) = 0, but in every two-coloring of E (KN)
there exists a monochromatic copy of H with positive density.

Conjecture (DeBiasio-McKenney, 2019)

For every k ∈ N there exists ck > 0 such that ρ(H) ≥ ck for every
graph H with ∆(H) ≤ k.
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Non-bipartite graphs

Theorem

Let H be a locally finite graph, a, b, r , s be positive integers with
a > b, and Ψ : V (H)→ [a] be a proper coloring. Suppose that
there exist infinitely many pairwise disjoint independent sets
I1, I2, . . . in H, not concentrated in fewer than b components, such
that |Ii | = r , |N(Ii )| ≤ s, and Ψ(N(Ii )) = 1. Then

ρ(H) ≥ b

a− 1
f
(s
r

)
.

. . .

. . .

I1

I2

I3

I4
1 2

3

1 1 1 1 1 12 2 22 2 2

1 2 1 2 1 2 1 2 1 2 1 2
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ρ(H) ≥ b

a− 1
f
(s
r

)
.

. . .

. . .

I1

I2

I3

I4
1 2

3

1 1 1 1 1 12 2 22 2 2

1 2 1 2 1 2 1 2 1 2 1 2
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Results for infinite factors

Theorem

Let F be a finite graph and let I be an independent set such that

N(I ) is independent. Then ρ(ω · F ) ≥ f
(
|N(I )|
|I |

)
.

Theorem (Corollary to Burr-Erdős-Spencer)

ρ(ω · F ) ≥ |V (F )|
2|V (F )| − α(F )

= f̄

(
|V (F )|
α(F )

− 1

)
, f̄ (x) =

x + 1

2x + 1
.

Theorem (Balogh-L, 2021+)

ρ(ω · F ) ≥ f

(
|V (F )|
α(F )

− 1

)
.

Corollary

For all n ≥ 2, ρ(ω · Kn) = f (n − 1) and ρ(ω · C2n−1) = f
(

n
n−1

)
.
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Results for infinite factors

We have shown that ρ(ω · K3) = f (2), but we do not know the
exact value of f (2). From the bounds we know so far,

3

5
≤ f (2) ≤ 21 +

√
12

33
= 0.74133 . . .

Theorem (Balogh-L, 2021+)

ρ(ω · K3) ≥ 1− 1√
7

= 0.62203 . . .
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Results for infinite factors

Conjecture

For every finite graph F ,

ρ(ω · F ) = f

(
min

I indep. in F

|N(I )|
|I |

)
.

Theorem

The conjecture holds if a non-empty independent set I that
minimizes |N(I )|

|I | satisfies that

N(I ) is independent, or

I is maximal.
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Sketch of the proof: upper bound

In the linear regime, to show ρ(H) ≤ lim sup f
(
µ(n,H)

n

)
, consider

the following coloring, where the color of each edge is the color of
its leftmost endpoint.

︷ ︸︸ ︷
aaaaaaaaaaaaaaaaaaaaaaaaaa31 5 7 9 11 13

2 4 6 8 10 12 14

S ⊆ V (H)

≥ µ(|S|, H)
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Sketch of the proof: upper bound

In the non-linear regime, to show ρ(H) ≤ lim sup f
(
µ(n,H)

n

)
,

consider the following coloring, where the color of each edge is the
color of its leftmost endpoint.()

. . .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

. . .
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 2012 22 21
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Sketch of the proof: upper bound

In the non-linear regime, to show ρ(H) ≤ lim sup f
(
µ(n,H)

n

)
,

consider the following coloring, where the color of each edge is the
color of its leftmost (not its smallest) endpoint.()

. . .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

. . .
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 2012 22 21
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Sketch of the proof: lower bound

We will look at the bipartite case. Suppose that the coloring of
E (KN) is given. We want to find a dense copy of H. We proceed
in three steps:

There is a red-blue coloring of V (KN) such that, for every
finite set S of vertices of color C there are infinitely many
vertices joined to every element of S through edges of color C .

There exists a subgraph F ⊆ KN with d̄(V (F )) ≥ f (s/r), and
a color C of the form below.

There is a copy of H in color C , with d̄(V (H ′)) ≥ d̄(V (F )).
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Sketch of the proof: lower bound

Step 1: color the vertices.

1

2

3

4

5

In this coloring, it is easy to put red vertices into a red copy of H,
and vice versa.
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Sketch of the proof: lower bound

Step 1: color the vertices.

1

2

3

4

5

In this coloring, it is easy to put red vertices into a red copy of H,
and vice versa.
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Sketch of the proof: lower bound

Step 2: Apply Szemerédi’s Regularity Lemma to finite but large
pieces of N. Use it to find copies of Kr ,s .

∞

1
s

1
r

This reduces the Kr ,s packing problem to a max-flow problem.
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Sketch of the proof: lower bound

Step 2: solve the max-flow → min-cut problem. By looking at the
degree sequence in each color, we can further reduce the problem
to the following lemma:

Lemma

Let g : [0,+∞)→ [0,∞) be a non-decreasing continuous
function. Let λ > 0. Define

`+λ (g , t) = min {x : g(λx)− x ≥ t} ,

`−λ (g , t) = min

{
x : x − g(x)

λ
≥ t

}
,

where min ∅ = +∞. Then

lim sup
t→∞

`+(g , t) + `−(g , t)

t
≥ f (λ)

1− f (λ)
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Sketch of the proof: lower bound

Step 3: connect the components of F to form a copy of H.

Isolated vertices of F are mapped to individual vertices of H.

Kr ,s components of F are mapped to sets of the form I ∪N(I ).

Individual vertices v of H are mapped to either arbitrary
vertices of color C , or common neighbors of the preimage of
N(v) through edges of color C .

Ander Lamaison Ramsey upper density of infinite graphs



Sketch of the proof: lower bound

Step 3: connect the components of F to form a copy of H.

Isolated vertices of F are mapped to individual vertices of H.

Kr ,s components of F are mapped to sets of the form I ∪N(I ).

Individual vertices v of H are mapped to either arbitrary
vertices of color C , or common neighbors of the preimage of
N(v) through edges of color C .

Ander Lamaison Ramsey upper density of infinite graphs



Sketch of the proof: lower bound

Step 3: connect the components of F to form a copy of H.

Isolated vertices of F are mapped to individual vertices of H.

Kr ,s components of F are mapped to sets of the form I ∪N(I ).

Individual vertices v of H are mapped to either arbitrary
vertices of color C , or common neighbors of the preimage of
N(v) through edges of color C .

Ander Lamaison Ramsey upper density of infinite graphs
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Sketch of the proof: non-bipartite H

What goes wrong when H is not bipartite?

We can use a coloring of Elekes-Soukup-Soukup-Szentmiklóssy
instead.
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Linear search problem

Suppose that you stand at the position x = 0 in a street that is
infinite on both sides. Let σ ∈ (−1, 1) be a “friendship factor”.

A
friend is moving towards you, from a starting position x0 (that you
don’t know) and with constant speed σ (that you do know).

Let T be the time it takes you to meet your friend. If your
maximum speed is 1, how should you move in order to maximize
the effective speed |x0|T in the worst case?

x

t
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Linear search problem

A function g is 1-Lipschitz if it satisfies |g(x)− g(y)| ≤ |x − y | for
every x , y .

Definition

Let g : [0,+∞)→ R be a 1-Lipschitz function with g(0) = 0.
Define

Γ+
σ (g , s) = min{t : g(t) + σt = s}

Γ−σ (g , s) = min{t : g(t)− σt = s}

Problem

For a fixed σ, minimize

lim sup
s→∞

max{Γ+
σ (g , s), Γ−σ (g , s)}

s

where g is 1-Lipschitz and g(0) = 0.
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Linear search problem

x

t

x

t

r1 r2 r3 r4 r5 r6 r7 r8 r9

b1

b2

b3

b4

b5

b6

b7

b8

b9

r1 r2 r3 r4 r5 r6 r7 r8 r9

b1

b2

b3

b4

b5

b6

b7

b8

b9
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Open problem

Theorem (Elekes-Soukup-Soukup-Szentmiklóssy, 2017)

The vertex set of every 2-edge-colored KN can be partitioned into
four squares of (finite or infinite) paths.

Corollary (DeBiasio-McKenney, 2019)

ρ(P2
∞) ≥ 1/4

Problem

What is the value of ρ(P2
∞)? Improve either the previous bound or

ρ(P2
∞) ≤ 1/2.
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