A Brief Introduction to Fourier Analysis on the Boolean Cube: Advances and Challenges

Fan Chang

Shandong University

Contents

(1) Introduction
(2) Boolean functions with small total influences
(3) Hypercontractivity and its applications

Classical Boolean function analysis

- Central object: $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ or real-valued functions on the Boolean cube $\{ \pm 1\}^{n}$.
- Boolean-valued functions appear frequently in theoretical computer science and mathematics.

The Fourier-Walsh Basis

- Consider the coordinates x_{i} of a vector x as functions on $\{ \pm 1\}^{n}$. For every $S \subset\{1, \ldots, n\}$ define

$$
\chi_{S}:=\prod_{i \in S} x_{i}, \chi_{\emptyset} \equiv 1 .
$$

- This set, of 2^{n} monomials, forms an orthonormal basis of the space of real functions on $\{ \pm 1\}^{n}$.

Fundamental theorem of Boolean function analysis

Every function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ has unique expansion as multilinear polynomial, the Fourier expansion:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S} .
$$

Definitions and Basic Properties

Consider the 2^{n}-dimensional vector space of all functions $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$.

- (Inner product) $\langle f, g\rangle=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x)=\underset{x \sim\{ \pm 1\}^{n}}{\mathbb{E}}[f \cdot g]$.
- $\left(\ell_{p}\right.$-norm $)\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{1 / p}$.
- (Fourier coefficients) $\hat{f}(S):=\left\langle f, \chi_{S}\right\rangle=\mathbb{E}\left[f \cdot \chi_{S}\right]$.
- The degree of f is $\operatorname{deg}(f)=\max \{|S|: \hat{f}(S) \neq 0\}$.
- (Plancherel) $\langle f, g\rangle=\sum_{S \subseteq[n]} \hat{f}(S) \hat{g}(S)$.
- (Parseval's identity) $\|f\|_{2}^{2}=\sum_{S \subseteq[n]} \hat{f}(S)^{2}$.

If f is Boolean, then

$$
1=\mathbb{E}\left[|f|^{2}\right]=\|f\|_{2}^{2}=\sum_{S \subseteq[n]} \hat{f}(S)^{2} .
$$

Boolean degree 1 functions

Question

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has degree 1 . What does f look like?

- $\operatorname{deg} f \leq 1 \Leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)=c_{0}+\sum_{i=1}^{n} c_{i} x_{i}$.
- Dictator: function depending on one coordinate.

Dictator theorem

If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has degree 1 , then

$$
f \in\left\{ \pm 1, \pm x_{1}, \ldots, \pm x_{n}\right\}
$$

Boolean almost degree 1 functions

Stability problem

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ satisfies

$$
\underset{x \sim\{ \pm 1\}^{n}}{\mathbb{E}}\left[|f(x)-g(x)|^{2}\right]=\varepsilon
$$

for some $g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ of degree 1 .
What does f look like?

Friedgut-Kalai-Naor (FKN) theorem

Suppose $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ satisfies $\left\|f^{>1}\right\|_{2}^{2}=\varepsilon$. Then

$$
\operatorname{Pr}[f \neq h]=O(\varepsilon) \text { for some } h \in\left\{ \pm 1, \pm x_{1}, \ldots, \pm x_{n}\right\}
$$

FKN theorem on the slice

The slice or Johnson scheme is

$$
\binom{[n]}{k}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}: \sum_{i=1}^{n} x_{i}=k\right\}
$$

- (Dunkl) Every function $f:\binom{[n]}{k} \rightarrow \mathbb{R}$ has unique expansion as harmonic multilinear polynomial.

Dictator theorem on the slice

If $f:\binom{[n]}{k} \rightarrow\{0,1\}$ has degree 1 and $k \neq 1, n-1$, then

$$
f \in\left\{0,1, x_{1}, 1-x_{1}, \ldots, x_{n}, 1-x_{n}\right\} .
$$

FKN theorem on the slice (Filmus 16)

Suppose $f:\binom{[n]}{k} \rightarrow\{0,1\}$ is ε-close to an affine function, where $2 \leq k \leq n-2$. Define $p:=\min (k / n, 1-k / n)$. Then either f or $1-f$ is $O(\varepsilon)$-close to $\max _{i \in S} x_{i}($ when $p \leq 1 / 2)$ or to $\min _{i \in S} x_{i}$ (when $p \geq 1 / 2)$ for some set S of size at $\operatorname{most} \max (1, O(\sqrt{\varepsilon} / p)$).

Challenge 1. Boolean functions beyond the hypercube

Other domains:

- p-biased cube: important in random graph theory (Kahn-Kalai Conjecture \& Park-Pham theorem).
- Johnson scheme/slice (all k-subsets of $[n]$): important in Erdős-Ko-Rado type theorem (Das-Tuan: "set family" version of removal lemma).
- Grassmann scheme (all k-dimensional subspaces of \mathbb{F}_{q}^{n}): used to prove 2-to-1 conjecture and 2-to-2 conjecture
(Dinur-Khot-Kindler-Minzer-Safra).
- Symmetric group $S_{n}=\{\pi:[n] \rightarrow[n] \mid \pi$ is a permutation $\}$: representation theory (Ellis-Filmus-Friedgut).
- Other association schemes, Gaussian space, Cayley graphs of codes, high-dimensional expanders, ...

Contents

(1) Introduction

(2) Boolean functions with small total influences
(3) Hypercontractivity and its applications

Influences

Given a voting rule $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ it's natural to try to measure the "influence" or "power" of the i th voter.

- (Probabilistic) $\operatorname{lnf}_{i}[f]=\underset{x \sim\{ \pm 1\}^{n}}{ } \operatorname{Pr}^{n}\left[f(x) \neq f\left(x^{(i)}\right)\right]$, where $x^{(i)}:=f\left(x \oplus e_{i}\right)$ is obtained from x by flipping the i th coordinate.
- (Analytically) The ith (discrete) derivative operator ∂_{i} maps the function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$:

$$
\partial_{i} f(x)=\frac{f\left(x^{(i \mapsto 1)}\right)-f\left(x^{(i \mapsto-1)}\right)}{2}
$$

$$
\operatorname{Inf}_{i}[f]=\mathbb{E}_{x}\left[\partial_{i} f(x)^{2}\right]=\left\|\partial_{i} f\right\|^{2}
$$

- (Spectral) $\operatorname{lnf}_{i}[f]=\sum_{i \in S} \hat{f}(S)^{2}$.
- (Geometric) $\operatorname{lnf}_{i}[f]$ measures the number of edges of the cube crossing from A to A^{c} in direction i.

Total influence

The total influence :

$$
I[f]=\sum_{i=1}^{n} \operatorname{lnf}_{i}[f]
$$

- (Spectral) $I[f]=\sum_{i=1}^{n} \operatorname{lnf}_{i}[f]=\sum_{i=1}^{n} \sum_{i \in S} \hat{f}(S)^{2}=$ $\sum_{S}|S| \hat{f}(S)^{2}=\sum_{d=0}^{n} d\left\|f^{=d}\right\|^{2}$.
- (Geometric: edge boundary) $I[f]$ measures the total number of edges crossing from A to its complement.
- (TCS) The sensitivity of f at a point x is the number of coordinates i such that $f(x) \neq f\left(x^{(i)}\right)$, denoted by $\operatorname{sens}_{f}(x)$.

$$
I[f]=\mathbb{E}_{x}\left[\operatorname{sens}_{f}(x)\right] .
$$

- (Analytically) The (discrete) gradient operator ∇ maps the function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$:

$$
\nabla f(x)=\left(\partial_{1} f(x), \partial_{2} f(x), \ldots, \partial_{n} f(x)\right)
$$

$$
I[f]=\mathbb{E}_{x}\left[\|\nabla f(x)\|^{2}\right]
$$

Simple Example

Example 1.

- Let $X=\left(\{0,1\}, \mu_{1 / 2}\right)$ be the uniform distribution on $\{0,1\}$.
- Let $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}(\bmod 2)$.
- Total influence of f is $n / 2$.

Example 2 (p-biased case).

- Let $X=\left(\{0,1\}, \mu_{p}\right)$ be the Bernoulli distribution with parameter $p=1 / n$.
- Let $f:\left(\{0,1\}^{n}, \mu_{p}^{\otimes n}\right) \rightarrow\{0,1\}$ be any function.
- Total influence of $I^{p}[f] \leq 2(n-1) / n \approx 2$.

$$
\begin{aligned}
I_{i}[f]: & =\operatorname{Pr}\left[f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \neq f\left(x_{1}, \ldots, x_{i}^{(i)}, \ldots, x_{n}\right)\right] \\
& \leq \operatorname{Pr}\left[x_{i} \neq y_{i}\right]=2 p(1-p)=\frac{2(n-1)}{n^{2}} .
\end{aligned}
$$

Challenge 2. Structure v.s. Pseudorandom

Main Question

What can we say about the structure of functions
$f:\left(\Omega^{n}, \nu^{\otimes n}\right) \rightarrow\{0,1\}$ with $I^{\nu}[f] \leq K ?$

Research Progress

- Russo (1982): First systematic study of functions with low total influences.
- Kahn-Kalai-Linial (1988): $\exists i \in[n], \operatorname{lnf}_{i}[f] \geq c \frac{\log n}{n} \mathbb{V}[f]$.
- Talagrand (1993): Talagrand isoperimetric inequality (both discrete and continuous, and product and non-product models).
- Friedgut (1998): Every low total influence Boolean function is close to a junta (uniform case).
- Friedgut (JAMS1999): A complete characterization of graph properties with $I[\mathcal{G}]=O(1)$ on $G(n, p)$.
- Bourgain (JAMS1999): Partially extended this to general setting $f: X^{n} \rightarrow\{0,1\}$.
- Hatami (Annals2012): If the total influence of $f: X^{n} \rightarrow\{0,1\}$ is $O(1)$, then f is essentially a pseudo-junta.

Junta

Definition (Junta)

The value of $f\left(x_{1}, \ldots, x_{n}\right)$ depends on a small set of variables $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$:

$$
f\left(x_{1}, \ldots, x_{n}\right):=g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

- Every variable outside the junta has influence 0 .
- Juntas have total influence $O(1)$.

Friedgut's junta theorem 98

Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ with $I[f] \leq K$. Then for any $\varepsilon>0$, there is a Boolean junta g, depending on $2^{O(K / \varepsilon)}$ coordinates, such that $\operatorname{Pr}[f \neq g]=\varepsilon$.

Challenge 3. Bourgain's Junta theorem

Bourgain's junta theorem 02

Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$. Suppose that $\sum_{|S|>k} \hat{f}(S)^{2} \leq\left(\frac{\varepsilon}{k}\right)^{1 / 2+o(1)}$. Then for any $\varepsilon>0$, there is a $2^{O(k)} / \varepsilon^{O(1)}$-junta g such that $\|f-g\|_{2}^{2} \leq \varepsilon$.

Kindler-Kirshner-O'Donnell 18

Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$. Suppose that $\sum_{|S|>k} \hat{f}(S)^{2} \leq \frac{c \varepsilon}{\sqrt{k}}$. Then for any $\varepsilon>0$, there is a $2^{O(k)} / \varepsilon^{4}$-junta g such that $\|f-g\|_{2}^{2} \leq \varepsilon$.

- The constant $c=\frac{1}{3 \pi} \approx 0.1061$. NOT optimal! (take $f(x)=\operatorname{sgn}(x)$ and we will see $c=\left(\frac{2}{\pi}\right)^{3 / 2} \approx 0.5079$.
- Open. Obtain a $2^{O(k)} / \varepsilon$-junta!

Challenge 4. Aaronson-Ambainis Conjecture

Aaronson-Ambainis Conjecture

Let $f:\{ \pm 1\}^{n} \rightarrow[-1,1]$ have degree at most k. Then there exists $i \in[n]$ such that $\operatorname{lnf}_{i}[f] \geq\left(\frac{\mathbb{V}[f]}{k}\right)^{O(1)}$.

- True for $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$; this follows from a result of O'Donnell, Schramm, Saks, and Servedio.
- The weaker lower bound $\left(\mathbb{V}[f] / 2^{k}\right)^{O(1)}$ follows from a result of Dinur, Kindler, Friedgut, and O'Donnell.
- True for many special cases (Montanaro 12, O'Donnell and Zhao 16, Defant, Mastylo and Perez 18, Bansal, Sinha and Wolf 22).

Dinur, Kindler, Friedgut, and O'Donnell 06

Let $f:\{ \pm 1\}^{n} \rightarrow[-1,1]$. Suppose that
$\sum_{|S|>k} \hat{f}(S)^{2} \leq \exp \left(-O\left(k^{2} \log k\right) / \varepsilon\right)$. Then for any $\varepsilon>0$, there is a $2^{O(k)} / \varepsilon^{2}$-junta g such that $\|f-g\|_{2}^{2} \leq \varepsilon$.

Challenge 5. Generalized influences

- (Geometric influences) Keller, Mossel and Sen: for the Gaussian measure on \mathbb{R}^{n}, the geometric influences satisfy the KKL-type theorem.
- (Convex influences) De, Nadimpalli and Servedio introduce a new notion of influence for symmetric convex sets over Gaussian space.

Conjecture (Friedgut's Junta Theorem for convex influences).

Let $K \subseteq \mathbb{R}^{n}$ be a convex symmetric set with $I[K] \leq I$. Then there are $J \leq 2^{O(I / \varepsilon)}$ orthonormal directions $v^{1}, \ldots, v^{J} \in \mathbb{S}^{n-1}$ and a symmetric convex set $L \subseteq \mathbb{R}^{n}$, such that (a) $L(x)$ depends only on the values of $v^{1} \cdot x, \ldots, v^{J} \cdot x$, and (b) $\operatorname{Pr}_{\mathbf{x} \sim \mathcal{N}(0,1)}[K(\mathbf{x}) \neq L(\mathbf{x})] \leq \varepsilon$.

Challenge 6. Junta approximation method in E.C.

Keller and Lifshitz develop the work of Dinur and Friedgut to present a general approach to such problems:

- Erdős matching conjecture
- Erdős-Sós forbidding one intersection problem
- Frankl-Füredi special simplex problem
- Ramsey-type problems (?)

Structural theorem (Keller-Lifshitz 2019)

Fixed hypergraph \mathcal{H}. Let $n \in \mathbb{N}, C<k<n / C$. Suppose that $\mathcal{F} \subseteq\binom{[n]}{k}$ is free of \mathcal{H}^{+}. Then there exists an \mathcal{H}^{+}-free junta
$\mathcal{J} \subseteq\binom{[n]}{k}$ which depends on at most j coordinates, such that

$$
|\mathcal{F} \backslash \mathcal{J}| \leq \max \left(e^{-k / C}, C \frac{k}{n}\right) \cdot|\mathcal{J}|
$$

Challenge 6. Junta approximation method in E.C.

The set family \mathcal{F} is said to be a J-junta if it depends only upon the coordinates in J-formally, if $\exists \mathcal{G} \subset \mathcal{P}(J)$ s.t. $S \in \mathcal{F} \Leftrightarrow S \cap J \in \mathcal{G}$, for all $S \subset[n]$.

Dinur-Friedgut 08

For all $\eta>0, \varepsilon>0$ there exists $J \in \mathbb{N}$ such that the following holds. If $\mathcal{F} \subseteq\{0,1\}^{n}$ is an intersecting family, and $\eta<p<\frac{1}{2}-\eta$, then there exists an intersecting J-junta $\mathcal{J} \subseteq\{0,1\}^{n}$ such that $\mu_{p}(\mathcal{F} \backslash \mathcal{J}) \leq \varepsilon$.

- Define "monotonicity" and assume \mathcal{F} to be monotone increasing.
- Define "pseudo-randomness", and show that any set family $=$ "Pseudo-random" sub-families + junta sub-families.
- Pseudo-random families contain intersections of any constant size.

Contents

(1) Introduction

(2) Boolean functions with small total influences
(3) Hypercontractivity and its applications

The tensor definition of the operator:

- Let $\rho \in[0,1]$. Let $f:\{-1,1\} \rightarrow \mathbb{R}, f(x)=a x+b$.
- Define $T_{\rho}(f)(x):=\rho a x+b$.

Then $T_{\rho}:=T_{\rho}^{\otimes n}$ is a linear operator acting on real functions on $\{-1,1\}^{n}$.
The spectral definition of the operator:

- Define $T_{\rho} x_{i}:=\rho x_{i}$.
- $T_{\rho} \chi_{S}=\prod_{i \in S} T_{\rho} x_{i}=\rho^{|S|} \chi_{S}$.
- $T_{\rho} f=\sum_{S \subseteq[n]} \hat{f}(S) \rho^{|S|} \chi_{S}$.

The noise/averaging definition of the operator:

- Let $\rho \in[0,1]$. Let X be chosen from any distribution on $\{ \pm 1\}^{n}$.
- Let Y be such that for every $1 \leq i \leq n$, the coordinate Y_{i} is chosen independently so that $\operatorname{Pr}\left[Y_{i}=X_{i}\right]=\frac{1+\rho}{2}$, or, in other words, $\mathbb{E}\left[X_{i} Y_{i}\right]=\rho$.
- X and Y are called an ρ-correlated pair.
- Define for any f and fixed X,

$$
T_{\rho}(f)(X)=\mathbb{E}[f(Y)]
$$

where X and Y are ρ-correlated pair.

Hypercontractivity

Hypercontractivity is the secret spice behind much of Boolean function analysis.

Bonami[68,70],Gross[75],Beckner[75]
Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, and $\rho \in[0,1]$. Then

$$
\left\|T_{\rho} f\right\|_{2} \leq\|f\|_{1+\rho^{2}}
$$

Dual version

Let $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ be a polynomial of degree d, and $q \geq 2$. Then

$$
\|f\|_{q} \leq(\sqrt{q-1})^{d}\|f\|_{2}
$$

Challenge 7. Global hypercontractivity and its

applications

Keevash, Lifshitz, Long and Minzer (2019+, 2021+) establish an effective hypercontractive inequality for general p that applies to "global functions", i.e. functions that are not significantly affected by a restriction of a small set of coordinates.

- Strengthen Bourgain's sharp threshold theorem (quantitively tight and applicable in the sparse regime)
- A sharp threshold result for global monotone functions
- p-biased generalisation of the seminal invariance principle of Mossel, O'Donnell and Oleszkiewicz.
- Turán numbers for the family of bounded degree expanded hypergraphs.
- (Kaufan-Minzer 22+) Quantitative version of optimal tester for the Reed-Muller code.

Unfortunately, applications in a very large number of areas have to be completely left out, including in learning theory, pseudorandomness, arithmetic combinatorics, random graphs and percolation, communication complexity, coding theory, metric and Banach spaces,...

Thanks for your attention!

