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Notations

1 For an integer n ≥ 1, denote by [n] the set {1, 2, ..., n}.

2 All graphs considered are finite, undirected and simple.

3 Let G[A] denote the subgraph induced on vertex set A, i.e. E(G[A])
consists of all edges in E(G) with both endpoints in A.

4 For any vertex subset U ⊆ V(G), denote N(U) := ∩v∈UN(v).
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Notations

1 A complete graph on t vertices, denoted by Kt, is a graph in which
every pair of vertices forms an edge.

2 A complete bipartite graph on vertex set X ∪ Y, denoted by K|X|,|Y|,
is a graph in which two vertices form an edge if and only if one of
them is in X and the other one is in Y.

3 A graph G = (V,E) is r-partite if the vertex set V can be partitioned
into r disjoint sets V1,V2, ...,Vr such that each Vi, 1 ≤ i ≤ r, is an
independent set.

4 The blow-up of a graph is obtained by replacing every vertex with a
finite collection of copies so that the copies of two vertices are
adjacent if and only if the originals are.
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Notation: Turán numbers

We say that G is H-free if G does not contain H as a subgraph.

Definition 1.1
The Turán number of H, denoted by ex(n,H), is the maximum number of
edges an n-vertex H-free graph can have. And let EX(n,H) denote the set
of those n-vertex H-free graph(s) with ex(n,H) edges.
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Notation: Turán graphs

Definition 1.2
The unique complete p-partite graphs on n ≥ p vertices whose partition
sets differ in size by at most 1 are called Turán graphs; we denote them by
Tp(n) and their number of edges by tp(n). For all n ≤ p, Tp(n) = Kn.

Figure 1. T3(8).
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Theorem: Turán number for cliques

Theoerm 1.3 (Mantel, 1907)
ex(n,K3) = ⌊n2

4 ⌋ and EX(n,K3) = {T2(n)}.

Theorem 1.4 (Turán, 1941)
For all integers p ≥ 2,

ex(n,Kp+1) = tp(n)

and
EX(n,Kp+1) = {Tp(n)}
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Introduction: Clique-saturating edges

Definition 2.1
For p ≥ 2, let G be a Kp+1-free graph and e be a non-edge of G (i.e., an
edge in the complement of G). We say e is a Kp+1-saturating edge of G, if
G + e contains a copy of Kp+1.

Note that a Kp+1-free graph G is maximal if and only if every
non-edge of G is a Kp+1-saturating edge (let us call this property ⋆).

So in other words, Turán’s Theorem determines the maximum number
of edges e(G) over all Kp+1-free graphs G satisfying the property ⋆.
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Introduction: Clique-saturating edges
On the other hand, Zykov (1949) and independently Erdős, Hajnal
and Moon (1964) determined the minimum number e(G) over all
n-vertex Kp+1-free graphs G satisfying the property ⋆.

Figure 2. The n-vertex complement graph of Kn−p+1.
Jialin He (USTC) Minimum number of clique-saturating edges June 10, 2022 12 / 52
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Introduction: Kp+1-saturating edges

Definition 2.2
For a Kp+1-free graph G, let fp+1(G) denote the number of
Kp+1-saturating edges of G. Let fp+1(n,m) be the minimum number of
Kp+1-saturating edges of an n-vertex Kp+1-free graph with m edges.

Note that, for 0 ≤ m ≤ ex(n,Kp+1)− 1,

fp+1(n,m + 1) ≥ fp+1(n,m).

By Turán’s theorem, we also have

fp+1(n, ex(n,Kp+1)) =

(
n
2

)
− ex(n,Kp+1) ∼

n2

2p .
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Properties of fp+1(n,m)

Moreover, for all integers p ≥ 3, the example of the Turán graph
Tp−1(n) shows that

fp+1(n,m) = 0 for all 0 ≤ m ≤ ex(n,Kp).

Figure 3. The Turán graph T2(n).

What is the value of fp+1(n, ex(n,Kp) + 1)?
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Erdős and Tuza’s Conjecture on K4-saturating edges
Erdős and Tuza (1990) proved that f4(n, ⌊n2

4 ⌋+ 1) ≥ cn2 for some
constant c > 0. And they also made the following conjecture.

Conjecture 2.3 (Erdős and Tuza, 1990).

f4
(

n,
⌊

n2
4

⌋
+ 1

)
= (1 + o(1)) n2

16 .

Figure 4. A K4-free graph H with e(H) = ⌊n2
4 ⌋+ 1 and

f4(H) = (1 + o(1)) n2
16 .
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Balogh and Liu’s Theorem on K4-saturating edges

This however was disproved by Balogh and Liu (2014), where they
constructed an n-vertex K4-free graph with ⌊n2

4 ⌋+ 1 edges and with
only (1 + o(1))2n2

33 K4-saturating edges.

Figure 5. A K4-free graph H with e(H) = n2/4 + n/66 and
f4(H) = 2n2/33 − 7n/33.
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Balogh and Liu’s Theorem on K4-saturating edges

Furthermore, Balogh and Liu showed that the above construction is
best possible.

Theorem 2.4 (Balogh and Liu, 2014).

f4(n, ⌊n2
4 ⌋+ 1) = (1 + o(1)) 2n2

33 .
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Balogh and Liu’s Conjecture on Kp+1-saturating edges

Balogh and Liu also made an explicit conjecture for general p
suggested by a natural generalization of their K4-free construction.

Conjecture 2.5 (Balogh and Liu, 2014).
For all integers p ≥ 3,

fp+1
(
n, ex(n,Kp) + 1

)
=

(
2(p − 2)2

p(4p2 − 11p + 8) + o(1)
)

n2.
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Our results on Kp+1-saturating edges

The main result of our paper is to prove the above conjecture of
Balogh and Liu.

Theorem 3.1 (H., Ma, Ma and Ye, 2022+).

For all integers p ≥ 3, fp+1
(
n, ex(n,Kp) + 1

)
=

(
2(p−2)2

p(4p2−11p+8) + o(1)
)

n2.
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Our results on Kp+1-saturating edges

Most of the paper will be devoted to the lower bound of the following
theorem. Note that for any integer p ≥ 3, fp+1(G) = 0 holds for
G = Tp−1(n).

Theorem 3,2 (H., Ma, Ma and Ye, 2022+).
Let p ≥ 3 and n ≥ 8p5 be integers. Let G be the family consisting of all
n-vertex Kp+1-free graphs with exactly ex(n,Kp) edges. Then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n + Op(1).

In addition, if n is divisible by p(p − 1)(4p2 − 11p + 8), then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n.
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The proof ideas of Theorems 3.1 and 3.2

Theorem 3.1 (H., Ma, Ma and Ye, 2022+).

For all integers p ≥ 3, fp+1
(
n, ex(n,Kp) + 1

)
=

(
2(p−2)2

p(4p2−11p+8) + o(1)
)

n2.

Theorem 3,2 (H., Ma, Ma and Ye, 2022+).
Let p ≥ 3 and n ≥ 8p5 be integers. Let G be the family consisting of all
n-vertex Kp+1-free graphs with exactly ex(n,Kp) edges. Then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n + Op(1).

In addition, if n is divisible by p(p − 1)(4p2 − 11p + 8), then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n.
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The constructions for the upper bounds
These graphs are suggested by Balogh and Liu, each of which is an
appropriate blow-up of the following graph: take a complete
(p − 1)-partite graph K = K2,...,2 and add a new vertex by making it
adjacent to exactly one vertex in each partite set of K.

Figure 6. The graph used to construct the upper bounds.
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The upper bound of Theorem 3.2

In the rest of this section, for convenience, we assume that
n = p(p − 1)(4p2 − 11p + 8)x.

We will construct an n vertices, Kp+1-free graph H0, with exactly
ex(n,Kp) edges and

fp+1(H0) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
p(4p2 − 11p + 8)n.
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The upper bound of Theorem 3.2

V0

V1 V2 Vp−2 Vp−1

U1 U2 Up−2 Up−1

2(p − 1)(p − 2)2x

4(p − 1)2(p − 2)x 4(p − 1)2(p − 2)x

p(3p − 4)xp(3p − 4)x

H0

Figure 7. Constructions for the upper bounds of Theorems 3.1 and 3.2.
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The upper bound of Theorem 3.2

We can check that H0 is Kp+1-free on n = p(p − 1)(4p2 − 11p + 8)x
vertices with ex(n,Kp) =

p−2
2(p−1) · p2(p − 1)2(4p2 − 11p + 8)2x2 edges.

The only Kp+1-saturating edges are the pairs in Vi for 0 ≤ i ≤ p − 1. This
leads to

fp+1(H0) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n,

completing the proof for the upper bound.

The construction for the upper bound of Theorem 3.1 is quite similar
to the one above. The only differences are the sizes of the parts in
the blow-up.
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Proof of Theorem 3.1

Proof.
In this section, assuming Theorem 3.2, we complete the proof of Theorem
3.1. It suffices to prove the lower bound. Let G be a Kp+1-free graph with
ex(n,Kp) + 1 edges. By Turán’s Theorem, G contains a copy of Kp. Let G′

be obtained from G by removing a single edge such that G′ still contains a
Kp. Then G′ is Kp+1-free with ex(n,Kp) edges. As G′ contains a Kp, it
cannot be the Turán graph Tp−1(n). By Theorem 3.2, we have

fp+1(G) ≥ fp+1(G′) ≥ 2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n + Op(1),

finishing the proof of Theorem 3.1.
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The proof of Theorem 3.2

Theorem 3,2 (H., Ma, Ma and Ye, 2022+).
Let p ≥ 3 and n ≥ 8p5 be integers. Let G be the family consisting of all
n-vertex Kp+1-free graphs with exactly ex(n,Kp) edges. Then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n + Op(1).

In addition, if n is divisible by p(p − 1)(4p2 − 11p + 8), then

min
G∈G\{Tp−1(n)}

fp+1(G) =
2(p − 2)2

p(4p2 − 11p + 8)n2 − (p − 2)(2p − 3)
4p2 − 11p + 8 n.

Jialin He (USTC) Minimum number of clique-saturating edges June 10, 2022 31 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof idea of the lower bound of Theorem 3.2

Let G be any n-vertex Kp+1-free graph with ex(n,Kp) edges, but not
the (p − 1)-partite Turán graph Tp−1(n).

Here, for convenience, we assume that n is divisible by
p(p − 1)(4p2 − 11p + 8).

It suffices to show that fp+1(G) is bounded from below by the desired
formula (fp+1(G) ≥ 2(p−2)2

p(4p2−11p+8)n
2 − (p−2)(2p−3)

4p2−11p+8 n).
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Proof idea of the lower bound of Theorem 3.2

Following the approach of Balogh and Liu, we partition the vertex set
of G into two parts V(R) and its complement V(G)\V(R), where R
is a maximum family of vertex-disjoint Kp’s in G and V(R) denotes
the set of all vertices contained in R.
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Proof idea of the lower bound of Theorem 3.2

Figure 8. Two types of Kp+1-saturating edges of G.

The problem is that when p is getting bigger, the complexity of
computations based on these estimations will be difficult to handle.
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Proof idea of the lower bound of Theorem 3.2
A key motivation for us comes after Lemma 4.4 (we will see later), which
roughly says that for any p-clique R in R, as long as there are enough
edges between R and V(G)\V(R), any p − 1 vertices of R have some
common neighbors in V(G)\V(R) (it can even be set up as Ω(1) many if
required).
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Proof idea of the lower bound of Theorem 3.2

We now partition V(G) into two parts V(R) and V(G)\V(R) satisfying the
following conditions

(i). R is a maximum family of vertex-disjoint Kp’s in G, and

(ii). subject to (i), the remaining graph HR = G\V(R) has the maximum
number of edges.

Let |R| := rn. Since G contains a Kp, we have

1/n ≤ r ≤ 1/p. (1)
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following conditions

(i). R is a maximum family of vertex-disjoint Kp’s in G, and

(ii). subject to (i), the remaining graph HR = G\V(R) has the maximum
number of edges.

Let |R| := rn. Since G contains a Kp, we have

1/n ≤ r ≤ 1/p. (1)
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Proof idea of the lower bound of Theorem 3.2

We now partition V(G) into two parts V(R) and V(G)\V(R) satisfying the
following conditions

(i). R is a maximum family of vertex-disjoint Kp’s in G, and

(ii). subject to (i), the remaining graph HR = G\V(R) has the maximum
number of edges.

Let |R| := rn. Since G contains a Kp, we have

1/n ≤ r ≤ 1/p. (1)
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Key Lemma
The following lemma is key in our proof. It shows that by the choice of R
and HR, there are enough many edges incident to new p-cliques obtained
from some R ∈ R by switching some vertices in R with vertices in HR of
equal size.

Lemma 4.1 (Key Lemma)
Let R ∈ R be a p-clique and C be a subclique of R. If there exists a clique
C′ in HR of equal size as C such that R′ := (R\C) ∪ C′ remains a clique in
G, then R′ := (R\{R}) ∪ {R′} is also a maximum family of vertex-disjoint
Kp’s in G with e(R′,HR′) ≥ e(R,HR), where HR′ = G\V(R′).

R HR

CR\C C′ HR\C′

Figure 9. The proof of Lemma 4.1.
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Proof of the key lemma

Proof.
First observe that R′ is also a maximum family of rn vertex-disjoint Kp’s.
Let HR′ = G\V(R′). So HR′ = (HR\C′) ∪ C (see Figure 9). By (ii), we
have e(HR) ≥ e(HR′). Since e(C′) = e(C),

e(HR) = e(C′) + e(C′,HR\C′) + e(HR\C′) and
e(HR′) = e(C) + e(C,HR\C′) + e(HR\C′),

it follows that
e
(
C′,HR\C′) ≥ e

(
C,HR\C′) .

Therefore, as e(R\C,C′) = e(R\C,C), one can derive that

e(R′,HR′)− e(R,HR) = e
(
C′,HR\C′)− e

(
C,HR\C′) ≥ 0.

This completes the proof of Lemma 4.1.
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Proof idea of the lower bound of Theorem 3.2
For any p-clique R ∈ R and 0 ≤ j ≤ p, we let

Zj(R) = {all vertices in HR that has exactly j neighbors in V(R)}
and zj(R) := |Zj(R)|/n.

By the assumption that G is Kp+1-free, it is clear that Zp(R) = ∅.
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Proof idea of the lower bound of Theorem 3.2
We will also need to consider a refined partition of Zp−1(R) as follows. Let
{v1, v2, ..., vp} represent the vertex set of a given p-clique R ∈ R. For any
i ∈ [p], define

Ai(R) := NHR(R\{vi})
to be the common neighborhood of V(R)\{vi} in V(HR).
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Proof idea of the lower bound of Theorem 3.2

Let us observe that Ai(R)’s are pairwise vertex-disjoint independent sets in
Zp−1(R) (for otherwise

(∪
i Ai(R)

)
∪ R would contain a copy of Kp+1, a

contradiction to G is Kp+1-free). In particular, we have
p∑

i=1
|Ai(R)|/n = zp−1(R). (2)

It is crucial to see that every non-edge inside each Ai(R) is a
Kp+1-saturating edge in HR = G\V(R).
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Proof idea of the lower bound of Theorem 3.2

Let us observe that Ai(R)’s are pairwise vertex-disjoint independent sets in
Zp−1(R) (for otherwise

(∪
i Ai(R)

)
∪ R would contain a copy of Kp+1, a

contradiction to G is Kp+1-free). In particular, we have
p∑

i=1
|Ai(R)|/n = zp−1(R). (2)

It is crucial to see that every non-edge inside each Ai(R) is a
Kp+1-saturating edge in HR = G\V(R).
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Proof idea of the lower bound of Theorem 3.2
Next we give three technical lemmas and we should emphasize in advance
that these lemmas hold for any family R solely satisfying the condition (i).

The first one says that for any family R satisfying the condition (i), there
is a R∗ ∈ R such that e(R∗,HR) and zp−1(R∗) are large.

Lemma 4.2
Suppose that R is under the condition (i) and HR = G\V(R). Then there
exists a p-clique R∗ ∈ R such that

e(R∗,HR) ≥
(

p(p − 2)
p − 1 − p(2p2 − 4p + 1)

2(p − 1) r
)

n. (3)

Moreover, for any R∗ ∈ R satisfying (3), it holds that

zp−1(R∗) ≥ p − 2
p − 1 − p(2p − 3)

2(p − 1) r. (4)
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Proof idea of the lower bound of Theorem 3.2
Next we give three technical lemmas and we should emphasize in advance
that these lemmas hold for any family R solely satisfying the condition (i).

The first one says that for any family R satisfying the condition (i), there
is a R∗ ∈ R such that e(R∗,HR) and zp−1(R∗) are large.

Lemma 4.2
Suppose that R is under the condition (i) and HR = G\V(R). Then there
exists a p-clique R∗ ∈ R such that

e(R∗,HR) ≥
(

p(p − 2)
p − 1 − p(2p2 − 4p + 1)

2(p − 1) r
)

n. (3)

Moreover, for any R∗ ∈ R satisfying (3), it holds that

zp−1(R∗) ≥ p − 2
p − 1 − p(2p − 3)

2(p − 1) r. (4)
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Proof idea of the lower bound of Theorem 3.2

Denote by ℓR1 the number of Kp+1-saturating edges incident to V(R), and
by ℓR2 the number of Kp+1-saturating edges in HR. Obviously
fp+1(G) = ℓR1 + ℓR2 .
The lemma below gives a lower bound on ℓR1 , which in particular shows
that Theorem 3.2 holds in case r is close to 1/p.

Lemma 4.3
Suppose that R is under the condition (i). Then

ℓR1 ≥
(

p − 2
p − 1 r − p(p − 2)

2(p − 1) r2
)

n2 − pr
2 n.

Moreover, if r > 2(p−2)(2p−3)
p(4p2−11p+8) , then Theorem 3.2 holds.
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Denote by ℓR1 the number of Kp+1-saturating edges incident to V(R), and
by ℓR2 the number of Kp+1-saturating edges in HR. Obviously
fp+1(G) = ℓR1 + ℓR2 .
The lemma below gives a lower bound on ℓR1 , which in particular shows
that Theorem 3.2 holds in case r is close to 1/p.

Lemma 4.3
Suppose that R is under the condition (i). Then

ℓR1 ≥
(

p − 2
p − 1 r − p(p − 2)

2(p − 1) r2
)

n2 − pr
2 n.

Moreover, if r > 2(p−2)(2p−3)
p(4p2−11p+8) , then Theorem 3.2 holds.

Jialin He (USTC) Minimum number of clique-saturating edges June 10, 2022 43 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof idea of the lower bound of Theorem 3.2

The next lemma says that for any R∗ ∈ R satisfying the conclusion of
Lemma 4.2, one may assume that the set Ai(R∗) for every i ∈ [p] is
non-empty.

Lemma 4.4
Suppose that R is under the condition (i). Let R∗ ∈ R be any clique
satisfying (3). If there exists some i ∈ [p] such that Ai(R∗) = ∅, then we
can get that

ℓR2 ≥ (2(p − 2)− p(2p − 3)r)2

8(p − 1)3 n2 − 2(p − 2)− p(2p − 3)r
4(p − 1) n,

and Theorem 3.2 holds.
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Proof idea of the lower bound of Theorem 3.2

The next lemma says that for any R∗ ∈ R satisfying the conclusion of
Lemma 4.2, one may assume that the set Ai(R∗) for every i ∈ [p] is
non-empty.

Lemma 4.4
Suppose that R is under the condition (i). Let R∗ ∈ R be any clique
satisfying (3). If there exists some i ∈ [p] such that Ai(R∗) = ∅, then we
can get that

ℓR2 ≥ (2(p − 2)− p(2p − 3)r)2
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Proof of the key lemma
Finally we are ready to finish the proof of Theorem 3.2. By Lemma 4.4,
for any R satisfying the condition (i) and for any R0 ∈ R satisfying (3),
we may assume that Ai(R0) ̸= ∅ for each i ∈ [p], i.e., any p − 1 vertices in
V(R0) have at least one common neighbor in HR = G\V(R).

Figure 10. The structure between R and NHR(R).
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Proof idea of the lower bound of Theorem 3.2

Let R∗ ∈ R be the p-clique obtained from Lemma 4.2. So R∗ satisfies
(3).

Let C be a clique in HR of maximum size such that R∗ ∪ C contains a
p-clique R′ in G covering all the vertices of C.

Since Ai(R∗) ̸= ∅ for each i ∈ [p], such a clique C exists in HR (for
instance, one can just take one vertex in A1(R∗)).

Let V(R∗) = {v1, ..., vp} and V(C) = {x1, ..., xc} for some integer
c ≥ 1. Without loss of generality we may assume that

V(R′) = {x1, ..., xc, vc+1, ..., vp}.
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Proof idea of the lower bound of Theorem 3.2

Let R∗ ∈ R be the p-clique obtained from Lemma 4.2. So R∗ satisfies
(3).

Let C be a clique in HR of maximum size such that R∗ ∪ C contains a
p-clique R′ in G covering all the vertices of C.

Since Ai(R∗) ̸= ∅ for each i ∈ [p], such a clique C exists in HR (for
instance, one can just take one vertex in A1(R∗)).

Let V(R∗) = {v1, ..., vp} and V(C) = {x1, ..., xc} for some integer
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Proof idea of the lower bound of Theorem 3.2

Let R∗ ∈ R be the p-clique obtained from Lemma 4.2. So R∗ satisfies
(3).

Let C be a clique in HR of maximum size such that R∗ ∪ C contains a
p-clique R′ in G covering all the vertices of C.

Since Ai(R∗) ̸= ∅ for each i ∈ [p], such a clique C exists in HR (for
instance, one can just take one vertex in A1(R∗)).
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Proof idea of the lower bound of Theorem 3.2

Let R∗ ∈ R be the p-clique obtained from Lemma 4.2. So R∗ satisfies
(3).

Let C be a clique in HR of maximum size such that R∗ ∪ C contains a
p-clique R′ in G covering all the vertices of C.

Since Ai(R∗) ̸= ∅ for each i ∈ [p], such a clique C exists in HR (for
instance, one can just take one vertex in A1(R∗)).

Let V(R∗) = {v1, ..., vp} and V(C) = {x1, ..., xc} for some integer
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Proof idea of the lower bound of Theorem 3.2

Figure 11. The structure of R∗ and R′.
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Proof idea of the lower bound of Theorem 3.2

In what follows, we should complete the proof by deriving the final
contradiction that c ≥ p.

Suppose that c ≤ p − 1. In this case, we are always able to find a
clique in HR of larger size than C and satisfying the above conditions
required for C.

To see this, let R′ = (R\{R∗}) ∪ {R′} and HR′ = G\V(R′).

So R′ also satisfies the condition (i) and

V(HR′) = (V(HR)\{x1, . . . , xc}) ∪ {v1, . . . , vc}.
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In what follows, we should complete the proof by deriving the final
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Suppose that c ≤ p − 1. In this case, we are always able to find a
clique in HR of larger size than C and satisfying the above conditions
required for C.
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V(HR′) = (V(HR)\{x1, . . . , xc}) ∪ {v1, . . . , vc}.

Jialin He (USTC) Minimum number of clique-saturating edges June 10, 2022 48 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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In what follows, we should complete the proof by deriving the final
contradiction that c ≥ p.

Suppose that c ≤ p − 1. In this case, we are always able to find a
clique in HR of larger size than C and satisfying the above conditions
required for C.

To see this, let R′ = (R\{R∗}) ∪ {R′} and HR′ = G\V(R′).

So R′ also satisfies the condition (i) and

V(HR′) = (V(HR)\{x1, . . . , xc}) ∪ {v1, . . . , vc}.

Jialin He (USTC) Minimum number of clique-saturating edges June 10, 2022 48 / 52



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof idea of the lower bound of Theorem 3.2

Applying Lemma 4.1 with the clique R therein being R∗, we know that

e(R′,HR′) ≥ e(R∗,HR) ≥
(

p(p − 2)
p − 1 − p(2p2 − 4p + 1)

2(p − 1) r
)

n,

where the last inequality holds as R∗ satisfies (3). That says, R′ ∈ R′

also satisfies (3).

As discussed earlier, by Lemma 4.4, any p − 1 vertices in V(R′) have
at least one common neighbor in HR′ .

In particular, there exists a vertex y ∈ V(HR′) such that it is not
adjacent to vp but is adjacent to all other vertices of V(R′).
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Proof idea of the lower bound of Theorem 3.2

Figure 12. Find a larger clique than C satisfying the condition.
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Proof idea of the lower bound of Theorem 3.2

Obviously, y /∈ {v1, . . . , vc}, since vivp ∈ E(G) for each i ∈ [c]. So it
must be the case that y ∈ V(HR)\{x1, . . . , xc}.

Now let C′ = {x1, . . . , xc, y} ⊆ V(HR).

Then C′ is a clique in HR of size larger than C such that
C′ ∪ {vc+1, . . . , vp−1} is a p-clique contained in R∗ ∪ C′ and covering
all vertices of C′.

This is a contradiction to our choice of C. Therefore, we must have
that c ≥ p.

However, it is also a contradiction to the fact that HR is Kp-free,
which complets the proof of Theorem 3.2.
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Thanks for your attention!
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