Log-Concavity of High Convolutions: The Odlyzko-Richmond Theorem

Shengtong Zhang

MIT \rightarrow Stanford

September 16, 2022

Table of Contents

(1) Introduction and Methodology
(2) The Odlyzko-Richmond Theorem
(3) Proof of Odlyzko-Richmond Theorem

(4) A Recent Generalization

Unimodality and Log-concavity

Definition

A sequence a_{1}, \cdots, a_{n} is unimodal if there exists a K such that $a_{1} \leq \cdots \leq a_{K}$ and $a_{K} \geq a_{K+1} \geq \cdots$.
A sequence a_{1}, \cdots, a_{n} is log-concave if every term is non-negative and $a_{k}^{2} \geq a_{k-1} a_{k+1}$ for all k.

Definition

A polynomial is unimodal / log-concave iff its coefficients are unimodal / log-concave.

Unimodality and Log-concavity

Definition

A sequence a_{1}, \cdots, a_{n} is unimodal if there exists a K such that $a_{1} \leq \cdots \leq a_{K}$ and $a_{K} \geq a_{K+1} \geq \cdots$.
A sequence a_{1}, \cdots, a_{n} is log-concave if every term is non-negative and $a_{k}^{2} \geq a_{k-1} a_{k+1}$ for all k.

Definition

A polynomial is unimodal / log-concave iff its coefficients are unimodal / log-concave.

Example:

- $x^{2}+2$ is neither unimodal nor log-concave.
- $x^{2}+x+2$ is unimodal but not log-concave.
- $x^{2}+3 x+2$ is log-concave.

Catch Phrase

Unimodality and Log-concavity happen for reasons!

Catch Phrase

Unimodality and Log-concavity happen for reasons!

Stanley, R.P.,
Log-Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry.

Pak, I.,
What is a combinatorial interpretation?

Algebraic Reasons

Theorem

The product of two log-concave polynomials is a log-concave polynomial.

Corollary

Hyperbolic polynomials(polynomials with negative real roots) are log-concave.

Example: $(x+2)(x+3)=x^{2}+5 x+6$.
Example[Heilman-Lieb]: In graph G, let t_{j} be the number of matchings of size j. Then $\sum_{j} t_{j} x^{j}$ is hyperbolic, so $\left\{t_{j}\right\}$ is log-concave.

Geometric Reasons

Let K, L be convex bodies in \mathbb{R}^{n}. Let $f(t)$ be the volumn of $K+t L$.

Geometric Reasons

Let K, L be convex bodies in \mathbb{R}^{n}. Let $f(t)$ be the volumn of $K+t L$.
Theorem (Aleksandrov-Fenchel Inequality)
$f(t)$ is a log-concave polynomial.
A number of interesting corollaries in combinatorics.

Combinatorial Reasons

Theorem (Horrocks 2002)

Let $P_{k}(G)$ be the k-element dependent sets in a graph G, and let $p_{k}(G)=\# P_{k}(G)$. Then $\left\{p_{k}(G)\right\}$ is log-concave.

Proof by cleverly constructing injections.

Combinatorial Reasons

Theorem (Horrocks 2002)

Let $P_{k}(G)$ be the k-element dependent sets in a graph G, and let $p_{k}(G)=\# P_{k}(G)$. Then $\left\{p_{k}(G)\right\}$ is log-concave.

Proof by cleverly constructing injections.

Conjecture

Let $D_{k}(G)$ be the k-element dominating sets in a graph G, and let $d_{k}(G)=\# D_{k}(G)$. Then $\left\{d_{k}(G)\right\}$ is unimodal.

Algebraic Geometric Reasons

Theorem (Mason's conjecture)
The characteristic polynomial of a matroid is log-concave.
Key tools: Hodge theory, Lorentzian polynomials(June Huh et. al.), Completely Log-concave polynomials(Nima Anari et. al.)

Algebraic Geometric Reasons

Theorem (Mason's conjecture)

The characteristic polynomial of a matroid is log-concave.
Key tools: Hodge theory, Lorentzian polynomials(June Huh et. al.), Completely Log-concave polynomials(Nima Anari et. al.)

See Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant
Log-Concave Polynomials III: Mason's Ultra-Log-Concavity Conjecture for Independent Sets of Matroids.

Analytic Reasons(This talk)

Idea: Obtain a sufficiently accurate analytic estimate of a_{k}, for which $a_{k}^{2} \geq a_{k-1} a_{k+1}$ follows.

Example(DeSalvo-Pak 2015)

Let $p(n)$ be the number of partitions of n.

$$
1,1,2,3,5,7, \cdots
$$

Then $\{p(n)\}$ is log-concave for $n \geq 26$.

Analytic Reasons(This talk)

Idea: Obtain a sufficiently accurate analytic estimate of a_{k}, for which $a_{k}^{2} \geq a_{k-1} a_{k+1}$ follows.

Example(DeSalvo-Pak 2015)

Let $p(n)$ be the number of partitions of n.

$$
1,1,2,3,5,7, \cdots
$$

Then $\{p(n)\}$ is log-concave for $n \geq 26$.

Theorem (Rademacher's Exact Formula)

$$
p(n)=\frac{\sqrt{12}}{24 n-1}\left(1-\frac{1}{\pi \sqrt{24 n-1} / 6}\right) e^{\pi \sqrt{24 n-1} / 6}+R_{n}
$$

where R_{n} is super-polynomially smaller than the first term.

Applications of Unimodality / Log-concavity

- Implications in theoretical computer science: unimodality can be exploited to design fast algorithms.
Example: Proof of Mason's Conjecture gives FPRAS for counting the base of matroids.
- Connections with probability theory and statistics: log-concave distributions.
- Connections with Riemann Hypothesis: Pólya-Jensen criterion.

Methodology

Hardy-Littlewood Circle Method!

Table of Contents

(1) Introduction and Methodology

(2) The Odlyzko-Richmond Theorem

(3) Proof of Odlyzko-Richmond Theorem

4 A Recent Generalization

Motivation

The product of two log-concave polynomials is log-concave. Thus, if $f(z)$ is log-concave polynomial, then $f(z)^{N}$ is log-concave for all $N \geq 1$.

Motivation

The product of two log-concave polynomials is log-concave. Thus, if $f(z)$ is log-concave polynomial, then $f(z)^{N}$ is log-concave for all $N \geq 1$.

Can log-concavity arise simply by taking the power of polynomials?

Motivation

The product of two log-concave polynomials is log-concave. Thus, if $f(z)$ is log-concave polynomial, then $f(z)^{N}$ is log-concave for all $N \geq 1$.

Can log-concavity arise simply by taking the power of polynomials?

Trivial counterexample: $p(z)=z^{2}+1$. No power of p is log-concave.

Theorem (Odlyzko-Richmond, 1982)
If $p(z)$ is a polynomial with all positive coefficients, then $p^{k}(z)$ is log-concave for all sufficiently large k.

In fact, we only need all coefficients to be non-negative, and $p(z) \neq q\left(z^{m}\right)$ for any polynomial q and $m>1$.

Theorem (Odlyzko-Richmond, 1982)

If $p(z)$ is a polynomial with all positive coefficients, then $p^{k}(z)$ is log-concave for all sufficiently large k.

In fact, we only need all coefficients to be non-negative, and $p(z) \neq q\left(z^{m}\right)$ for any polynomial q and $m>1$.

Original title
On the Unimodality of High Convolutions of Discrete Distributions

Theorem (Odlyzko-Richmond, 1982)

If $p(z)$ is a polynomial with all positive coefficients, then $p^{k}(z)$ is log-concave for all sufficiently large k.

In fact, we only need all coefficients to be non-negative, and $p(z) \neq q\left(z^{m}\right)$ for any polynomial q and $m>1$.

Original title
On the Unimodality of High Convolutions of Discrete Distributions

Example

$p(z)=z^{2}+0.1 z+1$. Far from Log-concave.

Coefficients of $p(z)^{4}$

Coefficients of $p(z)^{32}$

Table of Contents

(1) Introduction and Methodology

(2) The Odlyzko-Richmond Theorem

(3) Proof of Odlyzko-Richmond Theorem

4 A Recent Generalization

Notations

Theorem (Odlyzko-Richmond, 1982)

If $p(z)$ is a polynomial with all positive coefficients, then $p^{k}(z)$ is log-concave for all sufficiently large k.

Notation

Let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.
Assume: $n \leq d k / 2$, and $n \geq k^{1 / 4}$.

$$
d=\text { degree of } p(z)
$$

Step 1: Set up Hardy-Littlewood Method

Let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.

Lemma

For any $r>0$, we have

$$
a_{k, n}=\frac{1}{2 \pi r^{n}} \int_{-\pi}^{\pi} p^{k}\left(r e^{i \theta}\right) e^{-i n \theta} d \theta
$$

Step 1: Set up Hardy-Littlewood Method

Let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.

Lemma

For any $r>0$, we have

$$
a_{k, n}=\frac{1}{2 \pi r^{n}} \int_{-\pi}^{\pi} p^{k}\left(r e^{i \theta}\right) e^{-i n \theta} d \theta
$$

More generally, let $I_{r}: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
I_{r}(\alpha)=\int_{-\pi}^{\pi} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta
$$

Step 1: Set up Hardy-Littlewood Method

Let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.

Lemma

For any $r>0$, we have

$$
a_{k, n}=\frac{1}{2 \pi r^{n}} \int_{-\pi}^{\pi} p^{k}\left(r e^{i \theta}\right) e^{-i n \theta} d \theta
$$

More generally, let $I_{r}: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
I_{r}(\alpha)=\int_{-\pi}^{\pi} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta
$$

Then

$$
a_{k, n}=\frac{1}{2 \pi r^{n}} I_{r}(n)
$$

Step 1: Set up Hardy-Littlewood Method

To prove $a_{k, n}^{2} \geq a_{k, n-1} a_{k, n+1}$, it suffices to find one $r>0$ such that

$$
2 r^{n} a_{k, n} \geq r^{n-1} a_{k, n-1}+r^{n+1} a_{k, n+1}
$$

Step 1: Set up Hardy-Littlewood Method

To prove $a_{k, n}^{2} \geq a_{k, n-1} a_{k, n+1}$, it suffices to find one $r>0$ such that

$$
2 r^{n} a_{k, n} \geq r^{n-1} a_{k, n-1}+r^{n+1} a_{k, n+1}
$$

or

$$
2 I_{r}(n) \geq I_{r}(n-1)+I_{r}(n+1)
$$

Step 1: Set up Hardy-Littlewood Method

To prove $a_{k, n}^{2} \geq a_{k, n-1} a_{k, n+1}$, it suffices to find one $r>0$ such that

$$
2 r^{n} a_{k, n} \geq r^{n-1} a_{k, n-1}+r^{n+1} a_{k, n+1}
$$

or

$$
2 I_{r}(n) \geq I_{r}(n-1)+I_{r}(n+1)
$$

Strengthening: Find an $r>0$ such that for any $\alpha \in[n-1, n+1]$,

$$
I_{r}^{\prime \prime}(\alpha) \leq 0 .
$$

We can compute $I_{r}^{\prime \prime}$ explicitly.

Step 1: Set up Hardy-Littlewood Method

To prove $a_{k, n}^{2} \geq a_{k, n-1} a_{k, n+1}$, it suffices to find one $r>0$ such that

$$
2 r^{n} a_{k, n} \geq r^{n-1} a_{k, n-1}+r^{n+1} a_{k, n+1}
$$

or

$$
2 I_{r}(n) \geq I_{r}(n-1)+I_{r}(n+1)
$$

Strengthening: Find an $r>0$ such that for any $\alpha \in[n-1, n+1]$,

$$
I_{r}^{\prime \prime}(\alpha) \leq 0 .
$$

We can compute $I_{r}^{\prime \prime}$ explicitly.

Step 1: Set up Hardy-Littlewood Method

Goal

Find an $r>0$ such that for any $\alpha \in[n-1, n+1]$,

$$
\int_{-\pi}^{\pi} \theta^{2} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta \geq 0 .
$$

Technical Assumption: $r \sim n / k$, where the implied constant does not depend on n or k.

Step 2: Splitting into Major and Minor Arc

Goal

Find an $r>0$ such that for any $\alpha \in[n-1, n+1]$,

$$
\int_{-\pi}^{\pi} \theta^{2} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta \geq 0
$$

Step 2: Splitting into Major and Minor Arc

Goal

Find an $r>0$ such that for any $\alpha \in[n-1, n+1]$,

$$
\int_{-\pi}^{\pi} \theta^{2} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta \geq 0 .
$$

Crucial Observation: As the coefficients of $p(z)$ are positive, $\left|p\left(r e^{i \theta}\right)\right|$ has a unique maximum at $\theta=0$.

Step 2: Splitting into Major and Minor Arc

Goal

Find an $r>0$ such that for any $\alpha \in[n-1, n+1]$,

$$
\int_{-\pi}^{\pi} \theta^{2} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta \geq 0
$$

Crucial Observation: As the coefficients of $p(z)$ are positive, $\left|p\left(r e^{i \theta}\right)\right|$ has a unique maximum at $\theta=0$.

Lemma

There exists a c > 0 independent of n, k such that

$$
\left|p\left(r e^{i \theta}\right)\right| \leq p(r) e^{-c \theta^{2} r} .
$$

Step 2: Splitting into Major and Minor Arc

Lemma

There exists a $c>0$ independent of n, k such that for any $|\theta| \leq \pi$,

$$
\left|p\left(r e^{i \theta}\right)\right| \leq p(r) e^{-c \theta^{2} r} .
$$

Let $\theta_{0}=k^{1 / 30} n^{-1 / 2}$. We call the region $|\theta| \leq \theta_{0}$ the major arc, and the region $|\theta| \in\left[\theta_{0}, \pi\right]$ the minor arc.

Step 2: Splitting into Major and Minor Arc

Lemma

There exists a $c>0$ independent of n, k such that for any $|\theta| \leq \pi$,

$$
\left|p\left(r e^{i \theta}\right)\right| \leq p(r) e^{-c \theta^{2} r} .
$$

Let $\theta_{0}=k^{1 / 30} n^{-1 / 2}$. We call the region $|\theta| \leq \theta_{0}$ the major arc, and the region $|\theta| \in\left[\theta_{0}, \pi\right]$ the minor arc.

Corollary (Estimate on Minor Arc)

For any $\epsilon>0$, there exists a $c>0$ such that for $r>\epsilon n / k$, we have

$$
\left|\int_{|\theta| \in\left[\theta_{0}, \pi\right]} \theta^{2} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta\right| \leq p^{k}(r) e^{-c k^{1 / 15}}
$$

Step 3: Estimate on the Major Arc

Let $\theta_{0}=k^{1 / 30} n^{-1 / 2}$. The integral over Major Arc is

$$
\int_{|\theta|<\theta_{0}} \theta^{2} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta
$$

Step 3: Estimate on the Major Arc

Let $\theta_{0}=k^{1 / 30} n^{-1 / 2}$. The integral over Major Arc is

$$
\int_{|\theta|<\theta_{0}} \theta^{2} p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta} d \theta
$$

Lemma

There exists constant $c>0$ such that

$$
\int_{|\theta|<\theta_{0}}\left|\theta^{2} p^{k}\left(r e^{i \theta}\right)\right| d \theta \geq c p^{k}(r) \cdot k^{-4}
$$

Goal: For $|\theta|<\theta_{0}$, ensure that

$$
\left|\arg p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta}\right|<\frac{\pi}{4}
$$

Step 3: Estimate on the Major Arc

Goal

For $|\theta|<\theta_{0}$, ensure that

$$
\left|\arg p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta}\right|<\frac{\pi}{4}
$$

Step 3: Estimate on the Major Arc

Goal

For $|\theta|<\theta_{0}$, ensure that

$$
\left|\arg p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta}\right|<\frac{\pi}{4}
$$

$$
\arg p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta}=k \arg p\left(r e^{i \theta}\right)-\alpha \theta
$$

Step 3: Estimate on the Major Arc

Goal

For $|\theta|<\theta_{0}$, ensure that

$$
\left|\arg p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta}\right|<\frac{\pi}{4}
$$

$$
\arg p^{k}\left(r e^{i \theta}\right) e^{-i \alpha \theta}=k \arg p\left(r e^{i \theta}\right)-\alpha \theta
$$

Since $\arg p\left(r e^{i \theta}\right)$ is an odd function in θ, its Taylor expansion is

$$
\arg p\left(r e^{i \theta}\right)=\frac{r p^{\prime}(r)}{p(r)} \cdot \theta+O\left(r \theta^{3}\right)
$$

Recall that $|\theta|<k^{1 / 30} n^{-1 / 2}$, so take r such that $r p^{\prime}(r) / p(r)=n / k$. We can verify that such an r exists and $r \sim n / k$.

Table of Contents

(1) Introduction and Methodology

(2) The Odlyzko-Richmond Theorem
(3) Proof of Odlyzko-Richmond Theorem

4 A Recent Generalization

Counterexample for Power Series

Theorem (Odlyzko-Richmond, 1982)
 If $p(z)$ is a polynomial with all positive coefficients, then $p^{k}(z)$ is log-concave for all sufficiently large k.

Does this hold for power series?

Counterexample for Power Series

Theorem (Odlyzko-Richmond, 1982)

If $p(z)$ is a polynomial with all positive coefficients, then $p^{k}(z)$ is log-concave for all sufficiently large k.

Does this hold for power series? No. Example: $p(z)=\sum_{n=0}^{\infty} z^{2^{n}}+\sum_{n=0}^{\infty} \epsilon_{n} z^{n}$, for fast decaying $\epsilon_{n}>0$.

Counterexample for Power Series

Theorem (Odlyzko-Richmond, 1982)

If $p(z)$ is a polynomial with all positive coefficients, then $p^{k}(z)$ is log-concave for all sufficiently large k.

Does this hold for power series?
No. Example: $p(z)=\sum_{n=0}^{\infty} z^{2^{n}}+\sum_{n=0}^{\infty} \epsilon_{n} z^{n}$, for fast decaying $\epsilon_{n}>0$.

Question

Can we prove sufficient condition on power series $p(z)$ for analogs of Odlyzko-Richmond to hold?

Motivation in Recent Research

Definition (Nekrasov-Okounkov Polynomials)

Let $Q_{n}(z)$ be the polynomials satisfying

$$
\sum_{n=0}^{\infty} Q_{n}(z) q^{n}=\prod_{n=0}^{\infty}\left(1-q^{n}\right)^{-z-1}
$$

An important family of polynomials in algebraic combinatorics, with connections to Young Tableaux.

Motivation in Recent Research

Definition (Nekrasov-Okounkov Polynomials)

Let $Q_{n}(z)$ be the polynomials satisfying

$$
\sum_{n=0}^{\infty} Q_{n}(z) q^{n}=\prod_{n=0}^{\infty}\left(1-q^{n}\right)^{-z-1}
$$

An important family of polynomials in algebraic combinatorics, with connections to Young Tableaux.

$$
1,1+z, 2+\frac{5}{2} z+\frac{1}{2} z^{2}, 3+\frac{29}{6} z+2 z^{2}+\frac{1}{6} z^{3}, \cdots
$$

Heim-Neuhauser's Conjecture

Conjecture(Heim-Neuhauser 2018)
 $Q_{n}(z)$ is unimodal for all n.

Heim-Neuhauser's Conjecture

Conjecture(Heim-Neuhauser 2018)

$Q_{n}(z)$ is unimodal for all n.
A lot of inequalities later...
Lemma (Hong-Z. 2020)
Let $p(z)=\sum_{n \geq 1} \sigma_{-1}(n) z^{n}$, let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.
If there exists $C>1$ such that $\left\{a_{k, n}\right\}_{n=1}^{\infty}$ is log-concave for $n \leq C^{k}$, then $Q_{n}(z)$ is unimodal for all sufficiently large n.

Reduction to Odlyzko-Richmond type result

Conjecture(Hong-Z. 2020)

Let $p(z)=\sum_{n \geq 1} \sigma_{-1}(n) z^{n}$, let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.
There exists $C>1$ such that $\left\{a_{k, n}\right\}_{n=1}^{\infty}$ is log-concave for $n \leq C^{k}$.

Reduction to Odlyzko-Richmond type result

Conjecture(Hong-Z. 2020)

Let $p(z)=\sum_{n \geq 1} \sigma_{-1}(n) z^{n}$, let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.
There exists $C>1$ such that $\left\{a_{k, n}\right\}_{n=1}^{\infty}$ is log-concave for $n \leq C^{k}$.
Numerical evidence: first n such that $a_{k, n}^{2}<a_{k, n-1} a_{k, n+1}$.

k	2	3	4	5	6	7	8	9	10	11	12	13
$n_{0}(k)$	6	21	39	73	135	251	475	917	1801	3595	7259	14787

Resolution of Conjecture

Theorem (Z. 2022)

Let $p(z)=\sum_{n} a_{n} z^{k}$ be a power series with

1) $a_{n} \geq 1$ for every n.
2) there exists $A>0, \alpha \in(0,1)$ such that

$$
0 \leq A(n+1)-\left(a_{0}+\cdots+a_{n}\right) \leq O\left((n+1)^{\alpha}\right)
$$

Let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.
There exists $C>1$ such that $\left\{a_{k, n}\right\}_{n=1}^{\infty}$ is log-concave for $n \leq C^{k}$.

Resolution of Conjecture

Theorem (Z. 2022)

Let $p(z)=\sum_{n} a_{n} z^{k}$ be a power series with

1) $a_{n} \geq 1$ for every n.
2) there exists $A>0, \alpha \in(0,1)$ such that

$$
0 \leq A(n+1)-\left(a_{0}+\cdots+a_{n}\right) \leq O\left((n+1)^{\alpha}\right)
$$

Let $a_{k, n}$ be the coefficient of z^{n} in $p^{k}(z)$.
There exists $C>1$ such that $\left\{a_{k, n}\right\}_{n=1}^{\infty}$ is log-concave for $n \leq C^{k}$.
Richmond-Odlyzko method works for such $p(z)$. Gives $n \leq C^{k^{1 / 3}}$. Additional considerations give $n \leq C^{k}$.

An Open Problem

Does there exist a combinatorial proof for Odlyzko-Richmond?

References

圊 B. Heim, M. Neuhauser, On conjectures regarding the Nekrasov-Okounkov hook length formula. (2019)

囦 L. Hong, S. Zhang, Towards Heim and Neuhauser's unimodality conjecture on the Nekrasov-Okounkov polynomials. (2021)
N. A. Nekrasov, A. Okounkov, Seiberg-Witten theory and random partitions. (2006)
A. M. Odlyzko, L. B. Richmond, On the unimodality of high convolutions of discrete distributions. (1985)
S. Zhang, Log-concavity in powers of infinite series close to $(1-z)^{-1}$. (2022)
R. R. P. Stanley, Log-Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry. (1989)

