
A Ramsey–Turán theory for tilings in graphs

Donglei Yang

Shandong University

1 / 16



H-tiling

Given graphs H and G , an H-tiling is a collection of vertex-disjoint
copies of H in G . An H-tiling is perfect (H-factor) if it covers all the
vertices of G .

(Dirac, ’52) δ(G ) ≥ n/2 ⇒ G has a Hamilton cycle.

(Hajnal–Szemerédi, ’70) δ(G ) ≥ (1− 1
k )n ⇒ G contains a Kk -factor.

(Corrádi–Hajnal for k = 3)

Theorem (Alon–Yuster, ’96, Komlós–Sárközy–Szemerédi, ’98)

Given a graph H of k vertices, every graph G of n vertices with n ∈ kN
large and δ(G ) ≥

(
1− 1

χ(H)

)
n + C (H) has an H-factor.
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H-factor for general graph H

(El-Zahar, ’84) Let n1 + · · ·+ nk = n and let δ(G ) ≥
∑

i∈[k]dni/2e.
Then G contains k vertex-disjoint cycles of orders n1, · · · , nk .

(Komlós, ’00) The critical chromatic number of H is

χcr (H) := (r−1)k
k−σ = r − 1 + σ

k−σ
r−1

,

where r = χ(H) and σ = σ(H) denotes the smallest size of a color
class over all r -colorings of H. It is easy to see that

χ(H)− 1 < χcr (H) ≤ χ(H).

Theorem (Komlós, ’00, Shokoufandeh–Zhao ’03)

Given a graph H, every graph G on n vertices with n large and

δ(G ) ≥
(

1− 1
χcr (H)

)
n contains an H-tiling covering all but at most C

vertices.
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H-factor

Theorem (Kühn–Osthus, ’09)

For an arbitrary graph H, the relevant parameter for an H-factor is either
χcr (H) or χ(H) and provide a dichotomy.
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Ramsey-Turán theory

Erdős and Sós (1970) initiated a variation on Turán problem which
excludes all graphs with large independence number.

The `-independence number of a graph G is denoted as

α`(G ) := max{|S | : S ⊆ V (G ),G [S ] is K`-free}.

A central problem is to determine RT`(n,H, o(n)): the maximum
number of edges in an n-vertex H-free graph G with α`(G ) = o(n).

Define %`(H) := lim
α→0

lim
n→∞

RT`(n,H,αn)

(n2)
.

(Bollobás–Erdős, ’76, Szemerédi, ’72) %2(K4) = 1
4 .

(Erdős–Hajnal–Sós–Szemerédi, 83) %2(K2t) = 3t−5
3t−2 .

%2(K2,2,2) ?

(Liu–Reiher–Sharifzadeh–Staden, ’21): %3(K5) = 1
6 .
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4 .
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Erdős and Sós (1970) initiated a variation on Turán problem which
excludes all graphs with large independence number.

The `-independence number of a graph G is denoted as

α`(G ) := max{|S | : S ⊆ V (G ),G [S ] is K`-free}.

A central problem is to determine RT`(n,H, o(n)): the maximum
number of edges in an n-vertex H-free graph G with α`(G ) = o(n).

Define %`(H) := lim
α→0

lim
n→∞

RT`(n,H,αn)

(n2)
.
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Clique factors

Problem A (Balogh–Molla–Sharifzadeh, ’16)

Let k ≥ 3 be an integer and G be an n-vertex graph with α(G ) = o(n).
What is the minimum degree condition on G that guarantees a Kk -factor?

(Balogh–Molla–Sharifzadeh, ’16) If δ(G ) ≥ n
2 + o(n) and

α(G ) = o(n), then G contains a triangle-factor.

(Knierim–Su, ’20) For k ≥ 4, if δ(G ) = (1− 2
k )n + o(n) and

α2(G ) = o(n), then G contains a Kk -factor.

Question (Knierim–Su, ’20)

Is it true that for every k , ` ∈ N with 2 ≤ ` ≤ k, if G is an n-vertex graph
with δ(G ) = max{12n, (1− `

k )n}+ Ω(n) and α`(G ) = o(n), then G
contains a Kk -factor?
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Clique factors with α`(G ) = o(n)

Question (Knierim–Su, ’20)

Is it true that for every k , ` ∈ N with 2 ≤ ` ≤ k , any n-vertex graph G with
δ(G ) = max{12n, (1− `

k )n}+ Ω(n) and α`(G ) = o(n) has a Kk -factor?

We first give a negative answer for the interval k
2 ≤ ` ≤ k − 3.

Proposition (Chang–Han–Kim–Wang–Y, ’21+)

Let k, ` ∈ N such that k
2 ≤ ` ≤ k − 3. For any µ > 0 and α > 0 the

following holds for sufficiently large n ∈ kN. There exists an n-vertex

graph G with δ(G ) ≥
(

1
2−%`(Kk−1)

− µ
)
n and α`(G ) ≤ αn and G contains

no Kk -factor.

A recent result of Balogh and Lenz implies that %`(Kk−1) > 0 for any
` ≤ k − 3.
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Clique factors with α`(G ) = o(n)

Theorem (Chang–Han–Kim–Wang–Y, ’21+)

Let k, ` ∈ N such that 3
4k ≤ ` < k . For any µ > 0, there exists an α > 0

such that for all sufficiently large n ∈ kN, every n-vertex graph G with

δ(G ) ≥
(

1
2−%`(Kk−1)

+ µ
)
n and α`(G ) ≤ αn contains a Kk -factor.

Question (Knierim–Su, ’20)

Is it true that for every k , ` ∈ N with 2 ≤ ` ≤ k , any n-vertex graph G with
δ(G ) = max{12n, (1− `

k )n}+ Ω(n) and α`(G ) = o(n) has a Kk -factor?

Question: Is it true that δ(G ) = (1− `
k )n + o(n) and α`(G ) = o(n)

guarantee a Kk -tiling that covers all but at most O(1) vertices?
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Almost Kk-factor: the case ` = k − 1

Theorem (Balogh–McDowell–Molla–Mycroft, ’18)

For every constant µ > 0 there are constants α > 0 and n0 ∈ N such that
every graph G on n ≥ n0 vertices with δ(G ) ≥ n/3 + µn and α2(G ) ≤ αn
contains a K3-tiling covering all but at most 4 vertices in G .

Theorem (Han–Morris–Wang–Y, ’21+)

For any integer k ≥ 3 and constant µ, there exists a constant α > 0 such
that for any integer r ∈ [2, k] and sufficiently large n, every n-vertex graph
G with δ(G ) ≥ n

r + µn and αk−1(G ) ≤ αn contains a Kk -tiling that
leaves at most (k − 1)(r − 1) vertices uncovered. In particular, if r = 2
and n ∈ kN, then G contains a Kk -factor.

The proof uses the lattice-based absorbing method.

What about the remaining cases 3 ≤ ` ≤ k − 2?
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Removing divisibility barriers

Recall that the construction of two or more vertex-disjoint cliques of
almost equal size not divisible by k, has low independence number and
essentially provides a barrier for F -factors.

Nenadov and Pehova suggest to strengthen the independence condition
by forbidding large partite ‘holes’.

Definition

For k ∈ N with k ≥ 2, an k-partite hole of size s in a graph G is a
collection of k disjoint vertex subsets U1, . . . ,Uk ⊂ V (G ) of size s such
that there is no copy of Kk in G with exactly one vertex in each Ui , i ∈ [k].
We use α∗k(G ) to denote the size of the largest k-partite hole in G . When
k = 2, we also refer to this as a bipartite hole and write α∗(G ) = α∗2(G ).

It is clear from the definition that k(α∗k(G ) + 1) > αk(G ).
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Clique factors revisted

Theorem (Nenadov–Pehova, 2020, Han–Morris–Wang–Y, ’21+)

For any integer k ≥ 2 and ε > 0, there exists a constant α > 0 such that
for large n ∈ kN, every n-vertex graph G with δ(G ) ≥ εn and α∗k(G ) ≤ αn
contains a Kk -factor.

The case k = 2 is of independent interest: a result of McDiarmid and
Yolov implies that every graph G with δ(G ) ≥ 2α∗2(G ) is Hamiltonian.
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Triangle-factors under small bipartite hole

Proposition (Han–Morris–Wang–Y, 2021+)

For any 0 < α < 1, the following holds for sufficiently large integer
n ∈ 3N. There exists an n-vertex graph G with δ(G ) ≥ n

2 − 2d2 and
α∗(G ) ≤ αn such that G contains no K3-factor, where d = d( 2

α + 1)2e.

A result of Balogh–Molla–Sharifzadeh states that δ(G ) ≥ n
2 + o(n)

and α(G ) = o(n) force a K3-factor.
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cycles,trees under small bipartite hole

Theorem (Ping–Hu–Wang–Wang–Y, 2022+)

For any integer ∆ and ε > 0, there exists a constant α > 0 such that for
large n ∈ N, every n-vertex graph G with δ(G ) ≥ εn and α∗2(G ) ≤ αn is
T (n,∆)-universal.

This strengthens a conjecture of Krivelevich, Kwan and Sudakov on
the T (n,∆)-universality in a random perturbation model.

Theorem (Han–Morris–Wang–Y, 2021+)

For any integer k ≥ 4 and ε > 0, there exists a constant α > 0 such that
for large n ∈ kN, every n-vertex graph G with δ(G ) ≥ n

k + εn and
α∗2(G ) ≤ αn contains a Ck -factor.

This implies a result of Böttcher, Parczyk, Sgueglia and Skokan on
cycle-factors in a random perturbation model (arXiv:2103.06136).
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The absorption method

The absorption method was firstly introduced by Rödl, Ruciński and
Szemerédi and it is an important tool for studying the existence of
spanning structures in graphs, digraphs and hypergraphs. A crucial
ingredient is to build an absorbing set.

Widely used constructions of absorbing sets by Rödl, Ruciński and
Szemerédi, or independently by Hàn, Person, and Schacht rely on the
property that every k-subset in V (G ) has polynomially many absorbers of
a certain type.
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Lemma (Nenadov–Pehova, ’18)

Given a constant γ > 0, k , t ∈ N and a k-vertex graph H, there exist
ξ > 0 and n0 ∈ N such that if G is an n-vertex graph with n ≥ n0 such
that for every S ∈

(V (G)
k

)
there is a family of at least γn vertex-disjoint

(H, t)-absorbers, then G contains a ξ-absorbing set of size at most γn.

The bipartite template (introduced by Montgomery) guarantees the
existence of an absorbing set, provided that every k-set in V (G ) has
linearly many vertex-disjoint absorbers.

The lattice-based absorbing method (developed by Han and
Keevash et al.) is essentially used to detect which kinds of k-sets
have linearly many vertex-disjoint absorbers.
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Thanks for listening!
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