Turán number of the linear 3-graph Crown

Chaoliang Tang

Fudan University
cltang17@fudan.edu.cn

May 27, 2022

Overview

(1) Introduction and definition
(2) Our main result
(3) Remaining Problems

Definition

Definition 1 Linear 3-graph

A linear 3-graph, also known as linear triple system, $H=(V, E)$ consists of a vertex set $V=V(G)$ and an edge set $E=E(G)$ of 3-element subsets of V, such that any two edges in E share at most one vertex.

Definition 2 Linear Turán number

For a linear 3-graph F, and a positive integer n, the linear Turán number ex (n, F) is the maximum number of edges in any F-free linear 3 -graph on n vertices.

Introduction

Theorem 1 (6,3)-theorem (Ruzsa and Szemerédi, 1976)

Let T be the linear 3-graph triangle, $\frac{n^{2}}{e^{O(\sqrt{\log n)}}} \leq e x(n, T) \leq o\left(n^{2}\right)$.
The (6,3)-theorem has a huge influence, for example, the celebrated triangle removal theorem is devised in order to find another proof of it. A recent direction is the linear Turán number of small trees. For example, the Turán number of B_{4} and P_{4} are solved by Gyárfás, Ruszinkó and Sárközy.

Figure: B_{4} and P_{4}

Introduction

Theorem 2 (Gyárfás, Ruszinkó and Sárközy, 2021)

Let C_{13}, also called crown, be the linear 3-graph on 9 vertices $\{a, b, c, d, e, f, g, h, i\}$ with edges $E=\{\{a, b, c\},\{a, d, e\},\{b, f, g\},\{c, h, i\}\}$. Then $6\left\lfloor\frac{n-3}{4}\right\rfloor \leq \operatorname{ex}\left(n, C_{13}\right) \leq 2 n$.

Fletcher imporve the upper bound.

Theorem 3 (Fletcher, 2021)

$\operatorname{ex}\left(n, C_{13}\right) \leq \frac{5}{3} n$.

Figure: Crown

Main Theorem

Theorem 4 (Our first main theorem)

Let G be any crown-free linear 3-graph G on n vertices. Then its number of edges satisfies

$$
|E(G)| \leq \frac{3(n-s)}{2}
$$

where s is the number of vertices in G with degree at least 6 .

Theorem 5 (Our second main theorem)

Let G be any crown-free linear 3-graph G on n vertices, and let s be the number of vertices in G with degree at least 6 . If $s \leq 2$, then the number of edges satisfies

$$
|E(G)| \leq \frac{10(n-s)}{7}
$$

Main Theorem

Corollary 1

If $n \geq 63$, then

$$
\operatorname{ex}\left(n, C_{13}\right) \leq \frac{3(n-3)}{2}
$$

Proof.

Proof of Theorem 4

Definition 3

Let G be a linear 3-graph, $\forall e=\{x, y, z\} \in E(G)$, let $D(e)$ denote the degree vector $\langle d(x), d(y), d(z)\rangle$ of e with $d(x) \geq d(y) \geq d(z)$. Furthermore, define a partial order on these vector $D(e) \geq D(f)$ if all coordinates of e is larger than or equal to f.

Definition 4

We call vertex v a large (degree) vertex if $d(v) \geq 6$, otherwise we call it a small (degree) vertex.

Proof of Theorem 4

Suppose G is the minimal crowm-free linear 3-graph such that G has greater than $3(n-s) / 2$ edges. We use discharge method to find contradiction.
Give every small degree vertex charge 1, and uniformly distribute the charge on v to edges incident with it. So the total edge charge is equal to the vertex's, that is

$$
\begin{aligned}
\chi(v) & =1 \\
\chi(e) & =\sum_{v \in e} \frac{\chi(v)}{d(v)} \\
\sum_{e \in E(G)} \chi(e) & =\sum_{e \in E(G)} \sum_{v \in e} \frac{\chi(v)}{d(v)}=\sum_{v \in V(G)} \sum_{e \ni v} \frac{\chi(v)}{d(v)} \\
& =\sum_{v \in V(G)} \chi(v)=n-s .
\end{aligned}
$$

Proof of Theorem 4

Since $\frac{2}{3}|E(G)|>n-s$, by Pigeonhole Principle, there exists one edge $e_{0}=\left\{x_{0}, y_{0}, z_{0}\right\}$ such that

$$
\begin{equation*}
\chi\left(e_{0}\right)=\frac{\chi\left(x_{0}\right)}{d\left(x_{0}\right)}+\frac{\chi\left(y_{0}\right)}{d\left(y_{0}\right)}+\frac{\chi\left(z_{0}\right)}{d\left(z_{0}\right)}<\frac{2}{3} . \tag{1}
\end{equation*}
$$

WLOG, let $D\left(e_{0}\right)=\left\langle d\left(z_{0}\right), d\left(y_{0}\right), d\left(x_{0}\right)\right\rangle$.
Claim:

$$
\begin{equation*}
D\left(e_{0}\right) \geq\langle 5,5,4\rangle \tag{2}
\end{equation*}
$$

Proof of Theorem 4

proof of claim:

Proof of Theorem 4

Lemma 1

Let G be a crown-free graph and $e=\{x, y, z\}$ satisfy $D(e) \geq\langle 5,5,4\rangle$. Then, the vertex set of all vertices sharing an edge with $\{x, y, z\}$,

$$
S=\bigcup_{f \in E(G), f \cap\{x, y, z\} \neq \emptyset} f,
$$

contains exactly 11 vertices and all vertices in S have degree at most 5 . The set of edges that contains at least one vertex in S,

$$
E_{S}=\{f: f \in E(G), f \cap S \neq \emptyset\},
$$

contains at most 13 edges, and all elements of E_{S} are subsets of S. In other words, the subgraph $G[S]$ is a connected component of G.

Proof of Theorem 4

Let $G-S$ be the graph obtained by deleting the vertices S and the edges in E_{S}.
By the lemma, the graph $G-S$ has $n^{\prime}=n-11$ vertices and at least $|E(G)|-13$ edges. Furthermore, the number of vertices in $G-S$ of degree at least 6 is exactly s.
Therefore, we conclude that

$$
|E(G-S)| \geq|E(G)|-13>\frac{3(n-s)}{2}-13>\frac{3\left(n^{\prime}-s\right)}{2}
$$

contradicting the assumption that G is the smallest counterexample. So we have shown Theorem $4 . \square$

Proof of Theorem 5

Remark: The proof of Theorem 5 is similar to Theorem 4, the only difference is that we use new discharging method to the vertices with degree 3 since there are at most 2 large vetices.

Proof of Theorem 5

Suppose G is the minimal crowm-free linear 3-graph such that G has greater than $10(n-s) / 7$ edges. Also use discharge method to find contradiction.
Give every small degree vertex charge 1, and let

$$
\begin{aligned}
\chi(v, e) & = \begin{cases}1, & \text { if } d(v)<6 \text { and } d(v) \neq 3, \\
1.05, & \text { if } d(v)=3 \text { and } \exists u \in e \text { s.t. } d(u) \geq 6, \\
0.9, & \text { if } d(v)=3 \text { and } \exists u \in e \text { s.t. } d(u) \geq 6 .\end{cases} \\
\chi(e) & =\sum_{v \in e} \frac{\chi(v, e)}{d(v)} .
\end{aligned}
$$

Similarly, there exists one edge $e_{0}=\left\{x_{0}, y_{0}, z_{0}\right\}$ such that

$$
\chi\left(e_{0}\right)=\frac{\chi\left(x_{0}\right)}{d\left(x_{0}\right)}+\frac{\chi\left(y_{0}\right)}{d\left(y_{0}\right)}+\frac{\chi\left(z_{0}\right)}{d\left(z_{0}\right)}<\frac{7}{10} .
$$

Proof of Theorem 5

Claim:

$$
D\left(e_{0}\right) \geq\langle 5,5,4\rangle
$$

proof of claim:

Proof of Theorem 5

Same as Theorem 4, using Lemma 1 to obtain

$$
|E(G-S)| \geq|E(G)|-13>\frac{3(n-s)}{2}-13>\frac{3\left(n^{\prime}-s\right)}{2}
$$

which is contradiction. \square

Proof of Lemma 1

First we observe the elements of S. For any $p \in\{x, y, z\}$, Define

$$
\begin{aligned}
& G(p)=\{q: q \in V(G), q p \quad\} \backslash\{x, y, z\}, \\
& E(p)=\{f: f \in E(G), f p \quad f \neq e\},
\end{aligned}
$$

We can observe that $d(z)=d(y)=5$, so $|G(z)|=|G(y)|=8,|G(x)| \geq 6$, $|E(z)|=|E(y)|=4,|E(x)| \geq 3$.
Claim:

$$
\begin{equation*}
G(y) \subset G(z) \tag{3}
\end{equation*}
$$

Proof of Lemma 1

proof of claim:

Proof of Lemma 1

Similarly, $G(z) \subset G(y), G(x) \subset G(z)$. So $S \backslash\{x, y, z\}=G(z)=G(y) \supset G(x)$. Furtherly define F as the set of all edges in $E(G)$ that contains one of the vertices in S, but is disjoint from $\{x, y, z\}$, but is disjoint from $\{x, y, z\}$, that is

$$
F=\{f: f \in E(G), f \cap G(z) \neq \emptyset f \cap\{x, y, z\}=\emptyset\} .
$$

Now the remaining proof suffices to show that F must be empty. We denote the vertices in $G(z)$ by a, b, c, d, r, s, p, q, such that $\{z, a, b\},\{z, c, d\},\{z, r, s\},\{z, p, q\}$ are edges in $E(G)$. Now we follow three steps to prove the statement.

Proof of Lemma 1

Step 1 , we construct a auxillary bipartitie graph $H=\left(X_{H}, Y_{H}, E_{H}\right)$, where

$$
X_{H}=\left\{e_{i} \mid y \in e_{i}\right\}, Y_{H}=\left\{e_{j} \mid z \in e_{j}\right\}, E_{H}=\left\{\left\{e_{i}, e_{j}\right\} \mid e_{i} \cap e_{j} \neq \emptyset\right\}
$$

H is a 2-regular bipartite graph with order 8 . Thus, $H=C_{8}$ or $C_{4} \biguplus C_{4}$.
Claim:

$$
\begin{equation*}
H \text { contains a } K_{2,2} . \tag{4}
\end{equation*}
$$

Proof of Lemma 1

proof of claim:

Proof of Lemma 1

Thus $H=C_{4} \biguplus C_{4}$. Step 2, We claim that there exists no edge containing x that contains exactly one vertex in V_{1} and another one in V_{2}.

proof of claim:

Proof of Lemma 1

Step 3, let f be any element of F. We do the discussion about elements in f. By symmetry we can let $a \in f$. Then we can see $b, c \notin f$.
Firstly, we claim that f cannot contain exactly one element a of S.
Secondly, we claim that $d \notin f$.
Therefore, we can assume $r \in f$ by symmetry.

proof

Remaining Problems

We introduce the (6,3)-theorem in the first place. In fact, the (6,3)-family only have one elements, while the (7-4)-family have three elements. A more generally conjecture is shown below.

Conjecture 1

If a linear triple system on n vertices does not contain any member of $(k+3, k)$-family then it has $o\left(n^{2}\right)$ triples.

The special case of conjecture 1 when $k=4$ is also a good question remain to be solved.
For the time being, the following theorem is the best result.

Theorem 6(Gyárfás, Sárközy, 2020)

If a linear triple system on n vertices does not contain any member of $\left(k+2+\left\lfloor\log _{2} k\right\rfloor, k\right)$-family then it has $o\left(n^{2}\right)$ triples.

Remaining Problems

On the other hand, although our main theorem has completed the determination of linear Turán number for 3 -trees with at most 4 edges, there are also other Turán number for 3 -trees remain to be determined.

- Question: What is the linear Turán number of k-edge linear path P_{k} ? For the time being, we have the following theorem, but it is said to be 'far from best possible' by the auther.
Theorem 7 (Gyárfás, Ruszinkó, Sárközy, 2021)
$\mathrm{ex}\left(n, P_{k}\right) \leq 1.5 k n$.

In the case of P_{4}, ex $\left(n, P_{4}\right) \leq \frac{4}{3} n$, with equality only for the disjoin union of affine plane of order 3 .

The End

