The Betti Number of the Independence Complex of Ternary Graphs

Wentao Zhang

Fudan University

March 4, 2022

Joint work with Hehui Wu

Wentao Zhang (FDU)

Betti Number of Ternary Graphs

March 4, 2022 1 / 21

- (日)

Introduction

- $f_G = \sum (-1)^{|A|}$ over all independent sets A.
- *I*(*G*): the simplicial complex whose faces are the independent sets of *V*(*G*).
- $\tilde{b}_i(I(G)) = dim\tilde{H}_i(I(G))$: the *i*-th reduced Betti number of I(G).
- $b(G) = \sum_i \tilde{b}_i(I(G)).$
- Homological fact: $\chi_{I(G)} = 1 + \sum_{i} (-1)^{i} \tilde{b}_{i}(G) = \sum (-1)^{|A|-1}$, sum over all the non-empty independent sets in G.

•
$$f_G = \sum_{i=0}^{\infty} (-1)^{i+1} \tilde{b}_i(G)$$

- $|f_G| \leq b(G)$
- A graph is *ternary* if it has no induced cycle of length divisible by three.

Introduction

Theorem(Chudnovsky, Scott, Seymour and Spirkl, 2020)

If G is a graph with no induced cycle of length divisible by three, then $|f_G| \leq 1$.

Theorem(Hehui Wu and Wentao Zhang, 2021)

If G is a graph with no induced cycle of length divisible by three, then $b(G) \leq 1$.

Theorem(Engstrom, 2020)

If G is a graph without cycles of length divisible by three, then I(G) is contractible or homotopy equivalent to a sphere.

Conjecture(Engstrom, 2020)

If G is a graph without induced cycles of length divisible by three, then I(G) is contractible or homotopy equivalent to a sphere.

Wentao Zhang (FDU)

- Given a graph G, X is an independent set of G and Y is a vertex set disjoint from X.
- G(X | Y) is the subgraph induced by V(G) N[X] Y.
- Use I(X | Y), b(X | Y) and $\tilde{b}_i(X | Y)$ for Simplicity.

 $I(X \mid Y) = I(G(X \mid Y))$ $b(X \mid Y) = b(G(X \mid Y))$ $\tilde{b}_i(X \mid Y) = \tilde{b}_i(I(G(X \mid Y)))$

Let K' and K'' be subcomplexes such that $K = K' \cup K''$ and let $L = K' \cap K''$. There is an exact sequence of reduced homology groups called the Mayer-Vioteris sequence.

$$\cdots \longrightarrow \tilde{H}_{i}(L) \xrightarrow{\lambda_{i}} \tilde{H}_{i}(K') \oplus \tilde{H}_{i}(K'') \longrightarrow \tilde{H}_{i}(K) \longrightarrow \tilde{H}_{i-1}(L) \xrightarrow{\lambda_{i-1}} \\ \tilde{H}_{i-1}(K') \oplus \tilde{H}_{i-1}(K'') \longrightarrow \cdots \longrightarrow \tilde{H}_{0}(K) \longrightarrow 0$$

Short exact sequence:

$$0 \longrightarrow \operatorname{cok} \lambda_i \longrightarrow \widetilde{H}_i(K) \longrightarrow \ker \lambda_{i-1} \longrightarrow 0$$

Mayer-Vietoris Sequence

• $N_i = \ker \lambda_i$, $\beta(N_i)$ is its dimension.

$$\begin{aligned} \beta_{i}(K) &= \beta(\operatorname{cok} \lambda_{i}) + \beta(\operatorname{ker} \lambda_{i-1}) \\ &= \beta(\tilde{H}_{i}(K') \oplus \tilde{H}_{i}(K'') / \operatorname{im} \lambda_{i}) + \beta(N_{i-1}) \\ &= \beta_{i}(K') + \beta_{i}(K'') - \beta_{i}(L) + \beta(N_{i}) + \beta(N_{i-1}) \end{aligned}$$
(1)

- Suppose v is a vertex of G, take K = I(G), K' = I(G v), K'' = I(G N(v)) and $L = I_G(v | \emptyset)$.
- If H has an isolated vertex, then b(H) = 0.

$$\tilde{b}_i(G) = \tilde{b}_i(\emptyset \mid v) - \tilde{b}_i(v \mid \emptyset) + \beta(N_i) + \beta(N_{i-1}), \quad \forall i.$$
(2)

$$\beta(N_i) \leq \tilde{b}_i(v \mid \emptyset), \quad \forall i.$$
(3)

Theorem

If $b(G) \ge 2$ and $b(H) \le 1$ for every induced subgraph H of G, then $G = C_{3k}$ for some integer k.

- b(X | Y) = 0 or 1 if $X \cup Y \neq \emptyset$.
- If b(H) = 1 for some graph H, let d(H) be the dimension of the reduced Betti number taking value 1. d(H) = i if $\tilde{b}_i(H) = 1$ and $\tilde{b}_j(H) = 0$ for $j \neq i$.
- If b(H) = 0, let d(H) be '*'.
- If X is not independent, let d(X | Y) = *.
- If H is null graph, let d(H) = -1.

Lemma 1

For any disjoint vertex set X and Y in G with $X \cup Y \neq \emptyset$ and a vertex v not in X or Y, the triple (d(X | Y), d(v), d(v)) fits into one of the following four patterns: (k, *, k), (*, *, *), (*, k, k) and (k + 1, k, *) for some integer k.

(X, Y)		k	i I	*	i i	*	k+1
			I.		I	I I	
$(X \cup \{v\} \mid Y) (X \mid Y \cup \{v\})$	*		k $*$		* ¦ k	k ¦ k	(*

Lemma 1

For any disjoint vertex set X and Y in G with $X \cup Y \neq \emptyset$ and a vertex v not in X or Y, the triple (d(X | Y), d(v), d(v)) fits into one of the following four patterns: (k, *, k), (*, *, *), (*, k, k) and (k + 1, k, *) for some integer k.

(X, Y)		k	ı I	*	i I	*	k+1
			1		1	1	
$(X \cup \{v\} \mid Y) (X \mid Y \cup \{v\})$	*		$k \mid *$		*	k k	(*

Lemma 2

Suppose X, Y are vertex set of G with d(X | Y) = k for some integer k. If v_1, v_2 are two vertices not in $X \cup Y$ with $d(v_1) = k - 1$ and $d(v_2) = *$, then $d(v_1, v_2) = *$.

Lemma 3

There is some $k \ge 0$ such that $\tilde{b}_k(G) = 2$ and $\tilde{b}_i(G) = 0$ for all $i \ne k$. Furthermore, for every vertex v, $d(v | \emptyset) = k - 1$ and $d(\emptyset | v) = k$.

Lemma 3

There is some $k \ge 0$ such that $\tilde{b}_k(G) = 2$ and $\tilde{b}_i(G) = 0$ for all $i \ne k$. Furthermore, for every vertex v, $d(v | \emptyset) = k - 1$ and $d(\emptyset | v) = k$.

(X , Y):	d(X Y):
(1,0) $(0,1)$	k-1 /
(2,0) $(1,1)$ $(0,2)$	k-2 * /
(3,0) $(2,1)$ $(1,2)$ $(0,3)$	k-3 * * /
:	<u>:</u>
$(t,0)$ $(t-1,1)$ \cdots $(1,t-1)$ $(0,t)$	$ k-t * \cdots * l$

Lemma 3

There is some $k \ge 0$ such that $\tilde{b}_k(G) = 2$ and $\tilde{b}_i(G) = 0$ for all $i \ne k$. Furthermore, for every vertex v, $d(v | \emptyset) = k - 1$ and $d(\emptyset | v) = k$.

(X , Y):	d(X Y):
(1,0) $(0,1)$	k-1 /
(2,0) $(1,1)$ $(0,2)$	k-2 * /
(3,0) $(2,1)$ $(1,2)$ $(0,3)$	k-3 * * /
: :	<u>:</u>
$(t,0)$ $(t-1,1)$ \cdots $(1,t-1)$ $(0,t)$	$ k-t * \cdots * l$

Construct a new graph H on V(G) such that u, v are adjacent if and only if $d(u, v | \emptyset) = k - 2$.

Proposition 4

In H, any two vertices u, v satisfies

- If $u \sim v$ in H, then $u \nsim v$ in G. That is, $E(G) \cap E(H) = \emptyset$.
- If u ∼ v in H, then $d(u, v | \emptyset) = k 2$, d(u | v) = d(v | u) = *, and $d(\emptyset | u, v) = k$,
- If $u \approx v$ in H, then $d(u, v | \emptyset) = d(\emptyset | u, v) = *$, and d(u | v) = d(v | u) = k 1.

Lemma 5

Every component C of H is a complete graph. Furthermore, for any disjoint subsets X and Y of V(C) with $X \cup Y \neq \emptyset$, we have

$$d(X \mid Y) = \begin{cases} k - |X|, & Y = \emptyset, \\ *, & X, Y \neq \emptyset, \\ k, & X = \emptyset. \end{cases}$$

Lemma 5

Every component C of H is a complete graph. Furthermore, for any disjoint subsets X and Y of V(C) with $X \cup Y \neq \emptyset$, we have

$$d(X \mid Y) = \begin{cases} k - |X|, & Y = \emptyset, \\ *, & X, Y \neq \emptyset, \\ k, & X = \emptyset. \end{cases}$$

(|X|, |Y|):

	d(X,Y):
(1,0) (0,1)	k-1 k
(2,0) $(1,1)$ $(0,2)$	k-2 * k
(3,0) $(2,1)$ $(1,2)$ $(0,3)$	k-3 * * k
÷	:
$(t,0)$ $(t-1,1)$ \cdots $(1,t-1)$ $(0,t)$	$ k-t * \cdots * k$

Claim 6

There does not exist a vertex v with all neighbors in G located in one component of H.

э

Lemma 7

There do not exist two edges v_1v_2 , v_3v_4 in *G*, with v_1 , v_2 , v_3 , v_4 located in four distinct components of *H*.

(X , Y):	$d(X \mid Y)$:
(1,0) $(0,1)$	k - 1 k
(2,0) (1,1) (0,2)	* k-1 *
(3,0) $(2,1)$ $(1,2)$ $(0,3)$	* * $k-1$ $k-1$
(4,0) $(3,1)$ $(2,2)$ $(1,3)$ $(0,4)$	* * * ?

Theorem

If $b(G) \ge 2$ and $b(H) \le 1$ for every induced subgraph H of G, then $G = C_{3k}$ for some integer k.

The End

∃ →