Outline

An Introduction to DP color functions

Meigiao Zhang

A joint work with Fengming Dong

3 March, 2023

• Proper coloring, list coloring and DP coloring

• Research on DP color functions

Research on DP color functions

Notations

- ▶ G = (V(G), E(G)).
- \triangleright N: the set of positive integers.
- $ightharpoonup \forall m \in \mathbb{N}, \text{ let } [m] := \{1, 2, \dots, m\}.$
- \triangleright Note: in this talk, m doesn't represent the number of edges.

Proper coloring, list coloring and DP coloring

Research on DP color functions

Proper coloring

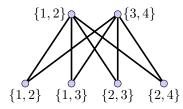
- ▶ A **proper coloring**: a mapping $c: V(G) \to \mathbb{N}$, such that $c(u) \neq c(v)$ for all $uv \in E(G)$.
- ▶ A **proper** m**-coloring**: a proper coloring c with $c(u) \in [m]$ for all $u \in V(G)$.

Figure: Two proper 2-colorings of C_4

▶ The **chromatic polynomial** P(G, m): the number of proper m-colorings, for each $m \in \mathbb{N}$.

List coloring

- ► Introduced by Vizing and Erdős, Rubin, Taylor independently.
- An *m*-list assignment L: a mapping L from V(G) to $2^{\mathbb{N}}$, such that |L(v)| = m holds for all $v \in V(G)$.
- **Examples:**



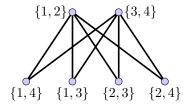


Figure: 2-list assignments of $K_{2,4}$

 $ightharpoonup L(v) := [m] \text{ for all } v \in V(G).$

Research on DP color function

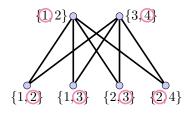
List coloring

- ightharpoonup P(G, L): the number of L-colorings.
- ▶ The **list color function** $P_l(G, m)$: the minimum value of P(G, L) among all m-list assignments L, for each $m \in \mathbb{N}$.
- ▶ By definition,

$$P_l(G, m) \le P(G, m), \ \forall \ m \in \mathbb{N}.$$
 (1)

List coloring

- An *L*-coloring: a proper coloring c with $c(v) \in L(v)$ for all $v \in V(G)$.
- **Examples:**



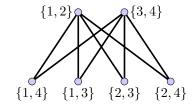


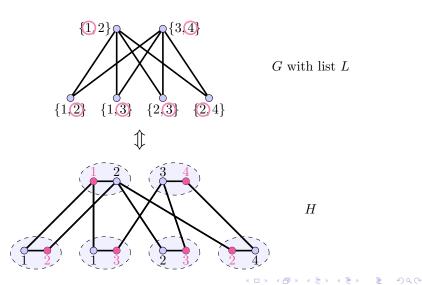
Figure: $K_{2,4}$ with a 2-list assignment L

▶ for the L with L(v) = [m] for all $v \in V(G)$, each proper m-coloring is an L-coloring.

Research on DP color function

From list coloring to DP coloring

▶ Introduced by Dvořák and Postle in 2018.



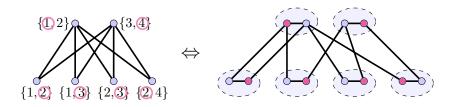
DP coloring

- ▶ $E_G(U, V) := \{uv \in E(G) : u \in U, v \in V\}.$
- ▶ An *m*-fold cover: an ordered pair $\mathcal{H} = (L, H)$, where H is a graph and L is a mapping from V(G) to $2^{V(H)}$ satisfying the conditions below:
 - for every $u \in V(G)$, L(u) is an m-clique in H,
 - the set $\{L(u): u \in V(G)\}$ is a partition of V(H),
 - if $uv \notin E(G)$, then $E_H(L(u), L(v)) = \emptyset$, and
 - if $uv \in E(G)$, then $E_H(L(u), L(v))$ is a matching.

Research on DP color function

DP coloring

- ▶ For every m-list assignment L, there is a corresponding m-fold cover $\mathcal{H} = (L', H)$:
 - $V(H) = \bigcup_{u \in V(G)} L'(u),$
 - $L'(u) = \{(u, i) : i \in L(u)\}$ for every $u \in V(G)$, and
 - $(u,i)(v,j) \in E(H)$ iff u=v, or $uv \in E(G)$ and i=j.



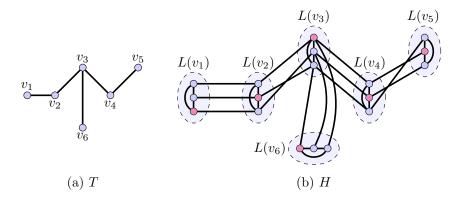
(a) an L-coloring

(b) an \mathcal{H} -coloring

4日 → 4周 → 4 三 → 4 三 → 9 Q ○

DP coloring

T with a 3-fold cover $\mathcal{H} = (L, H)$.



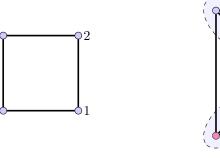
▶ an \mathcal{H} -coloring: an independent set in H with size |V(G)|.

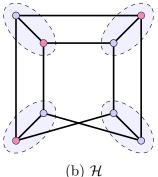
Proper coloring, list coloring and DP coloring 00000000000000000

Research on DP color function

DP coloring

 C_4 with a 2-fold cover $\mathcal{H} = (L, H)$.





DP coloring

- $ightharpoonup P(G,\mathcal{H})$: the number of \mathcal{H} -colorings.
- ▶ The **DP color function** $P_{DP}(G, m)$: the minimum value of $P(G, \mathcal{H})$ among all m-fold covers \mathcal{H} , for each $m \in \mathbb{N}$.
- ▶ By definition,

$$P_{DP}(G, m) \le P_l(G, m) \le P(G, m), \ \forall \ m \in \mathbb{N}.$$
 (2)

ightharpoonup Note that all the equalities in (2) hold when G is a chordal graph.

Research on DP color function

Three color functions

$$P_{DP}(G, m) \le P_l(G, m) \le P(G, m), \ \forall \ m \in \mathbb{N}.$$

F.M. Dong and M.Q. Zhang, 2023

 $P_l(G, m) = P(G, m)$ holds whenever $m \ge |E(G)| - 1$.

▶ However, the DP color functions of some graphs might not tend to be the same as their chromatic polynomials.

Kaul and Mudrock, 2019

If the girth of G is even, then there exists $M \in \mathbb{N}$, such that $P_{DP}(G, m) < P(G, m)$ for all integers $m \ge M$.

Three color functions

$$P_{DP}(G, m) \le P_l(G, m) \le P(G, m), \ \forall \ m \in \mathbb{N}.$$

Donner, 1992

 $P_l(G, m) = P(G, m)$ holds when m is sufficiently large.

Thomassen, 2009

 $P_l(G, m) = P(G, m)$ holds when $m > |V(G)|^{10}$.

Wang, Qian and Yan, 2017

 $P_l(G, m) = P(G, m)$ holds when $m > \frac{|E(G)|}{\log(1+\sqrt{2})} \approx 1.135(|E(G)|-1)$.

Research on DP color functions

Between $P_{DP}(G, m)$ and P(G, m)

- ▶ Therefore, two sets of graphs $\mathbf{DP}_{<}$ and \mathbf{DP}_{\approx} are naturally defined.
 - $DP_{<}$: the set of graphs G for which there is $M \in \mathbb{N}$ such that $P_{DP}(G, m) < P(G, m)$ holds for all integers $m \geq M$, and
 - DP_{\approx} : the set of graphs G for which there is $M \in \mathbb{N}$ such that $P_{DP}(G, m) = P(G, m)$ holds for all integers $m \geq M$.
- Note: a characterization of the graphs in set $DP_{<}$ or DP_{\approx} does not necessarily guarantee a characterization of the graphs in the other set.

Known results on $DP_{<}$

- ▶ For any $e \in E(G)$, let $C_G(e)$ be the set of shortest cycles in G containing e.
- ▶ The girth of edge e, denoted by $\ell_G(e)$:
 - ∞ if $\mathcal{C}_G(e) = \emptyset$;
 - the size of any cycle in $C_G(e)$ otherwise.

Dong and Yang, 2022

Graph G belongs to $DP_{<}$ if G contains an edge whose girth is even.

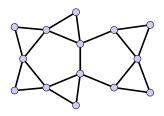
Proper coloring, list coloring and DP coloring

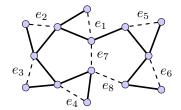
Research on DP color functions

Our results on DP_{\approx}

M.Q. Zhang and F.M. Dong, 2023

Graph G belongs to DP_{\approx} if G has a spanning tree T and a labeling e_1, \ldots, e_q of all the edges in $E(G) \setminus E(T)$, such that $\ell_G(e_1) \leq \cdots \leq \ell_G(e_q)$ and for each $i \in [q]$, $\ell_G(e_i)$ is odd and $E(C_{e_i}) \subseteq E(T) \cup \{e_1, \ldots, e_i\}$ holds for some $C_{e_i} \in \mathcal{C}_G(e_i)$.





(a) *G*

(b) T and an edge labeling

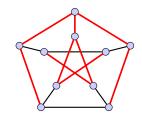
4□▶ 4個▶ 4厘▶ 4厘▶ 厘 9000

Known results on DP_{\approx}

▶ On the other hand, Mudrock and Thomason first showed that each graph with a dominating vertex belongs to DP_{\approx} .

Dong and Yang, 2022

Graph G belongs to DP_{\approx} if G has a spanning tree T such that for each edge e in $E(G) \setminus E(T)$, $\ell_G(e)$ is odd and there exists a cycle $C \in \mathcal{C}_G(e)$, where $\ell_G(e') < \ell_G(e)$ holds for each $e' \in E(C) \setminus (E(T) \cup \{e\})$.



4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Proper coloring, list coloring and DP colorin

Research on DP color functions

Our results on DP_{\approx}

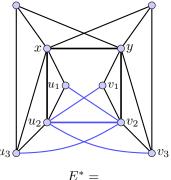
M.Q. Zhang and F.M. Dong, 2023

Let G be a graph with vertex set $\{v_i : i = 0, 1, ..., n\}$, where $n \ge 1$. If for each $i \in [n]$, the set $N(v_i) \cap \{v_j : 0 \le j \le i - 1\}$ is not empty and the subgraph of G induced by this vertex set is connected, then G is in DP_{\approx} .

▶ Immediately, many special classes of graphs belong to DP_{\approx} , such as complete k-partite graphs with $k \geq 3$ and plane near-triangulations.

Our results on $DP_{<}$

- ▶ For any $E^* \subseteq E(G)$, let $\mathcal{C}_G(E^*)$ be the set of shortest cycles C in G such that $|E(C) \cap E^*|$ is odd.
- ► The girth of edge set E^* , denoted by $\ell_G(E^*)$:
 - ∞ if $\mathcal{C}_G(E^*) = \emptyset$;
 - the size of any cycle in $C_G(E^*)$ otherwise.



 $E^* =$

 $\{u_1v_2, u_2v_1, u_2v_2, u_2v_3, u_3v_2\}$

$$\ell_G(E^*) = 4$$

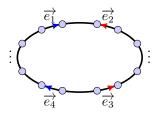
◆□▶ ◆■▶ ◆■▶ ● めへ○

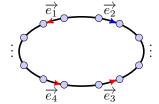
Proper coloring, list coloring and DP coloring

Research on DP color functions

Our results on $DP_{<}$

▶ For any cycle C, we say the directed edges in \overrightarrow{E}^* are balanced on C if $|E(C) \cap E^*|$ is even, and exactly half of the edges in $E(C) \cap E^*$ are oriented clockwise along C.





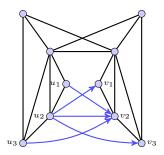
(a) Balanced

(b) Unbalanced

Figure: $\overrightarrow{E}^* = \{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4}\}\$

Our results on $DP_{<}$

▶ For any $E^* \subseteq E(G)$, assume that each e in E^* is assigned a direction \overrightarrow{e} and only edges in E^* are assigned directions.



▶ Let $\overrightarrow{E^*}$ be the set of directed edges \overrightarrow{e} for all $e \in E^*$.

$$\Rightarrow \overrightarrow{E^*} = \{\overrightarrow{u_1v_2}, \overrightarrow{u_2v_1}, \overrightarrow{u_2v_2}, \overrightarrow{u_2v_3}, \overrightarrow{u_3v_2}\}$$

Proper coloring, list coloring and DP coloring

Research on DP color functions

Our results on $DP_{<}$

M.Q. Zhang and F.M. Dong, 2023

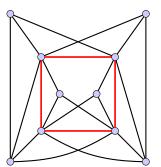
Let G be a connected graph and E^* be a set of edges in G. Assume that

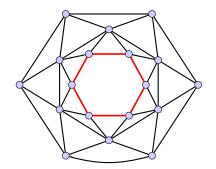
- 1. $\ell_G(E^*)$ is even; and
- 2. there exists a way to assign a direction \overrightarrow{e} for each edge $e \in E^*$ such that the directed edges in $\overrightarrow{E^*} = \{\overrightarrow{e} : e \in E^*\}$ are balanced on each cycle C of G with $|E(C)| < \ell_G(E^*)$.

Then $P(G, m) - P_{DP}(G, m) \ge \Omega(m^{|V(G)| - \ell_G(E^*) + 1})$ holds, and hence $G \in DP_{\le}$.

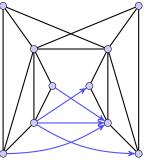
roper coloring, list coloring and DP coloring

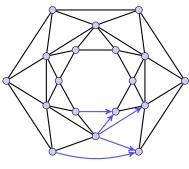
Our results on $DP_{<}$





Our results on $DP_{<}$





 $\ell_G(E^*) = 6$

M.Q. Zhang and F.M. Dong, 2023

Let G be any graph and let $E^* \subseteq E_G(V_1, V_2)$, where V_1 and V_2 are disjoint vertex subsets of V(G). If $\ell_G(E^*) = 4$, then $P(G, m) - P_{DP}(G, m) \ge \Omega(m^{n-3})$ holds, and hence $G \in DP_{<}$.

Research on DP color functions

roper coloring, list coloring and DP coloring

Future Research

Question

How to characterize the graphs in sets $DP_{<}$ and DP_{\approx} ?

Question

What is the property of an m-fold cover \mathcal{H} of G with $P(G,\mathcal{H}) = P_{DP}(G,m)$?

Question

Is there any graph not in $DP_{\leq} \cup DP_{\approx}$?

References 1

- F.M. Dong and Y. Yang, DP color functions versus chromatic polynomials, *Advances in Applied Mathematics* **134** (2022), article 102301.
- F.M. Dong and M.Q. Zhang, A lower bound of P(G, L) P(G, k) for any k-assignment L, J. Combin. Theory Ser. B (2023), https://doi.org/10.1016/j.jctb.2023.02.002.
- Q. Donner, On the number of list-colorings, J. Graph Theory 16 (1992) 239–245.
- Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, *J. Comb. Theory, Ser. B* **129** (2018), 38–54.
- H. Kaul and J.A. Mudrock, On the chromatic polynomial and counting DP-colorings of graphs, *Advances in Applied Mathematics* **123** (2021), article 103121.

References II

- J.A. Mudrock and S. Thomason, Answers to two questions on the DP color function, *Electron. J. Comb.* **28**(2) (2021), #P2.24.
- C. Thomassen, The chromatic polynomial and list colorings, Journal of Combinatorial Theory Series B 99 (2009), 474–479.
- W. Wang, J. Qian and Z. Yan, When does the list-coloring function of a graph equal its chromatic polynomial, *J. Comb. Theory*, Ser. B **122** (2017) 543–549.
- M.Q. Zhang and F.M. Dong, DP color functions versus chromatic polynomials (II), J. Graph Theory (2023), 1–22. https://doi.org/10.1002/jgt.22944.

