## A Brief Introduction to Fourier Analysis on the Boolean Cube: Advances and Challenges

#### Fan Chang

Shandong University

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@





2 Boolean functions with small total influences

3 Hypercontractivity and its applications



## Classical Boolean function analysis

- Central object:  $f : \{\pm 1\}^n \to \{\pm 1\}$  or real-valued functions on the Boolean cube  $\{\pm 1\}^n$ .
- Boolean-valued functions appear frequently in theoretical computer science and mathematics.



## The Fourier–Walsh Basis

Consider the coordinates x<sub>i</sub> of a vector x as functions on {±1}<sup>n</sup>.
For every S ⊂ {1,...,n} define

$$\chi_S := \prod_{i \in S} x_i, \chi_{\emptyset} \equiv 1.$$

• This set, of  $2^n$  monomials, forms an orthonormal basis of the space of real functions on  $\{\pm 1\}^n$ .

#### Fundamental theorem of Boolean function analysis

Every function  $f : \{\pm 1\}^n \to \mathbb{R}$  has unique expansion as multilinear polynomial, the *Fourier expansion*:

$$f(x_1,\ldots,x_n) = \sum_{S \subseteq [n]} \hat{f}(S)\chi_S.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

## Definitions and Basic Properties

Consider the  $2^n$  dimensional vector space of all functions  $f:\{\pm 1\}^n\to \mathbb{R}.$ 

- (Inner product)  $\langle f,g \rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x)g(x) = \mathbb{E}_{x \sim \{\pm 1\}^n}[f \cdot g].$
- ( $\ell_p$ -norm)  $||f||_p = (\mathbb{E}[|f|^p])^{1/p}$ .
- (Fourier coefficients)  $\hat{f}(S) := \langle f, \chi_S \rangle = \mathbb{E}[f \cdot \chi_S].$
- The degree of f is  $\deg(f) = \max\{|S| : \hat{f}(S) \neq 0\}.$
- (Plancherel)  $\langle f, g \rangle = \sum_{S \subseteq [n]} \hat{f}(S) \hat{g}(S).$
- (Parseval's identity)  $||f||_2^2 = \sum_{S \subseteq [n]} \hat{f}(S)^2$ .

If f is Boolean, then

$$1 = \mathbb{E}[|f|^2] = ||f||_2^2 = \sum_{S \subseteq [n]} \hat{f}(S)^2.$$

#### Question

Suppose  $f: \{\pm 1\}^n \to \{\pm 1\}$  has degree 1. What does f look like?

• deg 
$$f \leq 1 \Leftrightarrow f(x_1, \dots, x_n) = c_0 + \sum_{i=1}^n c_i x_i.$$

• Dictator: function depending on one coordinate.

Dictator theorem

If  $f: \{\pm 1\}^n \to \{\pm 1\}$  has degree 1, then

 $f \in \{\pm 1, \pm x_1, \dots, \pm x_n\}.$ 

#### Stability problem

```
Suppose f: \{\pm 1\}^n \to \{\pm 1\} satisfies
```

$$\mathop{\mathbb{E}}_{x \sim \{\pm 1\}^n} [|f(x) - g(x)|^2] = \varepsilon$$

for some  $g: \{\pm 1\}^n \to \mathbb{R}$  of degree 1. What does f look like?

#### Friedgut-Kalai-Naor (FKN) theorem

Suppose  $f: \{\pm 1\}^n \to \{\pm 1\}$  satisfies  $||f^{>1}||_2^2 = \varepsilon$ . Then

 $\mathbf{Pr}[f \neq h] = O(\varepsilon)$  for some  $h \in \{\pm 1, \pm x_1, \dots, \pm x_n\}.$ 

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

## FKN theorem on the slice

The slice or Johnson scheme is

$$\binom{[n]}{k} = \{(x_1, \dots, x_n) \in \{0, 1\}^n : \sum_{i=1}^n x_i = k\}.$$

• (Dunkl) Every function  $f: \binom{[n]}{k} \to \mathbb{R}$  has unique expansion as *harmonic* multilinear polynomial.

#### Dictator theorem on the slice

If 
$$f: {[n] \choose k} \to \{0,1\}$$
 has degree 1 and  $k \neq 1, n-1$ , then

$$f \in \{0, 1, x_1, 1 - x_1, \dots, x_n, 1 - x_n\}.$$

#### FKN theorem on the slice (Filmus 16)

Suppose  $f: {[n] \choose k} \to \{0,1\}$  is  $\varepsilon$ -close to an affine function, where  $2 \le k \le n-2$ . Define  $p := \min(k/n, 1-k/n)$ . Then either f or 1-f is  $O(\varepsilon)$ -close to  $\max_{i\in S} x_i$  (when  $p \le 1/2$ ) or to  $\min_{i\in S} x_i$  (when  $p \ge 1/2$ ) for some set S of size at most  $\max(1, O(\sqrt{\varepsilon}/p))$ .

## Challenge 1. Boolean functions beyond the hypercube

Other domains:

- *p*-biased cube: important in random graph theory (Kahn–Kalai Conjecture & Park–Pham theorem).
- Johnson scheme/slice (all *k*-subsets of [*n*]): important in Erdős–Ko–Rado type theorem (Das–Tuan: "set family" version of removal lemma).
- Grassmann scheme (all k-dimensional subspaces of F<sup>n</sup><sub>q</sub>): used to prove 2-to-1 conjecture and 2-to-2 conjecture (Dinur-Khot-Kindler-Minzer-Safra).
- Symmetric group  $S_n = \{\pi : [n] \to [n] | \pi \text{ is a permutation} \}$ : representation theory (Ellis–Filmus–Friedgut).
- Other association schemes, Gaussian space, Cayley graphs of codes, high-dimensional expanders, ...

(日) (同) (三) (三) (三) (○) (○)









Given a voting rule  $f : \{\pm 1\}^n \to \{\pm 1\}$  it's natural to try to measure the "influence" or "power" of the *i*th voter.

• (Probabilistic)  $\ln f_i[f] = \Pr_{x \sim \{\pm 1\}^n}[f(x) \neq f(x^{(i)})]$ , where  $x^{(i)} := f(x \oplus e_i)$  is obtained from x by flipping the ith

coordinate.

 (Analytically) The *ith* (discrete) derivative operator ∂<sub>i</sub> maps the function f : {±1}<sup>n</sup> → ℝ:

$$\partial_i f(x) = \frac{f(x^{(i \mapsto 1)}) - f(x^{(i \mapsto -1)})}{2}.$$

 $\ln f_i[f] = \mathbb{E}_x[\partial_i f(x)^2] = \|\partial_i f\|^2.$ 

- (Spectral)  $\ln f_i[f] = \sum_{i \in S} \hat{f}(S)^2$ .
- (Geometric)  $Inf_i[f]$  measures the number of edges of the cube crossing from A to  $A^c$  in direction i.

## Total influence

The total influence :

$$I[f] = \sum_{i=1}^{n} \mathsf{Inf}_i[f].$$

- (Spectral)  $I[f] = \sum_{i=1}^{n} \ln f_i[f] = \sum_{i=1}^{n} \sum_{i \in S} \hat{f}(S)^2 = \sum_{S}^{n} |S| \hat{f}(S)^2 = \sum_{d=0}^{n} d \|f^{=d}\|^2.$
- (Geometric: *edge boundary*) *I*[*f*] measures the total number of edges crossing from *A* to its complement.
- (TCS) The sensitivity of f at a point x is the number of coordinates i such that  $f(x) \neq f(x^{(i)})$ , denoted by sens<sub>f</sub>(x).

$$I[f] = \mathbb{E}_x[\operatorname{sens}_f(x)].$$

(Analytically) The (discrete) gradient operator ∇ maps the function f: {±1}<sup>n</sup> → ℝ:

$$\nabla f(x) = (\partial_1 f(x), \partial_2 f(x), \dots, \partial_n f(x)).$$

くし ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) (

 $I[f] = \mathbb{E}_x[\|\nabla f(x)\|^2].$ 

## Simple Example

#### Example 1.

• Let  $X = (\{0,1\}, \mu_{1/2})$  be the uniform distribution on  $\{0,1\}$ .

• Let 
$$f(x_1, ..., x_n) = x_1 + \dots + x_n (mod 2)$$
.

• Total influence of f is n/2.

#### Example 2 (*p*-biased case).

- Let  $X = (\{0, 1\}, \mu_p)$  be the Bernoulli distribution with parameter p = 1/n.
- Let  $f:(\{0,1\}^n,\mu_p^{\otimes n})\to \{0,1\}$  be any function.
- Total influence of  $I^p[f] \leq 2(n-1)/n \approx 2$ .

$$I_{i}[f] := \Pr[f(x_{1}, \dots, x_{i}, \dots, x_{n}) \neq f(x_{1}, \dots, x_{i}^{(i)}, \dots, x_{n})]$$
  
$$\leq \Pr[x_{i} \neq y_{i}] = 2p(1-p) = \frac{2(n-1)}{n^{2}}.$$

## Challenge 2. Structure v.s. Pseudorandom

#### Main Question

What can we say about the structure of functions  $f: (\Omega^n, \nu^{\otimes n}) \to \{0, 1\}$  with  $I^{\nu}[f] \leq K$ ?



## **Research Progress**

- Russo (1982): First systematic study of functions with low total influences.
- Kahn-Kalai-Linial (1988):  $\exists i \in [n], \mathsf{Inf}_i[f] \ge c \frac{\log n}{n} \mathbb{V}[f].$
- Talagrand (1993): Talagrand isoperimetric inequality (both discrete and continuous, and product and non-product models).
- Friedgut (1998): Every low total influence Boolean function is close to a *junta* (uniform case).
- Friedgut (JAMS1999): A complete characterization of graph properties with  $I[\mathcal{G}] = O(1)$  on G(n, p).
- Bourgain (JAMS1999): Partially extended this to general setting f : X<sup>n</sup> → {0,1}.
- Hatami (Annals2012): If the total influence of  $f: X^n \to \{0, 1\}$  is O(1), then f is essentially a *pseudo-junta*.

#### Definition (Junta)

The value of  $f(x_1, \ldots, x_n)$  depends on a small set of variables  $\{x_{i_1}, \ldots, x_{i_k}\}$ :

$$f(x_1,\ldots,x_n):=g(x_{i_1},\ldots,x_{i_k}).$$

- Every variable outside the junta has influence 0.
- Juntas have total influence O(1).

#### Friedgut's junta theorem 98

Let  $f: \{\pm 1\}^n \to \{\pm 1\}$  with  $I[f] \leq K$ . Then for any  $\varepsilon > 0$ , there is a Boolean junta g, depending on  $2^{O(K/\varepsilon)}$  coordinates, such that  $\Pr[f \neq g] = \varepsilon$ .

#### Bourgain's junta theorem 02

Let  $f: \{\pm 1\}^n \to \{\pm 1\}$ . Suppose that  $\sum_{|S|>k} \hat{f}(S)^2 \leq (\frac{\varepsilon}{k})^{1/2+o(1)}$ . Then for any  $\varepsilon > 0$ , there is a  $2^{O(k)}/\varepsilon^{O(1)}$ -junta g such that  $\|f - g\|_2^2 \leq \varepsilon$ .

#### Kindler-Kirshner-O'Donnell 18

Let  $f: \{\pm 1\}^n \to \{\pm 1\}$ . Suppose that  $\sum_{|S|>k} \hat{f}(S)^2 \leq \frac{c\varepsilon}{\sqrt{k}}$ . Then for any  $\varepsilon > 0$ , there is a  $2^{O(k)}/\varepsilon^4$ -junta g such that  $\|f - g\|_2^2 \leq \varepsilon$ .

- The constant  $c = \frac{1}{3\pi} \approx 0.1061$ . NOT optimal! (take f(x) = sgn(x) and we will see  $c = (\frac{2}{\pi})^{3/2} \approx 0.5079$ .
- **Open.** Obtain a  $2^{O(k)}/\varepsilon$ -junta!

## Challenge 4. Aaronson-Ambainis Conjecture

#### Aaronson–Ambainis Conjecture

Let  $f: \{\pm 1\}^n \to [-1, 1]$  have degree at most k. Then there exists  $i \in [n]$  such that  $\inf_i [f] \ge \left(\frac{\mathbb{V}[f]}{k}\right)^{O(1)}$ .

- True for  $f : \{\pm 1\}^n \to \{\pm 1\}$ ; this follows from a result of O'Donnell, Schramm, Saks, and Servedio.
- The weaker lower bound  $(\mathbb{V}[f]/2^k)^{O(1)}$  follows from a result of Dinur, Kindler, Friedgut, and O'Donnell.
- True for many special cases (Montanaro 12,O'Donnell and Zhao 16, Defant, Mastylo and Perez 18, Bansal, Sinha and Wolf 22).

#### Dinur, Kindler, Friedgut, and O'Donnell 06

Let  $f: \{\pm 1\}^n \to [-1,1]$ . Suppose that  $\sum_{|S|>k} \hat{f}(S)^2 \leq \exp(-O(k^2 \log k)/\varepsilon)$ . Then for any  $\varepsilon > 0$ , there is a  $2^{O(k)}/\varepsilon^2$ -junta g such that  $\|f - g\|_2^2 \leq \varepsilon$ .

## Challenge 5. Generalized influences

- (Geometric influences) Keller, Mossel and Sen: for the Gaussian measure on ℝ<sup>n</sup>, the geometric influences satisfy the KKL-type theorem.
- (Convex influences) De, Nadimpalli and Servedio introduce a new notion of influence for symmetric convex sets over Gaussian space.

#### Conjecture (Friedgut's Junta Theorem for convex influences).

Let  $K \subseteq \mathbb{R}^n$  be a convex symmetric set with  $I[K] \leq I$ . Then there are  $J \leq 2^{O(I/\varepsilon)}$  orthonormal directions  $v^1, \ldots, v^J \in \mathbb{S}^{n-1}$  and a symmetric convex set  $L \subseteq \mathbb{R}^n$ , such that (a) L(x) depends only on the values of  $v^1 \cdot x, \ldots, v^J \cdot x$ , and (b)  $\Pr_{\mathbf{x} \sim \mathcal{N}(0,1)}[K(\mathbf{x}) \neq L(\mathbf{x})] \leq \varepsilon$ . Keller and Lifshitz develop the work of Dinur and Friedgut to present a general approach to such problems:

- Erdős matching conjecture
- Erdős-Sós forbidding one intersection problem
- Frankl-Füredi special simplex problem
- Ramsey-type problems (?)

#### Structural theorem (Keller–Lifshitz 2019)

Fixed hypergraph  $\mathcal{H}$ . Let  $n \in \mathbb{N}, C < k < n/C$ . Suppose that  $\mathcal{F} \subseteq {[n] \choose k}$  is free of  $\mathcal{H}^+$ . Then there exists an  $\mathcal{H}^+$ -free junta  $\mathcal{J} \subseteq {[n] \choose k}$  which depends on at most j coordinates, such that

$$|\mathcal{F} \setminus \mathcal{J}| \le \max\left(e^{-k/C}, C\frac{k}{n}\right) \cdot |\mathcal{J}|.$$

## Challenge 6. Junta approximation method in E.C.

The set family  $\mathcal{F}$  is said to be a *J*-junta if it depends only upon the coordinates in *J*-formally, if  $\exists \mathcal{G} \subset \mathcal{P}(J)$  s.t.  $S \in \mathcal{F} \Leftrightarrow S \cap J \in \mathcal{G}$ , for all  $S \subset [n]$ .

#### Dinur-Friedgut 08

For all  $\eta > 0, \varepsilon > 0$  there exists  $J \in \mathbb{N}$  such that the following holds. If  $\mathcal{F} \subseteq \{0,1\}^n$  is an intersecting family, and  $\eta , then there exists an intersecting <math>J$ -junta  $\mathcal{J} \subseteq \{0,1\}^n$  such that  $\mu_p(\mathcal{F} \setminus \mathcal{J}) \leq \varepsilon$ .

- Define "monotonicity" and assume  ${\mathcal F}$  to be monotone increasing.
- Define "pseudo-randomness", and show that any set family = "Pseudo-random" sub-families + junta sub-families.
- Pseudo-random families contain intersections of any constant size.



#### 2 Boolean functions with small total influences

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hypercontractivity and its applications

## Noise operator

The tensor definition of the operator:

- Let  $\rho \in [0,1]$ . Let  $f: \{-1,1\} \to \mathbb{R}, f(x) = ax + b$ .
- Define  $T_{\rho}(f)(x) := \rho ax + b$ . Then  $T_{\rho} := T_{\rho}^{\otimes n}$  is a linear operator acting on real functions on  $\{-1, 1\}^n$ .

The spectral definition of the operator:

- Define  $T_{\rho}x_i := \rho x_i$ .
- $T_{\rho}\chi_S = \prod_{i \in S} T_{\rho}x_i = \rho^{|S|}\chi_S.$
- $T_{\rho}f = \sum_{S \subseteq [n]} \hat{f}(S)\rho^{|S|}\chi_S.$

## Noise operator

The noise/averaging definition of the operator:

- Let  $\rho \in [0,1]$ . Let X be chosen from any distribution on  $\{\pm 1\}^n$ .
- Let Y be such that for every  $1 \le i \le n$ , the coordinate  $Y_i$  is chosen independently so that  $\Pr[Y_i = X_i] = \frac{1+\rho}{2}$ , or, in other words,  $\mathbb{E}[X_iY_i] = \rho$ .
- X and Y are called an  $\rho$ -correlated pair.

• Define for any f and fixed X,

$$T_{\rho}(f)(X) = \mathbb{E}[f(Y)],$$

where X and Y are  $\rho$ -correlated pair.

Hypercontractivity is the secret spice behind much of Boolean function analysis.

Bonami[68,70], Gross[75], Beckner[75]

Let  $f: \{\pm 1\}^n \to \mathbb{R}$ , and  $\rho \in [0,1]$ . Then

 $\|T_{\rho}f\|_2 \le \|f\|_{1+\rho^2}.$ 

#### Dual version

Let  $f: \{\pm 1\}^n \to \mathbb{R}$  be a polynomial of degree d, and  $q \ge 2$ . Then

$$||f||_q \le (\sqrt{q-1})^d ||f||_2.$$

# Challenge 7. Global hypercontractivity and its applications

Keevash, Lifshitz, Long and Minzer (2019+, 2021+) establish an effective hypercontractive inequality for general p that applies to "global functions", i.e. functions that are not significantly affected by a restriction of a small set of coordinates.

- Strengthen Bourgain's sharp threshold theorem (quantitively tight and applicable in the sparse regime)
- A sharp threshold result for global monotone functions
- *p*-biased generalisation of the seminal invariance principle of Mossel, O'Donnell and Oleszkiewicz.
- Turán numbers for the family of bounded degree expanded hypergraphs.
- (Kaufan-Minzer 22+) Quantitative version of optimal tester for the Reed-Muller code.

Unfortunately, applications in a very large number of areas have to be completely left out, including in learning theory, pseudorandomness, arithmetic combinatorics, random graphs and percolation, communication complexity, coding theory, metric and Banach spaces,...

## Thanks for your attention!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>