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Theorem (2022.02+ Cho, C., Kwon, Park)

c>7:if G has mad(G) < mad(K_,,), then x.4a(G) < c,
unless K | C G.
c=4:if G has mad(G) < 29—2 and no induced 5-cycle, then x,q44(G) < 4.
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3

R\

z2

z1

If there is a proper conflict-free coloring with 5 colors.....
— Xo, X1, X2, X3 are colored 1,2,3,4

— at least one of y1, y», y3 are colored 5

— two of x1, x>, x3 sees all colors!



Relaxations of coloring squares of graphs
(-

proper conflict-free coloring

c € {1,2}: if mad(G) < ¢ — 1, then xpi(G Tight for P, Ps.
c € {3,4}: if mad(G) < 2, then yp(G) <

)<c
3<ec. Tight for Gs.



Relaxations of coloring squares of graphs

[

proper conflict-free coloring

c€{1,2}: if mad(G) < ¢ — 1, then x,r(G) < c. Tight for Ps, Ps.
c € {3,4}: if mad(G) < 2, then y,(G) <3 < c. Tight for Cs.

Theorem (2022.03+ Caro, Petrusevski, gkrekovski)

If G has mad(G) < & then Xpef(G) < 6.
If G has mad(G) < % then Xpei(G) < 5.
If G has mad(G) < 57, then xp,i(G) < 4, unless every block of G is Cs.



Relaxations of coloring squares of graphs

[

proper conflict-free coloring

c€{1,2}: if mad(G) < ¢ — 1, then x,r(G) < c. Tight for P, Ps.
c € {3,4}: if mad(G) < 2, then y,(G) <3 < c. Tight for Cs.

Theorem (2022.03+ Caro, Petrusevski, §krekovski)

If G has mad(G) < g, then .t (G) < 6.
If G has mad(G) < % then Xpei(G) < 5.
If G has mad(G) < 57, then xp,i(G) < 4, unless every block of G is Cs.

Corollary implies planar with girth > 8 has xper(G)
planar with girth > 10 has xper(G)
planar with girth > 24 has xper(G)

INIAIA

6
5
4

Theorem (2022.03+ Caro, PetruZevski, §krekovski)
If G is planar with girth > 7, then x,:(G) < 6



Relaxations of coloring squares of graphs

[

proper conflict-free coloring

c€{1,2}: if mad(G) < ¢ — 1, then x,r(G) < c. Tight for P, Ps.
c € {3,4}: if mad(G) < 2, then y,(G) <3 < c. Tight for Cs.

Theorem (2022.03+ Caro, Petrusevski, §krekovski)

If G has mad(G) < g, then .t (G) < 6.
If G has mad(G) < % then Xpei(G) < 5.
If G has mad(G) < 57, then xp,i(G) < 4, unless every block of G is Cs.

Corollary implies planar with girth > 8 has xper(G)
planar with girth > 10 has xper(G)
planar with girth > 24 has xper(G)

INIAIA

6
5
4

Theorem (2022.03+ Caro, PetruZevski, §krekovski)
If G is planar with girth > 7, then x,:(G) < 6

-
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proper conflict-free coloring

c€{1,2}: if mad(G) < ¢ — 1, then x,r(G) < c. Tight for Ps, Ps.
c € {3,4}: if mad(G) < 2, then y,(G) <3 < c. Tight for Cs.

Theorem (2022.03+ Caro, Petrusevski, gkrekovski)

If G has mad(G) < & then Xpef(G) < 6.
If G has mad(G) < % then Xpei(G) < 5.
If G has mad(G) < 57, then xp,i(G) < 4, unless every block of G is Cs.
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proper conflict-free coloring

c€{1,2}: if mad(G) < ¢ — 1, then x,r(G) < c. Tight for P, Ps.
c € {3,4}: if mad(G) < 2, then y,(G) <3 < c. Tight for Cs.

Theorem (2022.03+ Caro, Petrusevski, gkrekovski)

If G has mad(G) < %, then .t (G) < 6.
If G has mad(G) < % then Xpei(G) < 5.
If G has mad(G) < 57, then xp,i(G) < 4, unless every block of G is Cs.
Theorem (2022.03+ Cho, C. Kwon, Park)

¢ >5:if G has mad(G) < mad(K_ ), then x,¢(G) < c,
unless K | C G.

c =4: if G has mad(G) < 2 and no induced Cs, then x,ct(G) < 4.

Theorem implies planar with girth > 5 has x,.(G) < 10
Theorem (2022.03+ Cho, C. Kwon, Park)
If G is planar with girth > 5, then xp,;(G) < 7.
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Brooks-type.
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Brooks-type.

Conjecture (2022.01+ 2022.03+ Caro, Petruevski, §krekovski)
If G has A(G) > 3, then x0aa(G) < A(G)+1 and x,ei(G) < A(G) + 1.

Theorem (2022.01+, 2022.03+ Caro, Petrugevski, §krekovski)

If G is connected, then x,a4(G) < 2A(G), unless G is Cs
If G is connected, then x,.(G) < [2.5A(G)|, equality iff G € {K>, Cs}.
If G is claw-free or chordal, then x,.(G) < 2A(G) + 1.
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Brooks-type.

Conjecture (2022.01+ 2022.03+ Caro, Petruevski, §krekovski)
If G has A(G) > 3, then x0aa(G) < A(G)+1 and x,ei(G) < A(G) + 1.

Theorem (2022.01+, 2022.03+ Caro, Petrugevski, gkrekovski)

If G is connected, then x,a4(G) < 2A(G), unless G is Cs
If G is connected, then x,.(G) < [2.5A(G)|, equality iff G € {K>, Cs}.
If G is claw-free or chordal, then x,.(G) < 2A(G) + 1.

Theorem (2022.06++ Cho, C., Kwon, Park)

If G has lcc(G) < ¢, then xoqa(G) < 257_1A(G) + 2.

If G is claw-free,  then Xoada(G) = Xpet(G) < 3A(G) + /A(G) + 1.
If G is chordal, then xpet(G) < A(G) + 1.
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Brooks-type.
Conjecture (2022.01+ 2022.03+ Caro, Petruevski, §krekovski)
If G has A(G) > 3, then x0aa(G) < A(G)+1 and x,ei(G) < A(G) + 1.

Theorem (2022.01+, 2022.03+ Caro, Petrugevski, gkrekovski)

If G is connected, then x,a4(G) < 2A(G), unless G is Cs
If G is connected, then x,.(G) < [2.5A(G)|, equality iff G € {K>, Cs}.
If G is claw-free or chordal, then x,.(G) < 2A(G) + 1.

Theorem (2022.06++ Cho, C., Kwon, Park)

If G has lcc(G) < ¢, then xoqa(G) < 257_1A(G) + 2.

If G is claw-free, then Xoad(G) = xpet(G) < 3A(G) + /A(G) + 1.
If G is chordal, then xpet(G) < A(G) + 1.

If G has A(G) > h+2 > 3, then x'((G) < (h+1)A(G) — 1.
For infinitely many h, there is G such that chf(G):(h + 1)(A(G) —1).

h-proper conflict-free coloring: each neighborhood has h “unique” colors



Relaxations of coloring squares of graphs
- Brooks-type

112 (3 3

2 (3|1 ] 1

311 |2 312 |1 poLL

. 051,2

Orthogonal Latin squares of order n
nis a prime power ~e51,3
A=n+1
X;:fl >n? = n(A—1) s31 S22 s33

Theorem (2022.06++ Cho, C., Kwon, Park)

If G has lcc(G) < £, then oaa(G) < 22EA(G) +2.

If G is claw-free, then \oda(G) = Xpet(G) < 2A(G) + /A(G) + 1.
If G is chordal, then xpet(G) < A(G) + 1.

If G has A(G) > h+2 >3, then X! (G) < (h+1)A(G) — 1.
For infinitely many h, there is G such that x! ;(G)=(h+1)(A(G) —1).

h-proper conflict-free coloring: each neighborhood has h “unique” colors
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OPEN:
Conjecture (2021.12+ Petrugevski, Skrekovski)
If G is planar, then x,q44(G) < 5. Tight for 5-cycle.

Conjecture (2022.02+ Fabrici LuZar, Rindo3ova, Sotdk)

If G is planar, then x,t(G) < 6. Tight.
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OPEN:
Conjecture (2021.12+ Petrugevski, Skrekovski)
If G is planar, then x,q44(G) < 5. Tight for 5-cycle.

Conjecture (2022.02+ Fabrici LuZar, Rindo3ova, Sotdk)

If G is planar, then x,t(G) < 6. Tight.

“If G is planar with girth > 6, then y,q4a(G) < 4."
implies Four Color Theorem!

Find min girth g such that
“If G is planar with girth > g, then x,4a(G) < ¢ or xpei(G) < c.”

colors || 3] 4 |5]6]7] 8
Xodd || x |11 | 7|5 |4 | all planar
Xpcf x| 11| 7|6 |5 allplanar
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OPEN:
Conjecture (2021.12+ Petrugevski, Skrekovski)
If G is planar, then x,q44(G) < 5. Tight for 5-cycle.

Conjecture (2022.02+ Fabrici LuZar, Rindo3ova, Sotdk)

If G is planar, then x,t(G) < 6. Tight.

“If G is planar with girth > 6, then y,q4a(G) < 4."
implies Four Color Theorem!

Find min girth g such that
“If G is planar with girth > g, then x,4a(G) < ¢ or xpei(G) < c.”

colors || 3] 4 |5]6]7] 8
Xodd || x |11 | 7|5 |4 | all planar
Xpcf x| 11| 7|6 |5 allplanar

Conjecture (2022.01+ 2022.03+ Caro, Petrugevski, Skrekovski)
If G has A(G) > 3, then xoaa(G) < A(G)+1 and xp,ci(G) < A(G) + 1.
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Theorem (2022.03+ Liu)

If G is planar or projective planar, then xpc:(G) < 11.
If G has Euler genus v > 2, then x,.¢(G) < B2HV/H87 V723+487,

Theorem (2022.05+ Metrebian)

If G is projective planar or toroidal, then x,aqa(G) < 9.

Theorem (2022.03+ Cranston, Lafferty, Song, 2022.06+ Liu, Wang, Yu)

If G is 1-planar, then y,qq(G) < 23.
If G is 1-planar, then x,qq(G) < 13.

Theorem (2022.02+ Dujmovié¢,Morin,Odak, 2022.03+ Hickingbotham,

2022.03+ Liu)

If G is k-planar, then x,q4(G) < C - k°.
If G is k-planar, then x,ci(G) < 60k + 59.
If G is k-planar and Euler genus v, then xp,;(G) < 16(y+3)(k+1) — 1.
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