ILKYOO CHOI

Hankuk University of Foreign Studies (HUFS)

Joint work with

Eun-Kyung Cho

Boram Park

Hyemin Kwon

 $\chi(G) \leq \Delta(G) + 1$

The square G^2 of a graph G is formed from G by adding edges uv where u and v have distance 2 in G.

 $\chi(G) \leq \Delta(G) + 1 \leq \chi(G^2) \leq \Delta(G^2) + 1 \leq \Delta(G)^2 + 1$

The square G^2 of a graph G is formed from G by adding edges uv where u and v have distance 2 in G.

 $\chi(G) \leq \Delta(G) + 1 \leq \chi(G^2) \leq \Delta(G^2) + 1 \leq \Delta(G)^2 + 1$

square coloring: each neighborhood is rainbow

The chromatic number $\chi(G)$ is the min k where G is k-colorable.

The square G^2 of a graph G is formed from G by adding edges uv where u and v have distance 2 in G.

 $\chi(G) \leq \Delta(G) + 1 \leq \chi(G^2) \leq \Delta(G^2) + 1 \leq \Delta(G)^2 + 1$

square coloring: each neighborhood is rainbow proper conflict-free coloring: each neighborhood has a unique color odd coloring: each neighborhood has an odd color

The chromatic number $\chi(G)$ is the min k where G is k-colorable.

The square G^2 of a graph G is formed from G by adding edges uv where u and v have distance 2 in G.

 $\chi(G) \leq \Delta(G) + 1 \leq \chi(G^2) \leq \Delta(G^2) + 1 \leq \Delta(G)^2 + 1$

square coloring: each neighborhood is rainbow proper conflict-free coloring: each neighborhood has a unique color odd coloring: each neighborhood has an odd color

 $\chi(G) \leq \chi_{\mathrm{odd}}(G) \leq \chi_{\mathrm{pcf}}(G) \leq \chi(G^2)$

The chromatic number $\chi(G)$ is the min k where G is k-colorable.

The square G^2 of a graph G is formed from G by adding edges uv where u and v have distance 2 in G.

 $\chi(G) \leq \Delta(G) + 1 \leq \chi(G^2) \leq \Delta(G^2) + 1 \leq \Delta(G)^2 + 1$

square coloring: each neighborhood is rainbow proper conflict-free coloring: each neighborhood has a unique color odd coloring: each neighborhood has an odd color

 $\chi(G) \le \chi_{\text{odd}}(G) \le \chi_{\text{pcf}}(G) \le \chi(G^2)$ $\chi(K_c^*) = 2 \le c = \chi_{\text{odd}}(K_c^*) = \chi_{\text{pcf}}(K_c^*)$

 K_c^* : graph obtained by subdividing every edge of K_c exactly once.

The chromatic number $\chi(G)$ is the min k where G is k-colorable.

The square G^2 of a graph G is formed from G by adding edges uv where u and v have distance 2 in G.

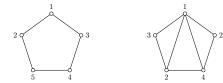
 $\chi(G) \leq \Delta(G) + 1 \leq \chi(G^2) \leq \Delta(G^2) + 1 \leq \Delta(G)^2 + 1$

square coloring: each neighborhood is rainbow proper conflict-free coloring: each neighborhood has a unique color odd coloring: each neighborhood has an odd color

$$\chi(G) \le \chi_{\text{odd}}(G) \le \chi_{\text{pcf}}(G) \le \chi(G^2)$$
$$\chi(K_c^*) = 2 \le c = \chi_{\text{odd}}(K_c^*) = \chi_{\text{pcf}}(K_c^*)$$

 K_c^* : graph obtained by subdividing every edge of K_c exactly once.

not monotone:



12.27 Petruševski, Škrekovski:

"Colorings with neighborhood parity condition"

12.27 Petruševski. Škrekovski: "Colorings with neighborhood parity condition" 01.05 Cranston: "Odd Colorings of Sparse Graphs" 01.10 Caro, Petruševski, Škrekovski; "Remarks on odd colorings of graphs" 01.28 Petr, Portier: "The odd chromatic number of a planar graph is at most 8" 02.05 (Cranston,) Lafferty, Song: "A Note on Odd Colorings of 1-Planar Graphs" 02.05 Fabrici, Lužar, Rindošová, Soták: "Proper conflict-free and unique-maximum colorings of planar graphs w.r.t neighborhoods" 02.23 Cho, C., Kwon, Park: "Odd coloring of sparse graphs and planar graphs" 02.25 Dujmović, Morin, Odak: "Odd Colourings of Graph Products" 03.02 Caro, Petruševski, Škrekovski: "Remarks on proper conflict-free colorings of graphs" 03.19 Hickingbotham: "Odd colouring, conflict-free colouring and strong colouring number" 03.23 Liu: "Proper conflict-free list-coloring, subdivisions, and layered treewidth" 03.30 Cho, C., Kwon, Park: "Proper conflict-free coloring of sparse graphs" 05.09 Metrebian: "Odd colouring on the torus" 05.19 Qi, Zhang: "Odd coloring of two subclasses of planar graphs" 06.12 Tian, Yin: "The odd chromatic number of a toroidal graph is at most 9" 06.13 Tian. Yin: "Every toroidal graph without 3-cycles is odd 7-colorable" 06.15 Tian. Yin: "Every toroidal graphs without adjacent triangles is odd 8-colorable" 06.28 Liu, Wang, Yu: "1-planar graphs are odd 13-colorable" 10.06+ Cho, C., Kwon, Park: "Odd/proper conflict-free coloring graphs w bounded Δ "

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski: - if G is outerplanar, then $\chi_{odd}(G) \leq 5$.

Tight for 5-cycle.

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

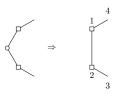
Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski: - if G is outerplanar, then $\chi_{odd}(G) \leq 5$.

Tight for 5-cycle.



If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski: - if G is outerplanar, then $\chi_{odd}(G) \leq 5$.

Tight for 5-cycle.

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{odd}(G) \leq 5$.

Tight for 5-cycle.

- if G is planar and even order, then $\chi_{odd}(G) \leq 8$.

partitionable into four odd forests

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{\rm odd}(G) \leq 5$.

Tight for 5-cycle.

- if G is planar and even order, then $\chi_{\text{odd}}(G) \leq 8$.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{\text{odd}}(G) \leq 8$.

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{odd}(G) \leq 5$.

Tight for 5-cycle.

- if G is planar and even order, then $\chi_{odd}(G) \leq 8$.

partitionable into four odd forests – if G is planar and has a vertex of degree 2 or odd, then $\chi_{odd}(G) \leq 8$.

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{\rm odd}(G) \leq 5$.

Tight for 5-cycle.

- if G is planar and even order, then $\chi_{\text{odd}}(G) \leq 8$.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{\text{odd}}(G) \leq 8$.

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

– if G is outerplanar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

- if G is planar and even order, then $\chi_{\text{odd}}(G) \leq 8$.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{odd}(G) \le 8$. for discharging, only left to deal with vertex of degree 4

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{odd}(G) \leq 5$. Tight for 5-cycle.
- if G is planar and even order, then $\chi_{\text{odd}}(G) \leq 8$.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{odd}(G) \le 8$. for discharging, only left to deal with vertex of degree 4

Theorem (2022.01+ Petr, Portier)

If G is planar, then $\chi_{\text{odd}}(G) \leq 8$.

-odd coloring

— planar graphs

Conjecture (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

- if G is planar and even order, then $\chi_{\text{odd}}(G) \leq 8$.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{odd}(G) \le 8$. for discharging, only left to deal with vertex of degree 4

-odd coloring

— planar graphs

Conjecture (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{odd}(G) \leq 5$.

Tight for 5-cycle.

- if G is planar and even order, then $\chi_{\text{odd}}(G) \leq 8$.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{odd}(G) \leq 8$. for discharging, only left to deal with vertex of degree 4
- $-\chi_{\text{odd}}(G) \leq 2\Delta(G)$, unless G is 5-cycle.

-odd coloring

— planar graphs

Conjecture (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{\text{odd}}(G) \leq 5$. Tight

- if G is planar and even order, then $\chi_{odd}(G) \leq 8$.

Tight for 5-cycle.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{odd}(G) \leq 8$. for discharging, only left to deal with vertex of degree 4
- $-\chi_{\text{odd}}(G) \leq 2\Delta(G)$, unless G is 5-cycle.

Conjecture (2022.01+ Caro, Petruševski, Škrekovski)

If G has $\Delta(G) \geq 3$, then $\chi_{\text{odd}}(G) \leq \Delta(G) + 1$.

-odd coloring

– planar graphs

Conjecture (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Theorem (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 9$.

2022.01+ Caro, Petruševski, Škrekovski:

- if G is outerplanar, then $\chi_{odd}(G) \leq 5$. Tight for
- if G is planar and even order, then $\chi_{odd}(G) \leq 8$.

Tight for 5-cycle.

partitionable into four odd forests

- if G is planar and has a vertex of degree 2 or odd, then $\chi_{odd}(G) \le 8$. for discharging, only left to deal with vertex of degree 4
- $-\chi_{\text{odd}}(G) \leq 2\Delta(G)$, unless G is 5-cycle.

Conjecture (2022.01+ Caro, Petruševski, Škrekovski)

If G has $\Delta(G) \geq 3$, then $\chi_{\text{odd}}(G) \leq \Delta(G) + 1$.

True for $\Delta(G) = 3$. $\Rightarrow \qquad 3 \qquad 2 \qquad 1$

└─ sparse graphs

maximum average degree: mad(G) = max_{H⊆G}
$$\frac{2|E(H)|}{|V(H)|}$$

└─ odd coloring

sparse graphs

maximum average degree:
$$\operatorname{mad}(G) = \operatorname{max}_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$$

 $c \in \{1,2\}$: if $\operatorname{mad}(G) \leq c - 1$, then $\chi_{\operatorname{odd}}(G) \leq c$.
 $c \in \{3,4\}$: if $\operatorname{mad}(G) < 2$, then $\chi_{\operatorname{odd}}(G) \leq 3 \leq c$.

Tight for P_2, P_3 . Tight for C_5 .

-odd coloring

- sparse graphs

maximum average degree:
$$mad(G) = max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$$

 $c \in \{1, 2\}$: if $mad(G) \leq c - 1$, then $\chi_{odd}(G) \leq c$.
 $c \in \{3, 4\}$: if $mad(G) < 2$, then $\chi_{odd}(G) \leq 3 \leq c$.

Conjecture (2022.01+ Cranston)

 $c \geq 4$: if G has $mad(G) < mad(\mathcal{K}^*_{c+1})$, then $\chi_{odd}(G) \leq c$.

Theorem (2022.01+ Cranston)

$$\begin{array}{ll} c \geq 4: & \text{if } G \text{ has } \operatorname{mad}(G) < \operatorname{mad}(K_{c+1}^*), \text{ then } \chi_{\operatorname{odd}}(G) \leq c+3. \\ c \in \{5, 6\}: & \text{if } G \text{ has } \operatorname{mad}(G) \leq \operatorname{mad}(K_{c+1}^*), \text{ then } \chi_{\operatorname{odd}}(G) \leq c, \\ & unless \ K_{c+1}^* \subseteq G \end{array}$$

Tight for P_2, P_3 . Tight for C_5 .

- odd coloring

- sparse graphs

maximum average degree: $mad(G) = max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$ $c \in \{1, 2\}$: if $mad(G) \leq c - 1$, then $\chi_{odd}(G) \leq c$. $c \in \{3, 4\}$: if mad(G) < 2, then $\chi_{odd}(G) \leq 3 \leq c$.

Conjecture (2022.01+ Cranston)

 $c \geq 4$: if G has mad(G) < mad(\mathcal{K}^*_{c+1}), then $\chi_{\mathrm{odd}}(G) \leq c$.

Theorem (2022.01+ Cranston)

$$\begin{array}{ll} c \geq 4: & \text{if } G \text{ has } \operatorname{mad}(G) < \operatorname{mad}(K^*_{c+1}), \text{ then } \chi_{\operatorname{odd}}(G) \leq c+3.\\ c \in \{5,6\}: \text{ if } G \text{ has } \operatorname{mad}(G) \leq \operatorname{mad}(K^*_{c+1}), \text{ then } \chi_{\operatorname{odd}}(G) \leq c,\\ & unless \ K^*_{c+1} \subseteq G \end{array}$$

c = 4: Conj. is FALSE!

 $\begin{array}{l} \mathsf{mad}(H_k) = \frac{10k}{4k+1} \leq \frac{8}{3} = \mathsf{mad}(K_4^*) \text{ for all } k. \\ \chi_{\mathrm{odd}}(H_k) > 4. \qquad C_5 \subseteq H_k \text{ and } C_5 \text{ is } H_1. \end{array}$

Ti

└─odd coloring

sparse graphs

maximum average degree: $mad(G) = max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$ $c \in \{1, 2\}$: if $mad(G) \leq c - 1$, then $\chi_{odd}(G) \leq c$. $c \in \{3, 4\}$: if mad(G) < 2, then $\chi_{odd}(G) \leq 3 \leq c$.

Conjecture (2022.01+ Cranston)

 $c \geq 4$: if G has $mad(G) < mad(\mathcal{K}^*_{c+1})$, then $\chi_{odd}(G) \leq c$.

Theorem (2022.01+ Cranston)

$$\begin{array}{ll} c \geq 4: & \text{if } G \text{ has } \operatorname{mad}(G) < \operatorname{mad}(K^*_{c+1}), \text{ then } \chi_{\operatorname{odd}}(G) \leq c+3. \\ c \in \{5,6\}: \text{ if } G \text{ has } \operatorname{mad}(G) \leq \operatorname{mad}(K^*_{c+1}), \text{ then } \chi_{\operatorname{odd}}(G) \leq c, \\ & unless \ K^*_{c+1} \subseteq G \end{array}$$

Ti

c = 4: Conj. is FALSE! $mad(H_k) = \frac{10k}{4k+1} \le \frac{8}{3} = mad(K_4^*) \text{ for all } k.$ $\chi_{odd}(H_k) > 4. \qquad C_5 \subseteq H_k \text{ and } C_5 \text{ is } H_1.$

Theorem (2022.02+ Cho, C., Kwon, Park)

 $c \geq 7$: if G has mad(G) $\leq mad(K_{c+1}^*)$, then $\chi_{odd}(G) \leq c$,

unless $K_{c+1}^* \subseteq G$. c = 4: if G has mad(G) < $\frac{22}{9}$ and no induced 5-cycle, then $\chi_{odd}(G) \leq 4$.

- odd colo<u>ring</u>

sparse graphs

Natural corollaries to planar graphs with girth restrictions.

-odd coloring

sparse graphs

Natural corollaries to planar graphs with girth restrictions.

Corollary (2022.01+ Cranston, 2022.02+ Cho, C., Kwon, Park)

 $c \ge 5$: if G is planar with girth $\ge \frac{4c}{c-2}$, then $\chi_{odd}(G) \le c$. c = 4: if G is planar with girth ≥ 11 , then $\chi_{odd}(G) \le 4$.

Corollary implies

planar with girth ≥ 5 has $\chi_{odd}(G) \leq 10$ planar with girth ≥ 6 has $\chi_{odd}(G) \leq 6$ planar with girth ≥ 7 has $\chi_{odd}(G) \leq 5$

-odd coloring

sparse graphs

Natural corollaries to planar graphs with girth restrictions.

Corollary (2022.01+ Cranston, 2022.02+ Cho, C., Kwon, Park)

 $c \ge 5$: if G is planar with girth $\ge \frac{4c}{c-2}$, then $\chi_{odd}(G) \le c$. c = 4: if G is planar with girth ≥ 11 , then $\chi_{odd}(G) \le 4$.

Corollary implies

planar with girth ≥ 5 has $\chi_{\text{odd}}(G) \leq 10$ planar with girth ≥ 6 has $\chi_{\text{odd}}(G) \leq 6$ planar with girth ≥ 7 has $\chi_{\text{odd}}(G) \leq 5$

Theorem (2022.02+ Cho, C., Kwon, Park)

If G is planar with girth ≥ 5 , then $\chi_{\text{odd}}(G) \leq 6$.

-odd coloring

sparse graphs

Natural corollaries to planar graphs with girth restrictions.

Corollary (2022.01+ Cranston, 2022.02+ Cho, C., Kwon, Park)

 $c \ge 5$: if G is planar with girth $\ge \frac{4c}{c-2}$, then $\chi_{odd}(G) \le c$. c = 4: if G is planar with girth ≥ 11 , then $\chi_{odd}(G) \le 4$.

Corollary implies

planar with girth ≥ 5 has $\chi_{\text{odd}}(G) \leq 10$ planar with girth ≥ 6 has $\chi_{\text{odd}}(G) \leq 6$ planar with girth ≥ 7 has $\chi_{\text{odd}}(G) \leq 5$

Theorem (2022.02+ Cho, C., Kwon, Park)

If G is planar with girth ≥ 5 , then $\chi_{\text{odd}}(G) \leq 6$.

Theorem (2022.06+ Tian, Yin)

If G is planar with girth \geq 4, then $\chi_{\text{odd}}(G) \leq$ 7.

-odd coloring

sparse graphs

Natural corollaries to planar graphs with girth restrictions.

Corollary (2022.01+ Cranston, 2022.02+ Cho, C., Kwon, Park)

 $c \ge 5$: if G is planar with girth $\ge \frac{4c}{c-2}$, then $\chi_{odd}(G) \le c$. c = 4: if G is planar with girth ≥ 11 , then $\chi_{odd}(G) \le 4$.

Corollary implies

planar with girth ≥ 5 has $\chi_{odd}(G) \leq 10$ planar with girth ≥ 6 has $\chi_{odd}(G) \leq 6$ planar with girth ≥ 7 has $\chi_{odd}(G) \leq 5$

Theorem (2022.02+ Cho, C., Kwon, Park)

If G is planar with girth ≥ 5 , then $\chi_{\text{odd}}(G) \leq 6$.

Theorem (2022.06+ Tian, Yin)

If G is planar with girth \geq 4, then $\chi_{\text{odd}}(G) \leq$ 7.

Remark:

"If G is planar with girth \geq 6, then $\chi_{\text{odd}}(G) \leq$ 4."

implies Four Color Theorem!

-odd coloring

sparse graphs

Natural corollaries to planar graphs with girth restrictions.

Corollary (2022.01+ Cranston, 2022.02+ Cho, C., Kwon, Park)

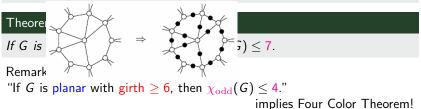
 $c \geq 5$: if G is planar with girth $\geq \frac{4c}{c-2}$, then $\chi_{odd}(G) \leq c$. c = 4: if G is planar with girth ≥ 11 , then $\chi_{odd}(G) \leq 4$.

Corollary implies

planar with girth ≥ 5 has $\chi_{\text{odd}}(G) \leq 10$ planar with girth ≥ 6 has $\chi_{\text{odd}}(G) \leq 6$ planar with girth ≥ 7 has $\chi_{\text{odd}}(G) \leq 5$

Theorem (2022.02+ Cho, C., Kwon, Park)

If G is planar with girth \geq 5, then $\chi_{odd}(G) \leq$ 6.



-odd coloring

sparse graphs

Natural corollaries to planar graphs with girth restrictions.

Corollary (2022.01+ Cranston, 2022.02+ Cho, C., Kwon, Park)

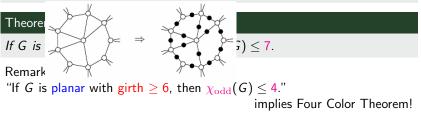
 $c \geq 5$: if G is planar with girth $\geq \frac{4c}{c-2}$, then $\chi_{odd}(G) \leq c$. c = 4: if G is planar with girth ≥ 11 , then $\chi_{odd}(G) \leq 4$.

Corollary implies

planar with girth ≥ 5 has $\chi_{\text{odd}}(G) \leq 10$ planar with girth ≥ 6 has $\chi_{\text{odd}}(G) \leq 6$ planar with girth ≥ 7 has $\chi_{\text{odd}}(G) \leq 5$

Theorem (2022.02+ Cho, C., Kwon, Park)

If G is planar with girth ≥ 5 , then $\chi_{\text{odd}}(G) \leq 6$.



What about proper conflict-free coloring?

proper conflict-free coloring

planar graphs

Theorem (2022.02+ Fabrici Lužar, Rindošová, Soták)

If G is planar, then $\chi_{pcf}(G) \leq 8$.

Conjecture (2022.02+ Fabrici Lužar, Rindošová, Soták)

If G is planar, then $\chi_{pcf}(G) \leq 6$.

proper conflict-free coloring

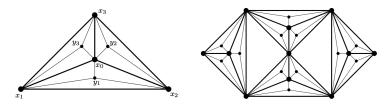
planar graphs

Theorem (2022.02+ Fabrici Lužar, Rindošová, Soták)

If G is planar, then $\chi_{pcf}(G) \leq 8$.

Conjecture (2022.02+ Fabrici Lužar, Rindošová, Soták)

If G is planar, then $\chi_{pcf}(G) \leq 6$.



If there is a proper conflict-free coloring with 5 colors.....

- $-x_0, x_1, x_2, x_3$ are colored 1,2,3,4
- at least one of y_1, y_2, y_3 are colored 5
- two of x_1, x_2, x_3 sees all colors!

proper conflict-free coloring

sparse graphs

$$\begin{array}{ll} c \in \{1,2\}: \text{ if mad}(G) \leq c-1, \text{ then } \chi_{\mathrm{pcf}}(G) \leq c. \\ c \in \{3,4\}: \text{ if mad}(G) < 2, \text{ then } \chi_{\mathrm{pcf}}(G) \leq 3 \leq c. \end{array} \qquad \begin{array}{ll} \text{Tight for } P_2, P_3. \\ \text{Tight for } C_5. \end{array}$$

proper conflict-free coloring

sparse graphs

$$c \in \{1,2\}: \text{ if mad}(G) \leq c-1, \text{ then } \chi_{\text{pcf}}(G) \leq c.$$

$$c \in \{3,4\}: \text{ if mad}(G) < 2, \text{ then } \chi_{\text{pcf}}(G) \leq 3 \leq c.$$

Theorem (2022.03+ Caro, Petruševski, Škrekovski)

If G has $mad(G) < \frac{8}{3}$, then $\chi_{pcf}(G) \le 6$. If G has $mad(G) < \frac{5}{2}$, then $\chi_{pcf}(G) \le 5$. If G has $mad(G) < \frac{24}{11}$, then $\chi_{pcf}(G) \le 4$, unless every block of G is C₅.

Tight for P_2, P_3 . Tight for C_5 .

proper conflict-free coloring

sparse graphs

$$\begin{array}{l} c \in \{1,2\}: \text{ if mad}(G) \leq c-1, \text{ then } \chi_{\mathrm{pcf}}(G) \leq c. \\ c \in \{3,4\}: \text{ if mad}(G) < 2, \text{ then } \chi_{\mathrm{pcf}}(G) \leq 3 \leq c. \end{array}$$

Theorem (2022.03+ Caro, Petruševski, Škrekovski)

If G has $mad(G) < \frac{8}{3}$, then $\chi_{pcf}(G) \le 6$. If G has $mad(G) < \frac{5}{2}$, then $\chi_{pcf}(G) \le 5$. If G has $mad(G) < \frac{24}{11}$, then $\chi_{pcf}(G) \le 4$, unless every block of G is C₅.

Corollary implies

 $\begin{array}{l} \mbox{planar with girth} \geq 8 \ \mbox{has } \chi_{\rm pcf}(G) \leq 6 \\ \mbox{planar with girth} \geq 10 \ \mbox{has } \chi_{\rm pcf}(G) \leq 5 \\ \mbox{planar with girth} \geq 24 \ \mbox{has } \chi_{\rm pcf}(G) \leq 4 \\ \end{array}$

Tight for P_2, P_3 . Tight for C_5 .

Theorem (2022.03+ Caro, Petruševski, Škrekovski)

If G is planar with girth \geq 7, then $\chi_{pef}(G) \leq 6$

proper conflict-free coloring

sparse graphs

$$c \in \{1,2\}: \text{ if mad}(G) \leq c-1, \text{ then } \chi_{\text{pcf}}(G) \leq c.$$

$$c \in \{3,4\}: \text{ if mad}(G) < 2, \text{ then } \chi_{\text{pcf}}(G) \leq 3 \leq c.$$

Theorem (2022.03+ Caro, Petruševski, Škrekovski)

If G has $mad(G) < \frac{8}{3}$, then $\chi_{pcf}(G) \le 6$. If G has $mad(G) < \frac{5}{2}$, then $\chi_{pcf}(G) \le 5$. If G has $mad(G) < \frac{24}{11}$, then $\chi_{pcf}(G) \le 4$, unless every block of G is C₅.

Corollary implies

 $\begin{array}{l} \mbox{planar with girth} \geq 8 & \mbox{has } \chi_{\rm pcf}(G) \leq 6 \\ \mbox{planar with girth} \geq 10 & \mbox{has } \chi_{\rm pcf}(G) \leq 5 \\ \mbox{planar with girth} \geq 24 & \mbox{has } \chi_{\rm pcf}(G) \leq 4 \\ \end{array}$

Tight for P_2, P_3 . Tight for C_5 .

Theorem (2022.03+ Caro, Petruševski, Škrekovski)

If G is planar with girth \geq 7, then $\chi_{pcf}(G) \leq 6$



proper conflict-free coloring

sparse graphs

$$c \in \{1,2\}: \text{ if mad}(G) \leq c-1, \text{ then } \chi_{\text{pcf}}(G) \leq c.$$

$$c \in \{3,4\}: \text{ if mad}(G) < 2, \text{ then } \chi_{\text{pcf}}(G) \leq 3 \leq c.$$

Theorem (2022.03+ Caro, Petruševski, Škrekovski)

If G has $mad(G) < \frac{8}{3}$, then $\chi_{pcf}(G) \le 6$. If G has $mad(G) < \frac{5}{2}$, then $\chi_{pcf}(G) \le 5$. If G has $mad(G) < \frac{24}{11}$, then $\chi_{pcf}(G) \le 4$, unless every block of G is C₅.

Tight for P_2, P_3 . Tight for C_5 .

proper conflict-free coloring

sparse graphs

$$\begin{array}{l} c \in \{1,2\}: \text{ if mad}(G) \leq c-1, \text{ then } \chi_{\mathrm{pcf}}(G) \leq c. \\ c \in \{3,4\}: \text{ if mad}(G) < 2, \text{ then } \chi_{\mathrm{pcf}}(G) \leq 3 \leq c. \end{array}$$

Theorem (2022.03+ Caro, Petruševski, Škrekovski)

If G has $mad(G) < \frac{8}{3}$, then $\chi_{pef}(G) \le 6$. If G has $mad(G) < \frac{5}{2}$, then $\chi_{pef}(G) \le 5$. If G has $mad(G) < \frac{24}{11}$, then $\chi_{pef}(G) \le 4$, unless every block of G is C_5 .

Theorem (2022.03+ Cho, C. Kwon, Park)

$$c \geq 5$$
: if G has $mad(G) \leq mad(\mathcal{K}_{c+1}^*)$, then $\chi_{pcf}(G) \leq c$,

unless $\mathcal{K}_{c+1}^* \subseteq G$. c = 4: if G has mad(G) $< \frac{12}{5}$ and no induced C₅, then $\chi_{pcf}(G) \leq 4$.

Theorem implies

planar with girth
$$\geq 5$$
 has $\chi_{pcf}(G) \leq 10$

Tight for P_2, P_3 . Tight for C_5 .

Theorem (2022.03+ Cho, C. Kwon, Park)

If G is planar with girth ≥ 5 , then $\chi_{pcf}(G) \leq 7$.

Conjecture (2022.01+ 2022.03+ Caro, Petruševski, Škrekovski)

If G has $\Delta(G) \geq 3$, then $\chi_{\text{odd}}(G) \leq \Delta(G) + 1$ and $\chi_{\text{pcf}}(G) \leq \Delta(G) + 1$.

Theorem (2022.01+, 2022.03+ Caro, Petruševski, Škrekovski)

If G is connected, then $\chi_{odd}(G) \leq 2\Delta(G)$, unless G is C₅ If G is connected, then $\chi_{pef}(G) \leq \lfloor 2.5\Delta(G) \rfloor$, equality iff $G \in \{K_2, C_5\}$. If G is claw-free or chordal, then $\chi_{pef}(G) \leq 2\Delta(G) + 1$.

Conjecture (2022.01+ 2022.03+ Caro, Petruševski, Škrekovski)

If G has $\Delta(G) \geq 3$, then $\chi_{\text{odd}}(G) \leq \Delta(G) + 1$ and $\chi_{\text{pcf}}(G) \leq \Delta(G) + 1$.

Theorem (2022.01+, 2022.03+ Caro, Petruševski, Škrekovski)

If G is connected, then $\chi_{odd}(G) \leq 2\Delta(G)$, unless G is C₅ If G is connected, then $\chi_{pef}(G) \leq \lfloor 2.5\Delta(G) \rfloor$, equality iff $G \in \{K_2, C_5\}$. If G is claw-free or chordal, then $\chi_{pef}(G) \leq 2\Delta(G) + 1$.

Theorem (2022.06++ Cho, C., Kwon, Park)

If G has $lcc(G) \leq \ell$, then $\chi_{odd}(G) \leq \frac{2\ell-1}{\ell}\Delta(G) + 2$. If G is claw-free, then $\chi_{odd}(G) = \chi_{pcf}(G) \leq \frac{3}{2}\Delta(G) + \sqrt{\Delta(G)} + 1$. If G is chordal, then $\chi_{pcf}(G) \leq \Delta(G) + 1$.

Conjecture (2022.01+ 2022.03+ Caro, Petruševski, Škrekovski)

If G has $\Delta(G) \geq 3$, then $\chi_{\text{odd}}(G) \leq \Delta(G) + 1$ and $\chi_{\text{pcf}}(G) \leq \Delta(G) + 1$.

Theorem (2022.01+, 2022.03+ Caro, Petruševski, Škrekovski)

If G is connected, then $\chi_{\text{odd}}(G) \leq 2\Delta(G)$, unless G is C₅ If G is connected, then $\chi_{\text{pef}}(G) \leq \lfloor 2.5\Delta(G) \rfloor$, equality iff $G \in \{K_2, C_5\}$. If G is claw-free or chordal, then $\chi_{\text{pef}}(G) \leq 2\Delta(G) + 1$.

Theorem (2022.06++ Cho, C., Kwon, Park)

 $\begin{array}{ll} \text{If } G \text{ has } lcc(G) \leq \ell, \text{ then } \chi_{\mathrm{odd}}(G) \leq \frac{2\ell-1}{\ell} \Delta(G) + 2. \\ \text{If } G \text{ is claw-free,} & \text{then } \chi_{\mathrm{odd}}(G) = \chi_{\mathrm{pcf}}(G) \leq \frac{3}{2} \Delta(G) + \sqrt{\Delta(G)} + 1. \\ \text{If } G \text{ is chordal,} & \text{then } \chi_{\mathrm{pcf}}(G) \leq \Delta(G) + 1. \end{array}$

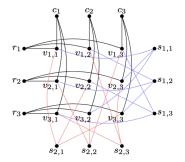
If G has $\Delta(G) \ge h + 2 \ge 3$, then $\chi_{\text{pcf}}^{h}(G) \le (h+1)\Delta(G) - 1$. For infinitely many h, there is G such that $\chi_{\text{pcf}}^{h}(G) = (h+1)(\Delta(G) - 1)$.

h-proper conflict-free coloring: each neighborhood has *h* "unique" colors

1	2	3
2	3	1
3	1	2

Orthogonal Latin squares of order n

 $n ext{ is a prime power}$ $\Delta = n + 1$ $\chi_{\text{pcf}}^{n-1} \ge n^2 = n(\Delta - 1)$



Theorem (2022.06++ Cho, C., Kwon, Park)

 $\begin{array}{ll} \text{If } G \text{ has } lcc(G) \leq \ell, \text{ then } \chi_{\mathrm{odd}}(G) \leq \frac{2\ell-1}{\ell} \Delta(G) + 2. \\ \text{If } G \text{ is claw-free,} & \text{then } \chi_{\mathrm{odd}}(G) = \chi_{\mathrm{pcf}}(G) \leq \frac{3}{2} \Delta(G) + \sqrt{\Delta(G)} + 1. \\ \text{If } G \text{ is chordal,} & \text{then } \chi_{\mathrm{pcf}}(G) \leq \Delta(G) + 1. \end{array}$

If G has $\Delta(G) \ge h + 2 \ge 3$, then $\chi_{\text{pcf}}^{h}(G) \le (h+1)\Delta(G) - 1$. For infinitely many h, there is G such that $\chi_{\text{pcf}}^{h}(G) = (h+1)(\Delta(G) - 1)$.

h-proper conflict-free coloring: each neighborhood has *h* "unique" colors

L open

OPEN:

L_{open}

OPEN:

Conjecture (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Conjecture (2022.02+ Fabrici Lužar, Rindošová, Soták)

If G is planar, then $\chi_{pcf}(G) \leq 6$.

Tight.

L open

OPEN:

Conjecture (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Tight.

Conjecture (2022.02+ Fabrici Lužar, Rindošová, Soták)

If G is planar, then $\chi_{pcf}(G) \leq 6$.

"If G is planar with girth ≥ 6 , then $\chi_{odd}(G) \leq 4$." implies Four Color Theorem!

Find min girth g such that

"If G is planar with girth $\geq g$, then $\chi_{\text{odd}}(G) \leq c$ or $\chi_{\text{pcf}}(G) \leq c$."

colors	3	4	5	6	7	8
$\chi_{ m odd}$	x	11	7	5	4	all planar
$\chi_{ m pcf}$	x	11	7	6	5	all planar

OPEN:

Conjecture (2021.12+ Petruševski, Škrekovski)

If G is planar, then $\chi_{\text{odd}}(G) \leq 5$.

Tight for 5-cycle.

Tight.

Conjecture (2022.02+ Fabrici Lužar, Rindošová, Soták)

If G is planar, then $\chi_{pcf}(G) \leq 6$.

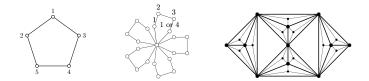
"If G is planar with girth ≥ 6 , then $\chi_{odd}(G) \leq 4$." implies Four Color Theorem!

Find min girth g such that "If G is planar with girth $\geq g$, then $\chi_{\text{odd}}(G) \leq c$ or $\chi_{\text{pcf}}(G) \leq c$."

colors	3	4	5	6	7	8
$\chi_{ m odd}$	х	11	7	5	4	all planar
$\chi_{ m pcf}$	x	11	7	6	5	all planar

Conjecture (2022.01+ 2022.03+ Caro, Petruševski, Škrekovski)

If G has $\Delta(G) \geq 3$, then $\chi_{odd}(G) \leq \Delta(G) + 1$ and $\chi_{pcf}(G) \leq \Delta(G) + 1$.



Thank you for your attention!

Theorem (2022.03+ Liu)

If G is planar or projective planar, then $\chi_{\text{pcf}}(G) \leq 11$. If G has Euler genus $\gamma \geq 2$, then $\chi_{\text{pcf}}(G) \leq \frac{13 + \sqrt{73 + 48\gamma}}{2}$.

Theorem (2022.05+ Metrebian)

If G is projective planar or toroidal, then $\chi_{odd}(G) \leq 9$.

Theorem (2022.03+ Cranston, Lafferty, Song, 2022.06+ Liu, Wang, Yu)

If G is 1-planar, then $\chi_{odd}(G) \leq 23$. If G is 1-planar, then $\chi_{odd}(G) \leq 13$.

Theorem (2022.02+ Dujmović,Morin,Odak, 2022.03+ Hickingbotham, 2022.03+ Liu)

If G is k-planar, then $\chi_{\text{odd}}(G) \leq C \cdot k^5$. If G is k-planar, then $\chi_{\text{pcf}}(G) \leq 60k + 59$. If G is k-planar and Euler genus γ , then $\chi_{\text{pcf}}(G) \leq 16(\gamma + 3)(k + 1) - 1$.