On the kissing numbers of ℓ_{p}-spheres in high dimensions

Chengfei Xie
joint with Prof. Gennian Ge

Capital Normal University

Aug 5, 2022

The kissing number problem

Let S^{n-1} be the unit sphere in \mathbb{R}^{n} ．The（translative）kissing number problem asks the maximum number of nonoverlapping translates $S^{n-1}+\boldsymbol{x}$ that can touch S^{n-1} at its boundary．It is an old and difficult problem in discrete geometry．

Figure：Optimal kissing configurations in 2 and 3 dimensions

$$
\begin{gathered}
\text { icosa hedron } \\
\text { 正二十西体体 }
\end{gathered}
$$

Exact answer for kissing numbers

The exact answer is only known in dimensions

- $n=1$;
- $n=2$;
- $n=3$ (Schütte and van der Waerden, Math. Ann., 1952);

- $n=4$ (Musin, Ann. of Math., 2008);

- $n=8$ and $n=24$ (Levenšteǐn, Soviet Math. Dokl., 1979, and independently (Odlyzko and Sloane, J. Combin. Theory Ser. A, 1979).
240

$$
196560
$$

a linear

The best known bounds for kissing numbers

Let $K_{2}(n)$ be the kissing number of S^{n-1}.

The best known upper bound is $K_{2}(n) \leq 2^{0.401 n(1+o(1))}$ (Kabatjanskiĭ and Levenšteǐn, Problemy Peredači Tnformacill, 1978).

$$
\text { linear plogramming } \approx 1.15 \ldots
$$

The best known lower bound is $K_{2}(n) \geq c n^{3 / 2}(2 / \sqrt{3})^{n}$ (Jenssen et al., Adv. Math., 2018). See also Fernández et al. (arXiv:211.01255) for constant $\sim{ }^{\prime} \mid(\bar{s})$ factor improvement.

Bounds for the kissing numbers of ℓ_{p}-spheres

Kissing number
One can also consider the packing problem of other convex bodies.
For instance, the ℓ_{p}-spheres (ℓ_{p}-balls):

$$
S_{p}^{n-1}(R):=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}=R\right\} .
$$

We simply write $S_{p}^{n-1}=S_{p}^{n-1}(1)$, and let $K_{p}(n)$ be the kissing number of S_{p}^{n-1}.

The best known upper bound:

- $1 \leq p \leq 2, K_{p}(n) \leq 3^{n}-1$, the Minkowskil-Hadwiger theorem, Arch. Math., 1957;
- $p \geq 2$, due to San et al., Adv. Math., 2020. implicit

The best known lower bound is due to Xu, Discrete Comput. Geom., 2007.

Our result

We improve the results of Xu .
Since our result does not have an explicit formula, we list some numerical results here:

$$
\begin{aligned}
& K_{1}(n) \geq 2^{0.1247 n(1+o(1))}+2^{0.1825 n(1+o(1))}+2^{0.1554 n(1+o(1))}+\cdots ; \\
& K_{2}(n) \geq \underbrace{2^{0.2059 n(1+o(1)}}+\underbrace{2^{0.1381 n(1+o(1))}}+\underbrace{0.0584 n(1+o(1))}+\cdots \text { : } \\
& K_{3}(n) \geq \underbrace{n 2^{0.4564 n(1+o(1)}}_{=X_{U}}+\underbrace{\underbrace{0.1562 n(1+o(1))}+2^{0.0425 n(1+o(1))}+\cdots} \underbrace{}
\end{aligned}
$$

Remark 1

In the lower bound for $K_{2}(n)$, the $2^{0.2059 n(1+o(1))}$ term is the same as the lower bound due to Xu , so we improve the lower bound by adding the remainder terms $2^{0.1381 n(1+o(1))}+2^{0.0584 n(1+o(1))}+\cdots$.
In the lower bound for $K_{3}(n)$, the $2^{0.4564 n(1+o(1))}$ term is the same as the lower bound due to $X u$, so we improve the leading term by a factor of n and add some remainder terms.

Ideas

Our idea comes from coding theory.
The translative kissing number $K_{p}(n)$ is equal to the largest size of an ℓ_{p}-spherical code with minimum distance 1 (see Lemma 2 below). We choose a discrete set X from S_{p}^{n-1}. Applying ideas from coding theory, we are able to find a large subset of X, in which points have pairwise distance larger than or equal to 1 . This gives a lower bound for $K_{p}(n)$.

Spherical codes

Let $A_{p}(n, d)$ be the maximum size of a subset of S_{p}^{n-1} in which the points have pairwise ℓ_{p}-distance at least $2 d$; that is,

$$
A_{p}(n, d):=\max \left\{|C|: C \subseteq S_{p}^{n-1} \text { and } d_{p}(\boldsymbol{x}, \boldsymbol{y}) \geq 2 d, \forall \boldsymbol{x}, \boldsymbol{y} \in C\right\}
$$

where $d_{p}(\boldsymbol{x}, \boldsymbol{y}):=\|\boldsymbol{x}-\boldsymbol{y}\|_{p}$ is the ℓ_{p}-distance between \boldsymbol{x} and \boldsymbol{y}. In other words, $A_{p}(n, d)$ is the largest size of an ℓ_{p}-spherical code with minimum distance $2 d$.

The following lemma is an easy observation.

Lemma 2

The translative kissing number $K_{p}(n)$ of S_{p}^{n-1} is equal to $A_{p}(n, 1 / 2)$.
Sketch of proof:
For convenience, let $k_{1}=K_{p}(n)$ and $k_{2}=A_{p}(n, 1 / 2)$.
If $S_{p}^{n-1}, S_{p}^{n-1}+\boldsymbol{x}_{1}, S_{p}^{n-1}+\boldsymbol{x}_{2}, \ldots, S_{p}^{n-1}+\boldsymbol{x}_{k_{1}}$ form a kissing configuration, then $\left\{\frac{1}{2} \boldsymbol{x}_{1}, \frac{1}{2} \boldsymbol{x}_{2}, \ldots, \frac{1}{2} \boldsymbol{x}_{k_{1}}\right\}$ is an ℓ_{p}-spherical code with minimum distance 1 , ie. $k_{2} \geq k_{1}$.
Conversely, if $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{k_{2}}\right\}$ is an ℓ_{p}-spherical code with minimum distance 1, then $S_{p}^{n-1}, S_{p}^{n-1}+2 \boldsymbol{x}_{1}, S_{p}^{n-1}+2 \boldsymbol{x}_{2}, \ldots, S_{p}^{n-1}+2 \boldsymbol{x}_{k_{2}}$ form a kissing configuration. So $k_{1} \geq k_{2}$.

Constructions

For a positive integer $m \leq n$, which will be determined later, we define a family $\mathcal{J}(m, n)$ of subsets of \mathbb{R}^{n} recursively. Define $m_{1}:=m$ and

$$
J_{1}(m, n):=\left\{\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in\{0, \pm 1\}^{n}: \sum_{i=1}^{n}\left|u_{i}\right|^{p}=m\right\} .
$$

Suppose we have defined m_{i} and $J_{i}(m, n)$. Then we define

$$
\begin{equation*}
m_{i+1}:=\left\lfloor m_{i} / 2^{p}\right\rfloor \tag{1}
\end{equation*}
$$

and

$$
J_{i+1}(m, n):=\left\{\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in\left\{0, \pm\left(m / m_{i+1}\right)^{1 / p}\right\}^{n}: \sum_{i=1}^{n}\left|u_{i}\right|^{p}=m\right\} .
$$

This process terminates when $m_{r}<2^{p}$ for some $r\left(r=\left\lfloor\log _{2^{p}} m\right\rfloor+1\right.$ or $\left.\left\lfloor\log _{2^{\rho}} m\right\rfloor\right)$. So we obtain $\left\{m_{1}>m_{2}>\ldots>m_{r}\right\}$ and $\mathcal{J}(m, n)=\left\{J_{1}(m, n), J_{2}(m, n), \ldots, J_{r}(m, n)\right\}$.

The following proposition is easy to verify.

Proposition 3

For $\mathcal{J}(m, n)$ defined above, the following statements hold.
(1) If $i \neq j$, then $J_{i}(m, n) \cap J_{j}(m, n)=\emptyset$.
(2) For every $1 \leq i \leq r$ and for every $\boldsymbol{u} \in J_{i}(m, n)$, \boldsymbol{u} has exactly $n-m_{i}$ zero coordinates.
(3) For every $1 \leq i \leq r$,

$$
\begin{equation*}
\left|J_{i}(m, n)\right|=\binom{n}{m_{i}} 2^{m_{i}} . \tag{2}
\end{equation*}
$$

(9) For every $1 \leq i \leq r$ and for every $\boldsymbol{u} \in J_{i}(m, n)$, the ℓ_{p}-norm of \boldsymbol{u} is $m^{1 / p}$.
(5) If $i \neq j$, then for every $\boldsymbol{u} \in J_{i}(m, n)$ and $\boldsymbol{v} \in J_{j}(m, n), d_{p}(\boldsymbol{u}, \boldsymbol{v}) \geq m^{1 / p}$.

For every i, let $J_{i}^{\prime}(m, n)$ be a largest subset of $J_{i}(m, n)$ with the property that $d_{p}(\boldsymbol{u}, \boldsymbol{v}) \geq m^{1 / p}$ for every $\boldsymbol{u}, \boldsymbol{y} \in J_{i}^{\prime}(m, n)$. Since we have proved that $d_{p}(\boldsymbol{u}, \boldsymbol{v}) \geq m^{1 / p}$ if $\boldsymbol{u} \in J_{i}^{\prime}(m, n) \subseteq J_{i}(m, n)$ and $\boldsymbol{v} \in J_{j}^{\prime}(m, n) \subseteq J_{j}(m, n)$ for $i \neq j$, the set

$$
\frac{1}{m^{1 / p}} \bigcup_{i=1}^{r} J_{i}^{\prime}(m, n):=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: m^{1 / p} \boldsymbol{x} \in \bigcup_{i=1}^{r} J_{i}^{\prime}(m, n)\right\}
$$

is an ℓ_{p}-spherical code with minimum distance 1 . So

$$
\begin{equation*}
A_{p}(n, 1 / 2) \geq\left|\frac{1}{m^{1 / p}} \bigcup_{i=1}^{r} J_{i}^{\prime}(m, n)\right|=\left|\bigcup_{i=1}^{r} J_{i}^{\prime}(m, n)\right|=\sum_{i=1}^{r}\left|J_{i}^{\prime}(m, n)\right| . \tag{3}
\end{equation*}
$$

A Gilbert-Varshamov type bound

For $1 \leq i \leq r$ and $\boldsymbol{u} \in J_{i}(m, n)$, define

$$
B_{i, n}(\boldsymbol{u}, m):=\left\{\boldsymbol{v} \in J_{i}(m, n): d_{p}(\boldsymbol{u}, \boldsymbol{v})<m^{1 / p}\right\} .
$$

Note that the size of $B_{i, n}(\boldsymbol{u}, m)$ is independent of \boldsymbol{u}. If we write $B_{i, n}(m)$ for the size of $B_{i, n}(\boldsymbol{u}, m)$, then

$$
B_{i, n}(m)=\underbrace{\sum^{2 t+2^{x} x<m_{i}}}\left(^{m_{i}} \begin{array}{c}
 \tag{4}\\
t
\end{array}\right)\binom{n-m_{i}}{t}\binom{m_{i}-t}{x} 2^{t} \text {. } \text { the sine }
$$

Using the above notations, we have the following theorem.

Theorem 4

For every $1 \leq i \leq r$, we have

$$
\begin{equation*}
\left|J_{i}^{\prime}(m, n)\right| \geq\left\lceil\frac{\left|J_{i}(m, n)\right|}{B_{i, n}(m)}\right\rceil=\left\lceil\frac{\binom{n}{m_{i}} 2^{m_{i}}}{B_{i, n}(m)}\right\rceil . \tag{5}
\end{equation*}
$$

Main result

The following corollary is immediate and it is our main result.

Corollary 5

$$
\begin{gather*}
\sum_{1} / \int_{i}^{\prime} \mid \tag{6}\\
A_{p}(n, 1 / 2) \geq \max _{1 \leq m \leq n} \\
\sum_{i=1}^{n}
\end{gather*}\left[\frac{\binom{n}{m_{i}} 2^{m_{i}}}{B_{i, n}(m)}\right] .
$$

Remark 6

In the previous result due to $X u$ (2007), the lower bound for $A_{p}(n, 1 / 2)$ is given by $\max _{1 \leq m \leq n}\left\lceil\frac{\left(n_{m}\right) 2^{m_{1}}}{B_{1}, n(m)}\right\rceil$. So Corollary 5 gives an improvement.

$$
i=1
$$

Sketch of proof of Theorem 4:
Let i be given and $J=\left\lceil\frac{\left|J_{i}(m, n)\right|}{B_{i, n}(m)}\right\rceil$. We choose points from $J_{i}(m, n)$ recursively. At first, we arbitrarily choose \boldsymbol{u}_{1} in $J_{i}(m, n)$. If we have chosen $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}$ for some $k<J$, then the set

$$
J_{i}(m, n) \backslash\left(\bigcup_{j=1}^{k} B_{i, n}\left(\boldsymbol{u}_{j}, m\right)\right)
$$

is nonempty and we can choose \boldsymbol{u}_{k+1} from $J_{i}(m, n) \backslash\left(\bigcup_{j=1}^{k} B_{i, n}\left(\boldsymbol{u}_{j}, m\right)\right)$. And hence $\left|J_{i}^{\prime}(m, n)\right| \geq J$.

Some numerical results for small p

It seems that there does not exist an explicit formula for the lower bound in Corollary 5 . So we give some numerical results. Define

Then by equations (1)-(4) and inequality (6), we have

$$
\sigma=\frac{m}{n}
$$

$$
A_{p}(n, 1 / 2) \geq \max _{0<\sigma<1} \sum_{i=1}^{r} F_{p}\left(\frac{\sigma}{2^{(i-1) p}}\right) .
$$

The behavior of $F_{p}(\sigma)$

Let $H(\sigma)$ be the entropy function defined as

$$
H(\sigma)= \begin{cases}0, & \text { if } \sigma=0 \text { or } \sigma=1 ; \\ -\sigma \log _{2} \sigma-(1-\sigma) \log _{2}(1-\sigma), & \text { if } 0<\sigma<1\end{cases}
$$

We have the following theorem.
Theorem 7 (Xu, Discrete Comput. Geom., 2007)
We have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} F_{p}(\sigma) \geq \min _{0 \leq y \leq \min \{\sigma / 2,1-\sigma\}} f_{p}(\sigma, y)
$$

where

$$
f_{p}(\sigma, y)=(\sigma-y)\left(1-H\left(\frac{\sigma-2 y}{2^{p}(\sigma-y)}\right)\right)+H(\sigma)-\sigma H\left(\frac{y}{\sigma}\right)-(1-\sigma) H\left(\frac{y}{1-\sigma}\right) .
$$

Let $g_{p}(\sigma)=\min _{0 \leq y \leq \min \{\sigma / 2,1-\sigma\}} f_{p}(\sigma, y)$. We list some numerical results for special values of p.

For $p=1, g_{1}(\sigma)$ attains its maximum 0.1825 at $\sigma_{0}=0.2605$. So

$$
\begin{aligned}
A_{1}(n, 1 / 2) & \geq \max _{0 \leq \sigma \leq 1} \sum_{i=1}^{r} F_{1}\left(\frac{\sigma}{2^{i-1}}\right) \quad \sigma_{0}<0.5 \\
& \geq \sum_{i=1}^{r} F_{1}\left(\frac{2 \sigma_{0}}{2^{i-1}}\right) \quad \text { add } \quad F_{1}\left(2 \sigma_{0}\right) \text { for a better bound. } \\
& \geq F_{1}\left(2 \sigma_{0}\right)+F_{1}\left(\sigma_{0}\right)+F_{1}\left(\frac{\sigma_{0}}{2}\right)+\cdots \\
& \geq 2^{g_{1}\left(2 \sigma_{0}\right) \cdot n(1+o(1))}+2^{g_{1}\left(\sigma_{0}\right) \cdot n(1+o(1))}+2^{g_{1}\left(\sigma_{0} / 2\right) \cdot n(1+o(1))}+\cdots \\
& =2^{0.1247 n(1+o(1))}+2^{0.1825 n(1+o(1))}+2^{0.1554 n(1+o(1))}+\cdots .
\end{aligned}
$$

Remark 8

Although $2^{0.1247 n(1+o(1))}+2^{0.1554 n(1+o(1))}+\cdots=o\left(2^{0.1825 n(1+o(1))}\right)$, we still write them explicitly since they improve the previous bound.
Talata (Combinatorica, 2000) obtained $A_{1}(n, 1 / 2) \geq 2^{0.1825 n(1+o(1))}$ as well.

For $p=2, g_{2}(\sigma)$ attains its maximum 0.2059 at $\sigma_{0}=0.3881$. So

$$
\begin{aligned}
A_{2}(n, 1 / 2) & \geq \max _{0 \leq \sigma \leq 1} \sum_{i=1}^{r} F_{2}\left(\frac{\sigma}{2^{2(i-1)}}\right) \quad 4 \sigma_{0}>\mid \\
& \geq \sum_{i=1}^{r} \quad \text { ann } F_{2}\left(\frac{\sigma_{0}}{4^{i-1}}\right) \quad \text { add } \quad F\left(4 \sigma_{0}\right) \\
& \geq F_{2}\left(\underline{\left(\sigma_{0}\right)}+F_{2}\left(\frac{\sigma_{0}}{4}\right)+F_{2}\left(\frac{\sigma_{0}}{4^{2}}\right)+\cdots\right. \\
& \geq 2^{g_{2}\left(\sigma_{0}\right) \cdot n(1+o(1))}+2^{g_{2}\left(\sigma_{0} / 4\right) \cdot n(1+o(1))}+2^{g_{2}\left(\sigma_{0} / 16\right) \cdot n(1+o(1))}+\cdots \\
& =2^{0.2059 n(1+o(1))}+2^{0.1381 n(1+o(1))}+2^{0.0584 n(1+o(1))}+\cdots .
\end{aligned}
$$

We also write the $2^{0.1381 n(1+o(1))}+2^{0.0584 n(1+o(1))}+\cdots=o\left(2^{0.2059 n(1+o(1))}\right)$ terms explicitly.

$$
g_{2}(\sigma)
$$

Some numerical results for large p

There exists a threshold $p_{0} \approx 2.1$ (we do not attempt to calculate the exact
value of p_{0}) such that when $p>p_{0}, F_{p}(\sigma)$ attains its maximum at $\sigma=1$. For
There exists a threshold $p_{0} \approx 2.1$ (we do not attempt to calculate the exact
value of p_{0}) such that when $p>p_{0}, F_{p}(\sigma)$ attains its maximum at $\sigma=1$. For $\sigma=1$, i.e. $m=n$, we have another lower bound. Let $m=n$, and recall inequalities (3) and (5). We have

$$
\begin{aligned}
A_{p}(n, 1 / 2) & \geq \sum_{i=1}^{r}\left|J_{i}^{\prime}(n, n)\right| \quad g_{p}(\sigma \\
& =\left|J_{1}^{\prime}(n, n)\right|+\sum_{i=2}^{r}\left|J_{i}^{\prime}(n, n)\right| \\
& \geq\left|J_{1}^{\prime}(n, n)\right|+\sum_{i=2}^{r}\left[\left.\frac{\binom{n}{m_{i}} 2^{m_{i}}}{B_{i, n}(n)} \right\rvert\,\right. \\
& =\left|J_{1}^{\prime}(n, n)\right|+\sum_{i=2}^{r} F_{p}\left(\frac{1}{2^{p(i-1)}}\right) .
\end{aligned}
$$

When p is large

Indeed, we can improve the lower bound for $\left|J_{1}^{\prime}(n, n)\right|$ slightly.

Relation between the ℓ_{p} distance and the Hamming distance

Recall the definition of $J_{1}(n, n)$ and $J_{1}^{\prime}(n, n) . J_{1}(n, n)=\{ \pm 1\}^{n}$ and $J_{1}^{\prime}(n, n)$ is a largest subset of $\{ \pm 1\}^{n}$ in which points have pairwise distance larger than or equal to $n^{1 / p}$. For $\boldsymbol{u}, \boldsymbol{v} \in\{ \pm 1\}^{n}$, let $d_{H}(\boldsymbol{u}, \boldsymbol{v}):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|$ be the Hamming distance between them. The following lemma is an easy observation.

Lemma 9

For every $\boldsymbol{u}, \boldsymbol{v} \in\{ \pm 1\}^{n}$, we have

$$
\left(d_{p}(\boldsymbol{u}, \boldsymbol{v})\right)^{p}=2^{p} \cdot d_{H}(\boldsymbol{u}, \boldsymbol{v})
$$

By this lemma, it suffices to find a largest subset of $\{ \pm 1\}^{n}$, in which points have pairwise Hamming distance larger than or equal to $\left\lceil n / 2^{p}\right\rceil$. Recall the definition of $B_{1, n}(\boldsymbol{u}, n)$ and we have

$$
\begin{aligned}
B_{1, n}(\boldsymbol{u}, n) & =\left\{\boldsymbol{v} \in\{ \pm 1\}^{n}: d_{p}(\boldsymbol{u}, \boldsymbol{v})<n^{1 / p}\right\} \\
& =\left\{\boldsymbol{v} \in\{ \pm 1\}^{n}: 2^{p} \cdot d_{H}(\boldsymbol{u}, \boldsymbol{v})<n\right\} \\
& =\left\{\boldsymbol{v} \in\{ \pm 1\}^{n}: d_{H}(\boldsymbol{u}, \boldsymbol{v}) \leq\left\lceil n / 2^{p}\right\rceil-1\right\} .
\end{aligned}
$$

So $B_{1, n}(n)=\left|B_{1, n}(\boldsymbol{u}, n)\right|=\sum_{k=0}^{\left[n / 2^{p}\right\rceil-1}\binom{n}{k}$.

Improving the G-V bound by a factor of n

We have the following theorem, which gives a better lower bound for $\left|J_{1}^{\prime}(n, n)\right|$ than that in inequality (5).

Theorem 10 (Jiang and Vardy, IEEE Trans. Inform. Theory, 2004)

There exists a positive constant c such that
improvement

$$
\left|J_{1}^{\prime}(n, n)\right| \geq c \frac{2^{n}}{B_{1, n}(n)} \log _{2} B_{1, n}(n) \text {. impherene } G-V \text { bound }
$$

Note that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log _{2} B_{1, n}(n)=H\left(\frac{1}{2^{p}}\right),
$$

by Stirling's formula. So

$$
\left|J_{1}^{\prime}(n, n)\right| \geq c \frac{\sqrt{n} 2^{n}}{B_{1, n}(n)}=c n 2^{n\left(1-H\left(2^{-\rho}\right)+o(1)\right)}
$$

for some constant c (maybe depends on p).

For $p=3$, we have

$$
\begin{aligned}
A_{3}(n, 1 / 2) & \geq\left|J_{1}^{\prime}(n, n)\right|+\sum_{i=2}^{r} F_{3}\left(\frac{1^{\prime \prime}}{2^{3(i-1)}}\right) \\
& \geq c n 2^{n\left(1-H\left(2^{-3}\right)+o(1)\right)}+F_{3}(0.1250)+F_{3}(0.0156)+\cdots \\
& \geq c n 2^{n\left(1-H\left(2^{-3}\right)+o(1)\right)}+2^{g_{3}(0.1250) \cdot n(1+o(1))}+2^{g_{3}(0.0156) \cdot n(1+o(1))}+\cdots \\
& =c n 2^{0.4564 n(1+o(1))}+2^{0.1562 n(1+o(1))}+2^{0.0425 n(1+o(1))}+\cdots .
\end{aligned}
$$

For $p=4$, we have

$$
\begin{aligned}
A_{4}(n, 1 / 2) & \geq\left|J_{1}^{\prime}(n, n)\right|+\sum_{i=2}^{r} F_{4}\left(\frac{1}{2^{4(i-1)}}\right) \\
& \geq c n 2^{n\left(1-H\left(2^{-4}\right)+o(1)\right)}+F_{4}(0.0625)+F_{4}(0.0039)+\cdots \\
& \geq c n 2^{n\left(1-H\left(2^{-4}\right)+o(1)\right)}+2^{g_{4}(0.0625) \cdot n(1+o(1))}+2^{g_{4}(0.0039) \cdot n(1+o(1))}+\cdots \\
& =c n 2^{0.6627 n(1+o(1))}+2^{0.1083 n(1+o(1))}+2^{0.0145 n(1+o(1))}+\cdots
\end{aligned}
$$

Further remarks

Sah et al. (Adv. Math., 2020) obtained an inequality between ℓ_{p}-spherical codes for different p; that is, $A_{p}(n, d) \leq A_{q}\left(n, d^{p / q}\right)$ for all $1 \leq q \leq p$ and $d \in(0,1]$. So
and

$$
\begin{equation*}
\frac{A_{2}(n, d) \leq A_{p}\left(n, d^{2 / p}\right), \text { if } 1 \leq p<2}{A_{p}(n, d) \leq A_{2}\left(n, d^{p / 2}\right), \text { if } p \geq 2 .} \tag{7}
\end{equation*}
$$

Shh et al. used inequality (8) to obtain an upper bound for $A_{p}(n, d)(p \geq 2)$.

$$
\left(\begin{array}{l}
\text { lower bound for } A_{2} \Rightarrow \text { lower bound for } A_{p} \text {, } \\
\rightarrow \text { upper bound for } A_{2} \Rightarrow \text { leper bound fir } A_{p} \text {, }
\end{array}\right.
$$

On the other hand, we can use inequality (7) to obtain a lower bound for $A_{p}(n, 1 / 2)(p \leq 2)$ before. We need the following theorem, which is the best known lower bound for $A_{2}(n, d)(d \in(0,1))$.

Theorem 11 (Fernández et al., arXiv:2111.01255)

Let $\theta \in(0, \pi / 2)$ be fixed. Then

$$
A_{2}(n, \sin (\theta / 2)) \geq(1+o(1)) \ln \frac{\sin \theta}{\sqrt{2} \sin (\theta / 2)} \cdot n \cdot \frac{\sqrt{2 \pi n} \cos \theta}{\sin ^{n-1} \theta} .
$$

For $1<p \leq 2$, we have

$$
A^{A_{p}(n, 1 / 2) \geq A_{2}\left(n,(1 / 2)^{p / 2}\right)}
$$

Let $\sin (\theta / 2)=2^{-p / 2}$. Then $\cos (\theta / 2)=\sqrt{1-2^{-p}}, \sin \theta=2^{1-p / 2} \sqrt{1-2^{-p}}$, and $\cos \theta=1-2^{1-p}$. So

$$
\begin{align*}
A_{p}(n, 1 / 2) & \geq A_{2}\left(n,(1 / 2)^{p / 2}\right) \\
& =A_{2}(n, \sin (\theta / 2)) \\
& \geq(1+o(1)) \ln \sqrt{2-2^{1-p}} \cdot n \cdot \frac{\sqrt{2 \pi n}\left(1-2^{1-p}\right)}{\left(2^{1-p / 2} \sqrt{1-2^{-p}}\right)^{n-1}} . \tag{9}
\end{align*}
$$

After some numerical calculations, when $p \in(1.9948,2]$, the lower bound in inequality (9) is better than that in inequality (6).

Open problems

- Determine the kissing number of spheres for a specific dimension (e.g. $n=5$). find lower and upper on Wiki, $40 \leq \leqslant 44$
- Shrink the gap between the lower and the upper bound for high dimensions. sphere: $\left[1.15 .^{n}, 1.3 \cdots^{n}\right], l_{p}$
- Find the bounds for kissing numbers of other convex bodies (e.g. the standard simplex). This is open for almost all convex bodies.

$$
\begin{aligned}
& \leq 3^{n}-1 \\
& "=\text { "iff paralleletope. }
\end{aligned}
$$

Thank you for your attention!

