Non-repeated cycle lengths and Sidon sequences

Tianchi Yang
University of Science and Technology of China ytc@mail.ustc.edu.cn

Mar. 18, 2022

Overview

(1) Introduction
(2) Main result
(3) Sidon sequence

Introduction

See Bondy and Murty, Graph Theory with Applications, p.247, Problem 11.

Open Problem 1(Erdős, 1975)

Let $n+f(n)$ be the maximum possible number of edges in a graph on n vertices in which no two cycles have the same length. Determine $f(n)$.

Introduction

See Bondy and Murty, Graph Theory with Applications, p.247, Problem 11.

Open Problem 1(Erdős, 1975)

Let $n+f(n)$ be the maximum possible number of edges in a graph on n vertices in which no two cycles have the same length. Determine $f(n)$.

- $f(n) \geq\lfloor(\sqrt{8 n-15}-3) / 2\rfloor$. (Shi 1988)
- $f(n) \geq \sqrt{238 n / 99} \approx 1.55 \sqrt{n}$. (Lai 2020)
- $f(n) \leq 1.98 \sqrt{n}$. (Boros, Caro, Füredi and Yuster 2001)

$$
1.55 \sqrt{n} \leq f(n) \leq 1.98 \sqrt{n} .
$$

Introduction

The following upper bound is easy to get.

Theorem 1

$$
f(n) \leq 2 \sqrt{n}
$$

Proof:

Introduction

The following upper bound is easy to get.

Theorem 1

$$
f(n) \leq 2 \sqrt{n}
$$

Proof:

- Set $e=n+f(n)$.
- Let B be a set of edges chosen independently and uniformly at random from $E(G)$ with probability $1 / \sqrt{e}$.

Introduction

The following upper bound is easy to get.

Theorem 1

$$
f(n) \leq 2 \sqrt{n} .
$$

Proof:

- Set $e=n+f(n)$.
- Let B be a set of edges chosen independently and uniformly at random from $E(G)$ with probability $1 / \sqrt{e}$.
- Let $g(B)$ be the number of cycles in $G-B$.
- By deleting one edge in each cycle, we can get a graph with at most $n-1$ edges.
- Thus $e-|B|-g(B) \leq n-1$ for any B.

Introduction

Proof:

- The expectation $\mathbb{E}[|B|]=e \times 1 / \sqrt{e}=\sqrt{e}$.

Introduction

Proof:

- The expectation $\mathbb{E}[|B|]=e \times 1 / \sqrt{e}=\sqrt{e}$.
- A cycle $C_{k} \subseteq G-B$ with probability at most $(1-1 / \sqrt{e})^{k}$.
- So $\mathbb{E}[g(B)]=\sum_{k=3}^{+\infty}(1-1 / \sqrt{e})^{k}<\sqrt{e}$.

Introduction

Proof:

- The expectation $\mathbb{E}[|B|]=e \times 1 / \sqrt{e}=\sqrt{e}$.
- A cycle $C_{k} \subseteq G-B$ with probability at most $(1-1 / \sqrt{e})^{k}$.
- So $\mathbb{E}[g(B)]=\sum_{k=3}^{+\infty}(1-1 / \sqrt{e})^{k}<\sqrt{e}$.
- $\mathbb{E}[|B|+g(B)]=\mathbb{E}[|B|]+\mathbb{E}[g(B)]<2 \sqrt{e}$.
- We get $e \leq n-1+2 \sqrt{e} \leq n+2 \sqrt{n}$.

Introduction

Another interesting problem is to consider the restricted version of Erdős' problem for 2-connected graphs.

Problem 2
let $n+f_{2}(n)$ be the maximum number of edges in an n-vertex 2-connected graph in which no two cycles have the same length.
Determine $f_{2}(n)$.

Introduction

Another interesting problem is to consider the restricted version of Erdős' problem for 2-connected graphs.

Problem 2

let $n+f_{2}(n)$ be the maximum number of edges in an n-vertex 2 -connected graph in which no two cycles have the same length. Determine $f_{2}(n)$.

- $f_{2}(n) \leq \sqrt{2 n}+o(\sqrt{n})$. (Shi, 1988)
- $f_{2}(n) \geq \sqrt{n / 2}-o(\sqrt{n})$. (Chen, Lehel, Jacobson and Shreve, 1998)
- $f_{2}(n) \geq \sqrt{n}-o(\sqrt{n})$. (Boros, Caro, Füredi and Yuster, 2001)

The upper bound

Theorem 2 (Shi)

$$
f_{2}(n) \leq \sqrt{2 n}+o(\sqrt{n})
$$

Proof:

The upper bound

Theorem 2 (Shi)

$$
f_{2}(n) \leq \sqrt{2 n}+o(\sqrt{n})
$$

Proof:

- It is well known that a graph G is 2-connected if and only of it has an ear-decomposition.
- G has $f_{2}(n)$ ears.

The upper bound

Theorem 2 (Shi)

$$
f_{2}(n) \leq \sqrt{2 n}+o(\sqrt{n})
$$

Proof:

- It is well known that a graph G is 2-connected if and only of it has an ear-decomposition.
- G has $f_{2}(n)$ ears.
- G has at least $\frac{1}{2}\left(f_{2}(n)+1\right)\left(f_{2}(n)+2\right)$ cycles.

The upper bound

Theorem 2 (Shi)

$$
f_{2}(n) \leq \sqrt{2 n}+o(\sqrt{n})
$$

Proof:

- It is well known that a graph G is 2-connected if and only of it has an ear-decomposition.
- G has $f_{2}(n)$ ears.
- G has at least $\frac{1}{2}\left(f_{2}(n)+1\right)\left(f_{2}(n)+2\right)$ cycles.
- Since G has at most n cycles, then $f_{2}(n) \leq \sqrt{2 n}+o(\sqrt{n})$.

The lower bound

Definition

A sequence of integers $a_{1}, a_{2}, \ldots, a_{k}$ is called a Sidon sequence (or Sidon set, B_{2}-set) if all pairwise sums $a_{i}+a_{j}$ for $1 \leq i \leq j \leq k$ are distinct.

- Let $S(n)$ denote the maximum size of a Sidon subsequence of $\{1,2, \ldots, n\}$.
- It is well known that $S(n)=\sqrt{n}+o(\sqrt{n})$.
- The upper bound was proved by Erdős and Turán.
- The lower bound was provided by Singer.

The lower bound

Theorem 3 (Boros, Caro, Füredi and Yuster)

$$
f_{2}(n) \geq \sqrt{n}-O\left(n^{9 / 20}\right)
$$

Construct an n-vertex 2 -connected graph G as follows:

The lower bound

Theorem 3 (Boros, Caro, Füredi and Yuster)

$$
f_{2}(n) \geq \sqrt{n}-O\left(n^{9 / 20}\right)
$$

Construct an n-vertex 2 -connected graph G as follows: Let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E(G)$ consist of the edges in a Hamilton cycle $C=v_{0} v_{1} \ldots v_{n-1} v_{0}$ and the edges $v_{0} v_{a_{i}}$ for all $1<i<k$.

The lower bound

Theorem 3 (Boros, Caro, Füredi and Yuster)

$$
f_{2}(n) \geq \sqrt{n}-O\left(n^{9 / 20}\right) .
$$

Construct an n-vertex 2 -connected graph G as follows:
Let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E(G)$ consist of the edges in a Hamilton cycle $C=v_{0} v_{1} \ldots v_{n-1} v_{0}$ and the edges $v_{0} v_{a_{i}}$ for all $1<i<k$. Then

- Each cycle in G contains two edges incident to v_{0} (say $v_{0} v_{a_{i}}$ and $v_{0} v_{a_{j}}$) and the subpath of C between $v_{a_{i}}$ and $v_{a_{j}}$ not containing v_{0}.
- All cycle lengths in G are of the form $a_{j}-a_{i}+2$ for $1 \leq i<j \leq k$, which are pairwise distinct.

Our main result

Conjecture 4 (Boros, Caro, Füredi and Yuster, 2001)

$$
\lim _{n \rightarrow \infty} f_{2}(n) / \sqrt{n}=1
$$

Theorem 5 (Ma and Yang, 2021)

$$
f_{2}(n)=\sqrt{n}+o(\sqrt{n}) .
$$

A simple case

In the following case, all paths are 'well ordered'. Then we will prove that $s=f_{2}(n) \leq \sqrt{n}+o(\sqrt{n})$.
all paths are parallel

no

The paths are $g_{0}, g_{2}, \cdots, g_{s}$. By $g_{i} \Delta g_{j}$ we denote the subgraph consisting of the edges which appears in exactly one of g_{i} and g_{j}. We say $g_{i} \Delta g_{j}$ is a cycle of order $|j-i|$.

A simple case

Let L be the sum of length of cycles with order at most k. On the one hand:

- There are $(s-r)$ cycles with order r.
- The number of cycles with order at most $k(=o(s))$ is

$$
M=\sum_{r=1}^{k}(s-r) \approx s k
$$

- These cycles have different length. So

$$
L \geq 1+\cdots+M \approx \frac{1}{2} s^{2} k^{2}
$$

A simple case

On the other hand:

- Each edge is contained in at most r cycles of order r, for $r \geq 2$.
- The sum of length of cycles with order r is at most $r(1+o(1)) n$.
- Totally, we have $L \leq \sum_{r=1}^{k} r(1+o(1)) n \approx \frac{1}{2} k^{2} n$.

Thus we have

$$
\frac{1}{2} s^{2} k^{2} \leq L \leq \frac{1}{2} k^{2}(1+o(1)) n
$$

and

$$
s \leq(1+o(1)) \sqrt{n}
$$

Difficulities

Proof ideas 1

Ear-decomposition, linear order and paths:
Firstly, we get ears P_{1}, \cdots, P_{s}. Secondly, we define a linear order on V by tree L. Finally, we get s different $u-v$ paths f_{i} with $P_{i} \subseteq f_{i}$.

Figure 1 (a). Ear decomposition

Figure 1 (b). Tree L

Figure 1 (c). Paths f_{1}, f_{2} and f_{3}

Proof ideas 1

Lemma 6

For distinct $i, j \in\{0,1, \ldots, s\}, f_{i} \Delta f_{j}$ consists of one or two cycles.

- A pair $\left\{f_{i}, f_{j}\right\}$ is called type-I, if $f_{i} \triangle f_{j}$ consists of two cycles.

In this case, we find a path f_{k} as the base of $\left\{f_{i}, f_{j}\right\}$.

Proof ideas 1

- A pair $\left\{f_{i}, f_{j}\right\}$ is called type-II, if it is not type-I and there exists some f_{k} such that $a<b<c<d$ lie in f_{k}.

Such a path f_{k} is called a crossing path of $\left\{f_{i}, f_{j}\right\}$, and the crossing path f_{k} with minimum k is called the base of $\left\{f_{i}, f_{j}\right\}$

Proof ideas 1

- A pair $\left\{f_{i}, f_{j}\right\}$ is called type-II, if it is not type-I and there exists some f_{k} such that $a<b<c<d$ lie in f_{k}.

Such a path f_{k} is called a crossing path of $\left\{f_{i}, f_{j}\right\}$, and the crossing path f_{k} with minimum k is called the base of $\left\{f_{i}, f_{j}\right\}$

- Finally, a pair $\left\{f_{i}, f_{j}\right\}$ is normal, if it is neither type-l nor type-II.

Proof ideas 2

Almost all pairs are normal.
Lemma 8
There exist disjoint set of paths $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}, \mathcal{F}_{4}$ such that $\sum_{i \in[4]}\left|\mathcal{F}_{i}\right| \geq s-90 \sqrt{n} / \log n$, and each \mathcal{F}_{i} contains at most $2 \sqrt{n} \log ^{2} n$ pairs of type-I and type-II.

Otherwise we will get more than n cycles.

Proof ideas 3

Reordering and partitioning \mathcal{F} :
We can reorder most paths and partition them into a bounded number of intervals such that for every relevant edge e, paths containing e in each interval are listed almost consecutively.

More results on Sidon sequence

Sidon's problem has many remarkable connections to Fourier anyalysis, abstract algebra, coding theory and extremal graph theory. It is a wonderful unity of mathematics.

Definition

A sequence of integers $a_{1}, a_{2}, \ldots, a_{k}$ is called a Sidon sequence (or Sidon set, B_{2}-set) if all pairwise sums $a_{i}+a_{j}$ for $1 \leq i \leq j \leq k$ are distinct.

- Let $S(n)$ denote the maximum size of a Sidon subsequence of $\{1,2, \ldots, n\}$.
- $S(n)>\sqrt{n}$ infinitely many times. (Singer, 1938)
- $S(n) \leq \sqrt{n}+O\left(n^{1 / 4}\right)$. (Erdős and Turán, 1941)
- $S(n) \leq \sqrt{n}+n^{1 / 4}+1$. (Lindström, 1969)
- $S(n) \leq \sqrt{n}+n^{1 / 4}+1 / 2$. (Chilleruelo, 2010)

More results on Sidon sequence

Open Problem 3 (Erdős, \$500)

Prove or disprove that for every $\varepsilon>0$ the equality
$S(n)<\sqrt{n}+o\left(n^{\varepsilon}\right)$ holds.

Putting the two methods together, they get

Theorem (Balogh, Furedi and Roy, 2021)

There exists a constant $\gamma \geq 0.002$ and a number n_{0} such that for every $n>n_{0}$

$$
S(n) \leq \sqrt{n}+n^{1 / 4}(1-\gamma)
$$

Thank you!

Thank you very much for your attention!

