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Overview

1 Introduction and definition

2 Our main result

3 Remaining Problems
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Definition

Definition 1 Linear 3-graph
A linear 3-graph, also known as linear triple system, H = (V,E) consists
of a vertex set V = V(G) and an edge set E = E(G) of 3-element subsets
of V, such that any two edges in E share at most one vertex.

Definition 2 Linear Turán number
For a linear 3-graph F, and a positive integer n, the linear Turán number
ex(n,F) is the maximum number of edges in any F-free linear 3-graph on n
vertices.
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Introduction

Theorem 1 (6,3)-theorem (Ruzsa and Szemerédi, 1976)
Let T be the linear 3-graph triangle, n2

eO(
√
log n) ≤ ex(n,T) ≤ o(n2).

The (6,3)-theorem has a huge influence, for example, the celebrated
triangle removal theorem is devised in order to find another proof of it.
A recent direction is the linear Turán number of small trees. For example,
the Turán number of B4 and P4 are solved by Gyárfás, Ruszinkó and
Sárközy.

Figure: B4 and P4

Chaoliang Tang (FDU) Turán number of the linear 3-graph Crown May 27, 2022 4 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

Theorem 2 (Gyárfás, Ruszinkó and Sárközy, 2021)
Let C13, also called crown, be the linear 3-graph on 9 vertices
{a, b, c, d, e, f, g, h, i} with edges E = {{a, b, c}, {a, d, e}, {b, f, g}, {c, h, i}}.
Then 6⌊n−3

4 ⌋ ≤ ex(n,C13) ≤ 2n.

Fletcher imporve the upper bound.

Theorem 3 (Fletcher, 2021)
ex(n,C13) ≤ 5

3n.

Figure: Crown
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Main Theorem

Theorem 4 (Our first main theorem)
Let G be any crown-free linear 3-graph G on n vertices. Then its number
of edges satisfies

|E(G)| ≤ 3(n − s)
2 .

where s is the number of vertices in G with degree at least 6.

Theorem 5 (Our second main theorem)
Let G be any crown-free linear 3-graph G on n vertices, and let s be the
number of vertices in G with degree at least 6. If s ≤ 2, then the number
of edges satisfies

|E(G)| ≤ 10(n − s)
7 .
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Main Theorem

Corollary 1
If n ≥ 63, then

ex(n,C13) ≤
3(n − 3)

2 .

Proof.
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Proof of Theorem 4

Definition 3
Let G be a linear 3-graph, ∀e = {x, y, z} ∈ E(G), let D(e) denote the
degree vector ⟨d(x), d(y), d(z)⟩ of e with d(x) ≥ d(y) ≥ d(z).
Furthermore, define a partial order on these vector D(e) ≥ D(f) if all
coordinates of e is larger than or equal to f.

Definition 4
We call vertex v a large (degree) vertex if d(v) ≥ 6, otherwise we call it a
small (degree) vertex.
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Proof of Theorem 4
Suppose G is the minimal crowm-free linear 3-graph such that G has
greater than 3(n − s)/2 edges. We use discharge method to find
contradiction.
Give every small degree vertex charge 1, and uniformly distribute the
charge on v to edges incident with it. So the total edge charge is equal to
the vertex’s, that is

χ(v) =1,

χ(e) =
∑
v∈e

χ(v)
d(v) .∑

e∈E(G)

χ(e) =
∑

e∈E(G)

∑
v∈e

χ(v)
d(v) =

∑
v∈V(G)

∑
e∋v

χ(v)
d(v)

=
∑

v∈V(G)

χ(v) = n − s.
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Proof of Theorem 4

Since 2
3 |E(G)| > n − s, by Pigeonhole Principle, there exists one edge

e0 = {x0, y0, z0} such that

χ(e0) =
χ(x0)

d(x0)
+

χ(y0)

d(y0)
+

χ(z0)

d(z0)
<

2
3 . (1)

WLOG, let D(e0) = ⟨d(z0), d(y0), d(x0)⟩.
Claim:

D(e0) ≥ ⟨5, 5, 4⟩. (2)
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Proof of Theorem 4

proof of claim:
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Proof of Theorem 4

Lemma 1
Let G be a crown-free graph and e = {x, y, z} satisfy D(e) ≥ ⟨5, 5, 4⟩.
Then, the vertex set of all vertices sharing an edge with {x, y, z},

S =
∪

f∈E(G),f∩{x,y,z}̸=∅

f,

contains exactly 11 vertices and all vertices in S have degree at most 5.
The set of edges that contains at least one vertex in S,

ES = {f : f ∈ E(G), f ∩ S ̸= ∅},

contains at most 13 edges, and all elements of ES are subsets of S.
In other words, the subgraph G[S] is a connected component of G.
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Proof of Theorem 4

Let G − S be the graph obtained by deleting the vertices S and the edges
in ES.
By the lemma, the graph G − S has n′ = n − 11 vertices and at least
|E(G)| − 13 edges. Furthermore, the number of vertices in G − S of degree
at least 6 is exactly s.
Therefore, we conclude that

|E(G − S)| ≥ |E(G)| − 13 >
3(n − s)

2 − 13 >
3(n′ − s)

2 ,

contradicting the assumption that G is the smallest counterexample.
So we have shown Theorem 4.□
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Proof of Theorem 5

Remark: The proof of Theorem 5 is similar to Theorem 4, the only
difference is that we use new discharging method to the vertices with
degree 3 since there are at most 2 large vetices.
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Proof of Theorem 5

Suppose G is the minimal crowm-free linear 3-graph such that G has
greater than 10(n − s)/7 edges. Also use discharge method to find
contradiction.
Give every small degree vertex charge 1, and let

χ(v, e) =


1, if d(v) < 6 and d(v) ̸= 3,
1.05, if d(v) = 3 and ∃u ∈ e s.t. d(u) ≥ 6,
0.9, if d(v) = 3 and ∄u ∈ e s.t. d(u) ≥ 6.

χ(e) =
∑
v∈e

χ(v, e)
d(v) .

Similarly, there exists one edge e0 = {x0, y0, z0} such that

χ(e0) =
χ(x0)

d(x0)
+

χ(y0)

d(y0)
+

χ(z0)

d(z0)
<

7
10 .
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Proof of Theorem 5
Claim:

D(e0) ≥ ⟨5, 5, 4⟩.

proof of claim:
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Proof of Theorem 5

Same as Theorem 4, using Lemma 1 to obtain

|E(G − S)| ≥ |E(G)| − 13 >
3(n − s)

2 − 13 >
3(n′ − s)

2 ,

which is contradiction.□
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Proof of Lemma 1

First we observe the elements of S. For any p ∈ {x, y, z}, Define

G(p) = {q : q ∈ V(G), q�p��}\{x, y, z},
E(p) = {f : f ∈ E(G), f�p����f ̸= e},

We can observe that d(z) = d(y) = 5, so|G(z)| = |G(y)| = 8, |G(x)| ≥ 6,
|E(z)| = |E(y)| = 4, |E(x)| ≥ 3.
Claim:

G(y) ⊂ G(z). (3)
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Proof of Lemma 1

proof of claim:
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Proof of Lemma 1

Similarly, G(z) ⊂ G(y),G(x) ⊂ G(z). So S\{x, y, z} = G(z) = G(y) ⊃ G(x).
Furtherly define F as the set of all edges in E(G) that contains one of the
vertices in S, but is disjoint from {x, y, z}, but is disjoint from {x, y, z},
that is

F = {f : f ∈ E(G), f ∩ G(z) ̸= ∅�f ∩ {x, y, z} = ∅}.

Now the remaining proof suffices to show that F must be empty.
We denote the vertices in G(z) by a, b, c, d, r, s, p, q, such that
{z, a, b}, {z, c, d}, {z, r, s}, {z, p, q} are edges in E(G). Now we follow three
steps to prove the statement.
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Proof of Lemma 1

Step 1, we construct a auxillary bipartitie graph H = (XH,YH,EH), where

XH = {ei|y ∈ ei},YH = {ej|z ∈ ej},EH = {{ei, ej}|ei ∩ ej ̸= ∅}

.
H is a 2-regular bipartite graph with order 8. Thus, H = C8 or C4

⊎
C4.

Claim:
H contains a K2,2. (4)
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Proof of Lemma 1

proof of claim:
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Proof of Lemma 1

Thus H = C4
⊎

C4. Step 2, We claim that there exists no edge containing
x that contains exactly one vertex in V1 and another one in V2.

proof of claim:
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Proof of Lemma 1
Step 3, let f be any element of F. We do the discussion about elements in
f. By symmetry we can let a ∈ f. Then we can see b, c /∈ f .
Firstly, we claim that f cannot contain exactly one element a of S.
Secondly, we claim that d /∈ f.
Therefore, we can assume r ∈ f by symmetry.

proof
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Remaining Problems

We introduce the (6,3)-theorem in the first place. In fact, the (6,3)-family
only have one elements, while the (7-4)-family have three elements. A
more generally conjecture is shown below.

Conjecture 1
If a linear triple system on n vertices does not contain any member of
(k+3, k)-family then it has o(n2) triples.

The special case of conjecture 1 when k = 4 is also a good question
remain to be solved.
For the time being, the following theorem is the best result.

Theorem 6(Gyárfás, Sárközy, 2020)
If a linear triple system on n vertices does not contain any member of
(k+2+⌊log2 k⌋, k)-family then it has o(n2) triples.
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Remaining Problems

On the other hand, although our main theorem has completed the
determination of linear Turán number for 3-trees with at most 4 edges,
there are also other Turán number for 3-trees remain to be determined.

Question : What is the linear Turán number of k-edge linear path Pk?
For the time being, we have the following theorem, but it is said to be ’far
from best possible’ by the auther.

Theorem 7(Gyárfás, Ruszinkó, Sárközy, 2021)
ex(n,Pk) ≤ 1.5kn.

In the case of P4, ex(n,P4) ≤ 4
3n, with equality only for the disjoin union

of affine plane of order 3.
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The End
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