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Introduction

fG =
∑

(−1)|A| over all independent sets A.

I (G ): the simplicial complex whose faces are the independent sets of
V (G ).

b̃i (I (G )) = dimH̃i (I (G )): the i-th reduced Betti number of I (G ).

b(G ) =
∑

i b̃i (I (G )).

Homological fact: χI (G) = 1 +
∑

i (−1)i b̃i (G ) =
∑

(−1)|A|−1, sum
over all the non-empty independent sets in G .

fG =
∑∞

i=0(−1)i+1b̃i (G )

|fG | ≤ b(G )

A graph is ternary if it has no induced cycle of length divisible by
three.
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Introduction

Theorem(Chudnovsky, Scott, Seymour and Spirkl, 2020)

If G is a graph with no induced cycle of length divisible by three, then
|fG | ≤ 1.

Theorem(Hehui Wu and Wentao Zhang, 2021)

If G is a graph with no induced cycle of length divisible by three, then
b(G ) ≤ 1.

Theorem(Engstrom, 2020)

If G is a graph without cycles of length divisible by three, then I (G ) is
contractible or homotopy equivalent to a sphere.

Conjecture(Engstrom, 2020)

If G is a graph without induced cycles of length divisible by three, then
I (G ) is contractible or homotopy equivalent to a sphere.
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Some Notation

Given a graph G , X is an independent set of G and Y is a vertex set
disjoint from X .

G (X |Y ) is the subgraph induced by V (G )− N[X ]− Y .

Use I (X |Y ), b(X |Y ) and b̃i (X |Y ) for Simplicity.

I (X |Y ) = I (G (X |Y ))

b(X |Y ) = b(G (X |Y ))

b̃i (X |Y ) = b̃i (I (G (X |Y )))
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Mayer-Vietoris Sequence

Let K ′ and K ′′ be subcomplexes such that K = K ′ ∪ K ′′ and let
L = K ′ ∩ K ′′. There is an exact sequence of reduced homology groups
called the Mayer-Vioteris sequence.

· · · −→ H̃i (L)
λi−→ H̃i (K

′)⊕ H̃i (K
′′) −→ H̃i (K ) −→ H̃i−1(L)

λi−1−→
H̃i−1(K ′)⊕ H̃i−1(K ′′) −→ · · · −→H̃0(K ) −→ 0

Short exact sequence:

0 −→ cokλi −→ H̃i (K ) −→ ker λi−1 −→ 0
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Mayer-Vietoris Sequence

Ni = ker λi , β(Ni ) is its dimension.

βi (K ) = β(cokλi ) + β(ker λi−1)

= β(H̃i (K
′)⊕ H̃i (K

′′)/ imλi ) + β(Ni−1)

= βi (K
′) + βi (K

′′)− βi (L) + β(Ni ) + β(Ni−1)

(1)

Suppose v is a vertex of G , take K = I (G ), K ′ = I (G − v),
K ′′ = I (G − N(v)) and L = IG (v | ∅).

If H has an isolated vertex, then b(H) = 0.

b̃i (G ) = b̃i (∅ | v)− b̃i (v | ∅) + β(Ni ) + β(Ni−1), ∀i . (2)

β(Ni ) ≤ b̃i (v | ∅), ∀i . (3)
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Proof of Main Theorem

Theorem

If b(G ) ≥ 2 and b(H) ≤ 1 for every induced subgraph H of G, then
G = C3k for some integer k.

b(X |Y ) = 0 or 1 if X ∪ Y 6= ∅.
If b(H) = 1 for some graph H, let d(H) be the dimension of the
reduced Betti number taking value 1. d(H) = i if b̃i (H) = 1 and
b̃j(H) = 0 for j 6= i .

If b(H) = 0, let d(H) be ’∗’.
If X is not independent, let d(X |Y ) = ∗.
If H is null graph, let d(H) = −1.

Wentao Zhang (FDU) Betti Number of Ternary Graphs March 4, 2022 8 / 21



Proof of Main Theorem

Lemma 1

For any disjoint vertex set X and Y in G with X ∪ Y 6= ∅ and a vertex v
not in X or Y , the triple (d(X |Y ), d(v), d(v)) fits into one of the
following four patterns: (k , ∗, k), (∗, ∗, ∗), (∗, k, k) and (k + 1, k , ∗) for
some integer k .

(X ,Y ) k ∗ ∗ k + 1

(X ∪ {v} |Y ) (X |Y ∪ {v}) ∗ k ∗ ∗ k k k ∗
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Proof of Main Theorem

Lemma 2

Suppose X ,Y are vertex set of G with d(X |Y ) = k for some integer k . If
v1, v2 are two vertices not in X ∪ Y with d(v1} = k − 1 and d(v2) = ∗,
then d(v1, v2) = ∗.
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Proof of Main Theorem

Lemma 3

There is some k ≥ 0 such that b̃k(G ) = 2 and b̃i (G ) = 0 for all i 6= k .
Furthermore, for every vertex v , d(v | ∅) = k − 1 and d(∅ | v) = k .
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Proof of Main Theorem

Lemma 3

There is some k ≥ 0 such that b̃k(G ) = 2 and b̃i (G ) = 0 for all i 6= k .
Furthermore, for every vertex v , d(v | ∅) = k − 1 and d(∅ | v) = k .

(|X |, |Y |):

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

...

(t, 0) (t−1,1) · · · · · · (1,t−1) (0, t)

d(X |Y ):

k−1 l

k−2 l

k−3 l

∗

∗ ∗

...

k−t ∗ · · · · · · ∗ l
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Proof of Main Theorem

Construct a new graph H on V (G ) such that u, v are adjacent if and only
if d(u, v | ∅) = k − 2.

Proposition 4

In H, any two vertices u, v satisfies

1 If u ∼ v in H, then u � v in G . That is, E (G ) ∩ E (H) = ∅.
2 If u ∼ v in H, then d(u, v | ∅) = k − 2, d(u | v) = d(v | u) = ∗, and

d(∅ | u, v) = k,

3 If u � v in H, then d(u, v | ∅) = d(∅ | u, v) = ∗, and
d(u | v) = d(v | u) = k − 1.

Wentao Zhang (FDU) Betti Number of Ternary Graphs March 4, 2022 15 / 21



Proof of Main Theorem

Lemma 5

Every component C of H is a complete graph. Furthermore, for any
disjoint subsets X and Y of V (C ) with X ∪ Y 6= ∅, we have

d(X |Y ) =


k − |X |, Y = ∅,
∗, X ,Y 6= ∅,
k , X = ∅.
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Proof of Main Theorem

Claim 6

There does not exist a vertex v with all neighbors in G located in one
component of H.
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Proof of Main Theorem

Lemma 7

There do not exist two edges v1v2, v3v4 in G , with v1, v2, v3, v4 located in
four distinct components of H.

(|X |, |Y |):

(1, 0) (0, 1)

(2, 0) (1, 1) (0, 2)

(3, 0) (2, 1) (1, 2) (0, 3)

(4, 0) (3, 1) (2, 2) (1, 3) (0, 4)

d(X |Y ):

k−1 k

∗ k−1 ∗

∗ ∗ k−1 k−1

∗ ∗ ∗ ?
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Proof of Main Theorem

Theorem

If b(G ) ≥ 2 and b(H) ≤ 1 for every induced subgraph H of G, then
G = C3k for some integer k.
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The End
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