Crux and long cycles in graphs

Jie Hu
Université Paris-Saclay

Joint work with John Haslegrave, Jaehoon Kim, Hong Liu, Bingyu Luan, Guanghui Wang

May 13, 2022

Contents

(2) Crux and cycles

(3) Applications

4 Cycles in random subgraphs

Fact

Any cyclic graph G contains a cycle of length linear in its average degree, i.e. $\Omega(d(G))$.

- Remove low-degree vertices to obtain a subgraph H with $\delta(H) \geq d(G) / 2$.
- Then greedily extend a path to find a cycle in H of length at least $\delta(H)+1$.

Note that this linear in average degree bound is the best possible.

Definition (Crux)

For a constant $\alpha \in(0,1)$, a connected subgraph $H \subseteq G$ is an α-crux if $d(H) \geq \alpha \cdot d(G)$. Define the α-crux function, $c_{\alpha}(G)$, of G to be the order of a minimum α-crux in G, that is,

$$
c_{\alpha}(G)=\min \{|H|: H \subseteq G \text { and } d(H) \geq \alpha \cdot d(G)\}
$$

- $c_{\alpha}(G)>\alpha \cdot d(G)$.
- $c_{\alpha}(G) \geq c_{\alpha^{\prime}}(G)$ for $\alpha \geq \alpha^{\prime}$.
- If $H \subseteq G$ with $d(H) \geq d(G) / 2$, then $c_{2 \alpha}(H) \geq c_{\alpha}(G)$

Definition (Crux)

For a constant $\alpha \in(0,1)$, a connected subgraph $H \subseteq G$ is an α-crux if $d(H) \geq \alpha \cdot d(G)$. Define the α-crux function, $c_{\alpha}(G)$, of G to be the order of a minimum α-crux in G, that is,

$$
c_{\alpha}(G)=\min \{|H|: H \subseteq G \text { and } d(H) \geq \alpha \cdot d(G)\}
$$

- $c_{\alpha}(G)>\alpha \cdot d(G)$.
- $c_{\alpha}(G) \geq c_{\alpha^{\prime}}(G)$ for $\alpha \geq \alpha^{\prime}$.
- If $H \subseteq G$ with $d(H) \geq d(G) / 2$, then $c_{2 \alpha}(H) \geq c_{\alpha}(G)$.

Motivation 1

We investigate the following 'replacing average degree by crux' paradigm.

Question A

Suppose we have a result guaranteeing the existence of a certain substructure whose size is a function of $d(G)($ or $\delta(G))$. Under what circumstances can we replace $d(G)$ (or $\delta(G)$) with $c_{\alpha}(G)$?

- Positive instances for the above question would lead to improvements on embedding problems for graph classes whose crux size is much larger than their average degree.

Motivation 1

Graphs whose crux size is much larger than their average degree:

- Hypercubes Q^{m} :

$$
c_{\alpha}\left(Q^{m}\right) \geq 2^{\alpha m}
$$

[Every subgraph G of Q^{m} with average degree d has at least 2^{d} vertices.]

- Hamming graphs $H(m, r)$
- $K_{s, t^{-}}$free graphs G with $s, t \geq 2$:

[For every $K_{s, t}-$ free graph H with $s, t \geq 2$, we have

Motivation 1

Graphs whose crux size is much larger than their average degree:

- Hypercubes Q^{m} :

$$
c_{\alpha}\left(Q^{m}\right) \geq 2^{\alpha m}
$$

[Every subgraph G of Q^{m} with average degree d has at least 2^{d} vertices.]

- Hamming graphs $H(m, r)$:

$$
c_{\alpha}(H(m, r)) \geq r^{\alpha m}
$$

- $K_{s, t^{-}}$free graphs G with $s, t \geq 2$:

[For every $K_{s, t}$-free graph H with $s, t \geq 2$, we have

Motivation 1

Graphs whose crux size is much larger than their average degree:

- Hypercubes Q^{m} :

$$
c_{\alpha}\left(Q^{m}\right) \geq 2^{\alpha m}
$$

[Every subgraph G of Q^{m} with average degree d has at least 2^{d} vertices.]

- Hamming graphs $H(m, r)$:

$$
c_{\alpha}(H(m, r)) \geq r^{\alpha m}
$$

- $K_{s, t}$ free graphs G with $s, t \geq 2$:

$$
c_{\alpha}(G) \geq \frac{(\alpha d(G))^{s /(s-1)}}{2 t}
$$

[For every $K_{s, t}$-free graph H with $s, t \geq 2$, we have $2 t|H| \geq(d(H))^{s /(s-1)}$. (Kővári, Sós and Turán, 1954)]

Motivation 1

Let us first see an example of a positive answer to Question A.

Theorem (Komlós and Szemerédi, 1996; Bollobás and Thomason, 1998)

Every graph G contains a topological clique of order $\Omega(\sqrt{d(G)})$.

Conjecture (Mader, 1999)
Every C_{A}-free graph G contains a topological clique of order $\Omega(d(G))$

Recall that $c_{\alpha}(G)=\Omega\left(d^{2}(G)\right)$ when G is a C_{4}-free graph.

Motivation 1

Let us first see an example of a positive answer to Question A.

Theorem (Komlós and Szemerédi, 1996; Bollobás and Thomason, 1998)

Every graph G contains a topological clique of order $\Omega(\sqrt{d(G)})$.

Theorem (Im, Kim, Kim and Liu)

Every graph G contains a topological clique of order $\Omega\left(\sqrt{c_{\alpha}(G)} /\left(\log c_{\alpha}(G)\right)^{1 / 2+o(1)}\right)$.

Conjecture (Mader, 1999)

Every C_{4}-free graph G contains a topological clique of order
$\Omega(d(G))$.
Recall that $c_{\alpha}(G)=\Omega\left(d^{2}(G)\right)$ when G is a C_{4}-free graph.

Motivation 1

Let us first see an example of a positive answer to Question A.

Theorem (Komlós and Szemerédi, 1996; Bollobás and Thomason, 1998)

Every graph G contains a topological clique of order $\Omega(\sqrt{d(G)})$.

Theorem (Im, Kim, Kim and Liu)

Every graph G contains a topological clique of order $\Omega\left(\sqrt{c_{\alpha}(G)} /\left(\log c_{\alpha}(G)\right)^{1 / 2+o(1)}\right)$.

Conjecture (Mader, 1999)

Every C_{4}-free graph G contains a topological clique of order $\Omega(d(G))$.

Recall that $c_{\alpha}(G)=\Omega\left(d^{2}(G)\right)$ when G is a C_{4}-free graph.

Theorem (Dirac, 1952)

Every graph G on $n \geq 3$ vertices with minimum degree $\delta(G) \geq n / 2$ contains a Hamiltonian cycle.

- Any graph satisfying Dirac's condition is dense, having $\Theta\left(n^{2}\right)$ edges.
- How long a cycle we can ensure in a well-connected sparse graph?

Expanders are typically well-connected sparse graphs in which vertex subsets exhibit expansions.

Motivation 2

Expander $\left\{\begin{array}{c}\text { linear expander } G: \forall X \subseteq V(G) \text { with }|X|<\frac{n}{2},|N(X)| \geq c|X| . \\ \downarrow \\ \text { sublinear expander } \\ \qquad(|X|) \sim 1 / \log ^{2}|X|\end{array}\right.$

Theorem (Krivelevich, 2019)

Every linear expander contains a cycle of length linear in its order

- What about sublinear expanders?
- Note that we cannot necessarily find a linear-size cycle, unlike the linear expander case.

Motivation 2

Theorem (Krivelevich, 2019)

Every linear expander contains a cycle of length linear in its order.

- What about sublinear expanders?
- Note that we cannot necessarily find a linear-size cycle, unlike the linear expander case.

- $K_{n, n / \log ^{2} n}$ contains a subexpander $H=K_{n / \log ^{2} n, n / \log ^{2} n}$ which has a cycle of length linear in the order of H
- Note that H has the average degree about half of $K_{n, n / \log ^{2} n}$

Is it true that if we cannot find a linear-size cycle in a sublinear expander G, then we can find within G a subgraph H, with about the same average degree as G, that has a cycle of length linear in the order of H ?

- $K_{n, n / \log ^{2} n}$ contains a subexpander $H=K_{n / \log ^{2} n, n / \log ^{2} n}$ which has a cycle of length linear in the order of H
- Note that H has the average degree about half of $K_{n, n / \log ^{2} n}$

Is it true that if we cannot find a linear-size cycle in a sublinear expander G, then we can find within G a subgraph H, with about the same average degree as G, that has a cycle of length linear in the order of H ?

Contents

(1) Motivations

(2) Crux and cycles

(3) Applications

4 Cycles in random subgraphs

Crux and cycles

Fact

Any cyclic graph G contains a cycle of length linear in its average degree, i.e. $\Omega(d(G))$.

Theorem (Haslegrave, H., Kim, Liu, Luan and Wang, 2021+)
Let $0<\alpha<1$. Then every cyclic graph G contains a cycle of length at least

$$
\frac{1-\alpha}{16000} \cdot c_{\alpha}(G)
$$

The following notion of expander was introduced in the 90 s by Komlós and Szemerédi.

Definition (Sublinear expander)

A graph G is an (ϵ, t)-expander if for any subset $X \subseteq V(G)$ of size $t / 2 \leq|X| \leq|V(G)| / 2$, we have $\left|N_{G}(X)\right| \geq \rho(|X|) \cdot|X|$, where

$$
\rho(x)=\rho(x, \epsilon, t):= \begin{cases}0 & \text { if } x<t / 5 \tag{1}\\ \epsilon / \log ^{2}(15 x / t) & \text { if } x \geq t / 5\end{cases}
$$

- Note that when $x \geq t / 2, \rho(x)$ is decreasing, while $\rho(x) \cdot x$ is increasing.

Lemma (Haslegrave, Kim and Liu, 2021)

Let $C>30,0<\epsilon \leq 1 /(10 C), t>0, d>0$ and $\rho(x)$ as in (1).
Then every graph G with $d(G)=d$ has a subgraph H such that H is an (ϵ, t)-expander, $d(H) \geq(1-\delta) d$ and $\delta(H) \geq d(H) / 2$, where $\delta:=\frac{C \epsilon}{\log 3}$.

Short diameter lemma (Komlós and Szemerédi, 1996)

If G is an n-vertex (ϵ, t)-expander, then for any two vertex sets X_{1}, X_{2} each of size at least $x \geq t / 2$, and a vertex set W of size at most $\rho(x) x / 4$, there exists a path in $G-W$ between X_{1} and X_{2} of length at most $\frac{2}{\epsilon} \log ^{3}\left(\frac{15 n}{t}\right)$.

Theorem (Haslegrave, H., Kim, Liu, Luan and Wang, 2021+)

Let $0<\alpha<1$. Then every cyclic graph G contains a cycle of length at least

$$
\frac{1-\alpha}{16000} \cdot c_{\alpha}(G)
$$

Long cycles in sublinear expanders

Corollary (Haslegrave, H., Kim, Liu, Luan and Wang, 2021+)

Let $0<\alpha<1,0<\epsilon \leq \frac{1-\alpha}{500}, t \geq 1$ and suppose $n \geq 150 t$. Then every n-vertex (ϵ, t)-expander G contains a cycle of length

$$
\max \left\{\frac{\epsilon}{32} c_{\alpha}(G), \frac{\epsilon n}{1200 \log ^{2} n}\right\} .
$$

Contents

(1) Motivations

(2) Crux and cycles
(3) Applications
(4) Cycles in random subgraphs

Application 1

Conjecture (Long, 2013)

Any subgraph of the hypercube Q^{m} that has average degree d contains a path of length at least $2^{d}-1$.

- Long gave a weaker bound of a path of length at least $2^{d / 2}-1$.
- The conjecture, if true, would be best possible by considering sub-hypercubes.

Corollary (Haslegrave, H., Kim, Liu, Luan and Wang, 2021+)

Every subgraph of the hypercube with average degree d contains a cycle of length

$$
2^{d-o(d)}
$$

Application 2

Conjecture (Long, 2013)

Every subgraph of the discrete torus K_{3}^{m} that has average degree at least d contains a path of length at least $3^{d / 2}-1$.

- Long gave a weaker bound of a path of length at least $2^{d / 4}-1$.
- The conjecture, if true, would be best possible by considering sub-torus.

Corollary (Haslegrave, H., Kim, Liu, Luan and Wang, 2021+)

Every subgraph of the Hamming graph $H(m, r)$ with average degree d contains a cycle of length

$$
r^{\frac{d}{r-1}-o(d)} .
$$

The case $r=3$ covers the discrete torus.

Contents

(1) Motivations

(2) Crux and cycles
(3) Applications

4 Cycles in random subgraphs

Random subgraph

Definition (Random subgraph)

For a given finite graph G and a real $p \in[0,1]$, let G_{p} be a random subgraph of G obtained by taking each edge independently with probability p.

- If $G=K_{n}$, then G_{p} is simply the Erdős-Rényi binomial random graph $G(n, p)$.
- Analysis of G_{p} can be used to demonstrate the robustness of a graph G with respect to a graph property \mathcal{P}.
eg. A robust version of Dirac Theorem:
Theorem (Krivelevich, Lee and Sudakov, 2014)
There exists a mositive constant C such that for $n \geq \log n$ and a graph G on n vertices of minimum degree at least $\frac{n}{2}$, w.h.p. the random subgraph G_{p} is Hamiltonian.

Random subgraph

Definition (Random subgraph)

For a given finite graph G and a real $p \in[0,1]$, let G_{p} be a random subgraph of G obtained by taking each edge independently with probability p.

- If $G=K_{n}$, then G_{p} is simply the Erdős-Rényi binomial random graph $G(n, p)$.
- Analysis of G_{p} can be used to demonstrate the robustness of a graph G with respect to a graph property \mathcal{P}.
eg. A robust version of Dirac Theorem:

Theorem (Krivelevich, Lee and Sudakov, 2014)

There exists a positive constant C such that for $p \geq \frac{C \log n}{n}$ and a graph G on n vertices of minimum degree at least $\frac{n}{2}$, w.h.p. the random subgraph G_{p} is Hamiltonian.

Long cycles in random subgraphs

Theorem (Frieze, 1986)

For large C, w.h.p. $G(n, C / n)$ has a cycle of length at least $\left(1-(1-o(1)) C e^{-C}\right) n$.

Theorem (Krivelevich, Lee and Sudakov, 2013)

Given a graph G with minimum degree k, if $p k \rightarrow \infty$ as $k \rightarrow \infty$, then w.h.p. G_{p} contains a cycle of length at least $(1-o(1)) k$.

- Riordan (2014) subsequently gave a shorter proof.
- Krivelevich and Samotij (2014) later considered graphs without a fixed bipartite subgraph H.
- Ehard and Joos (2018) further improved the error term.

Long cycles in random subgraphs of C_{4}-free graphs

Theorem (Haslegrave, H., Kim, Liu, Luan and Wang, 2021+)

Let G be a C_{4}-free graph with minimum degree k. Suppose that $p k \rightarrow \infty$ as $k \rightarrow \infty$. Then w.h.p. G_{p} contains a cycle of length at least $(1-o(1)) k^{2}$.

- Note that the constant 1 is best possible, as there are C_{4}-free graphs with minimum degree k and order $(1+o(1)) k^{2}$.
- Recall that $c_{\alpha}(G)=\Omega\left(d^{2}(G)\right)=\Omega\left(\delta^{2}(G)\right)$ when G is a C_{4}-free graph.

Long cycles in random subgraphs of hypercubes

Random subgraphs of the hypercube are also well studied.

Theorem (Haslegrave, H., Kim, Liu, Luan and Wang, 2021+)

Let Q^{m} be the m-dimensional hypercube. If $p=\frac{1+\epsilon}{m}$, where $\epsilon>0$, then w.h.p. Q_{p}^{m} contains a cycle of length $\frac{2^{m}}{4 m^{32}}=2^{(1-o(1)) m}$.

- Recall that $c_{\alpha}\left(Q^{m}\right) \geq 2^{\alpha m}$.
- Note that while this paper was being prepared, Erde, Kang and Krivelevich $(2021+)$ proved the above theorem with a better error term $\Omega\left(\frac{2^{m}}{m^{3} \log ^{3} m}\right)$.

Open problems

Long path in hypercube (resp. discrete torus):

Conjecture (Long, 2013)

Every subgraph of the hypercube Q^{m} (resp. discrete torus K_{3}^{m}) with average degree d contains a path of length at least $2^{d}-1$ (resp. $3^{d / 2}-1$).

Long cycle in random subgraph of hypercube:
\square
Question (Erde, Kang and Krivelevich, 2021+)
Let $\epsilon>0$ and $p=\frac{1+\epsilon}{m}$. Is it the case that w.h.p. Q_{p}^{m} contains a cycle of length $\Omega\left(2^{m}\right)$?

Conjecture (Condon, Díaz, Girão, Kühn and Osthus, 2021)
Suppose that $p=p(m)$ satisfies that $p m \rightarrow \infty$ as $m \rightarrow \infty$. Then
w.h.p. Q_{p}^{m} contains a cycle of length $(1-o(1)) 2^{m}$

Open problems

Long path in hypercube (resp. discrete torus):

Conjecture (Long, 2013)

Every subgraph of the hypercube Q^{m} (resp. discrete torus K_{3}^{m}) with average degree d contains a path of length at least $2^{d}-1$ (resp. $3^{d / 2}-1$).

Long cycle in random subgraph of hypercube:

Question (Erde, Kang and Krivelevich, 2021+)

Let $\epsilon>0$ and $p=\frac{1+\epsilon}{m}$. Is it the case that w.h.p. Q_{p}^{m} contains a cycle of length $\Omega\left(2^{m}\right)$?

Conjecture (Condon, Díaz, Girão, Kühn and Osthus, 2021)
Suppose that $p=p(m)$ satisfies that $p m \rightarrow \infty$ as $m \rightarrow \infty$. Then w.h.p. Q_{p}^{m} contains a cycle of length $(1-o(1)) 2^{m}$.

Open problems

Question A

Suppose we have a result guaranteeing the existence of a certain substructure whose size is a function of $d(G)$ (or $\delta(G)$). Under what circumstances can we replace $d(G)$ (or $\delta(G)$) with $c_{\alpha}(G)$?

Thanks for your attention!

