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Introduction

See Bondy and Murty, Graph Theory with Applications, p.247,
Problem 11.

Open Problem 1(Erdés, 1975)

Let n+ f(n) be the maximum possible number of edges in a graph
on n vertices in which no two cycles have the same length.
Determine f(n).
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Introduction

See Bondy and Murty, Graph Theory with Applications, p.247,
Problem 11.

Open Problem 1(Erdés, 1975)

Let n+ f(n) be the maximum possible number of edges in a graph
on n vertices in which no two cycles have the same length.
Determine f(n).

[(v8n— 15 — 3)/2|. (Shi 1988)

>
o f(n) > 1/238n/99 ~ 1.55y/n. (Lai 2020)
< 1.984/n. (Boros, Caro, Fiiredi and Yuster 2001)

1.55v/n < f(n) < 1.98/n. J
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Introduction

The following upper bound is easy to get.

Proof:
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Introduction

The following upper bound is easy to get.

fin) < 2v/n.

Proof:
@ Set e=n+ f(n).

@ Let B be a set of edges chosen independently and uniformly
at random from E(G) with probability 1/4/e.
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Introduction

The following upper bound is easy to get.

fln) < 2v/n.

Proof:

Set e = n+ f(n).

Let B be a set of edges chosen independently and uniformly
at random from E(G) with probability 1/4/e.

Let g(B) be the number of cycles in G — B.

By deleting one edge in each cycle, we can get a graph with
at most n — 1 edges.

Thus e— |B| — g(B) < n—1 for any B.
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Introduction

Proof:
@ The expectation E[|B|] = ex 1/y/e= /e
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Proof:
@ The expectation E[|B|] = ex 1/y/e= /e
o A cycle C, C G — B with probability at most (1 — 1/,/¢)".
o So Elg(B)] = X151 — 1/v/e) < Ve



Introduction
[e]e] JeJelele}

Introduction

Proof:
@ The expectation E[|B|] = ex 1/y/e= /e
o A cycle C, C G — B with probability at most (1 — 1/,/¢)".
o S0 Elg(B)] = S1%5(1 — 1/v/e)* < Ve
o E[|B| + g(B)] = E[| B + E[¢(B)] < 2,/
@ Wegete<n—1+2y/e<n+2n.
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Introduction

Another interesting problem is to consider the restricted version of
Erdos’ problem for 2-connected graphs.

Problem 2

let n+ fo(n) be the maximum number of edges in an n-vertex

2-connected graph in which no two cycles have the same length.
Determine fo(n).
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Introduction

Another interesting problem is to consider the restricted version of
Erdos’ problem for 2-connected graphs.

Problem 2

let n+ fo(n) be the maximum number of edges in an n-vertex
2-connected graph in which no two cycles have the same length.
Determine fo(n).

o fo(n) < V2n+ o(y/n). (Shi, 1988)
o fo(n) > +/n/2— o(y/n). (Chen, Lehel, Jacobson and Shreve,
1998)

e fo(n) > +/n— o(y/n). (Boros, Caro, Fiiredi and Yuster, 2001)
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The upper bound

Theorem 2 (Shi)
f2(n) < V2n+ o(v/n).

Proof:
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The upper bound

Theorem 2 (Shi)

f2(n) < V2n+ o(v/n).

Proof:

@ It is well known that a graph G is 2-connected if and only of
it has an ear-decomposition.

@ G has fo(n) ears.
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The upper bound

Theorem 2 (Shi)

f2(n) < V2n+ o(v/n).

Proof:

@ It is well known that a graph G is 2-connected if and only of
it has an ear-decomposition.

@ G has fo(n) ears.
o G has at least 3(f2(n) + 1)(f2(n) + 2) cycles.
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The upper bound

Theorem 2 (Shi)

f2(n) < V2n+ o(v/n).

Proof:

@ It is well known that a graph G is 2-connected if and only of
it has an ear-decomposition.

@ G has fo(n) ears.
o G has at least 3(f2(n) + 1)(f2(n) + 2) cycles.

@ Since G has at most n cycles, then fo(n) < v2n+ o(y/n).
[]
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The lower bound

Definition

A sequence of integers aq, ag, ..., a; is called a Sidon sequence (or
Sidon set, Ba-set) if all pairwise sums a; + a; for 1 <7< j <k are
distinct.

@ Let S(n) denote the maximum size of a Sidon subsequence of
{1,2,...,n}.

o It is well known that S(n) = /n+ o(y/n).

@ The upper bound was proved by Erdos and Turan.

@ The lower bound was provided by Singer.
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The lower bound

Theorem 3 (Boros, Caro, Fiiredi and Yuster)

fa(n) = V/n— O(n).

Construct an n-vertex 2-connected graph G as follows:
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The lower bound

Theorem 3 (Boros, Caro, Fiiredi and Yuster)

fa(n) = V/n— O(n).

Construct an n-vertex 2-connected graph G as follows:

Let V(G) = {w, v1, ..., un—1} and E(G) consist of the edges in a
Hamilton cycle C'= vyv;...vp—119 and the edges vpv,, for all

1 <i<k
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The lower bound

Theorem 3 (Boros, Caro, Fiiredi and Yuster)

fa(n) = V/n— O(n).

Construct an n-vertex 2-connected graph G as follows:

Let V(G) = {w, v1, ..., un—1} and E(G) consist of the edges in a
Hamilton cycle C'= vyv;...vp—119 and the edges vpv,, for all

1 < i<k Then

@ Each cycle in G contains two edges incident to vy (say vyvg,
and vyv,,) and the subpath of C between v, and v,; not

containing 1.

@ All cycle lengths in G are of the form a; — a; + 2 for
1 <7< j <k, which are pairwise distinct.
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Our main result

Conjecture 4 (Boros, Caro, Fiiredi and Yuster, 2001)

lim fo(n)/v/n=1.

n—oo

Theorem 5 (Ma and Yang, 2021)

f2(n) = V/n+ o(v/n).
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A simple case

In the following case, all paths are ‘well ordered’. Then we will

prove that s = fo(n) < /n+ o(y/n).
all  paths  avy  jpanalel

Dw@@@

The paths are go, g2,- -, gs. By ¢;Ag; we denote the subgraph
consisting of the edges which appears in exactly one of g; and g;.
We say g;Ag; is a cycle of order |j — i|.




Main result
000000000

A simple case

Let L be the sum of length of cycles with order at most k.
On the one hand:

@ There are (s — ) cycles with order r.

@ The number of cycles with order at most k(= o(s)) is
M=F_(s—r) ~ sk

@ These cycles have different length. So
L>1+ -+ M= 35K,
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A simple case

On the other hand:

@ Each edge is contained in at most r cycles of order r, for
r> 2.

@ The sum of length of cycles with order ris at most
r(1+ o(1))n.

e Totally, we have L < Zf;l r(1+4 o(1))n =~

Thus we have

Pn.

N[ =

2P < L< P+ o(D)n,

and

s < (14 o(1))v/n.
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Difficulities
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Proof ideas 1

Ear-decomposition, linear order and paths:

Firstly, we get ears Py, --- , Ps. Secondly, we define a linear order
on V by tree L. Finally, we get s different © — v paths f; with

P; C f;.

Ps P3\r3

Figure 1 (c). Paths fi, f> and f3



Main result
O00000e000

Proof ideas 1

For distinct ¢,j € {0,1, ..., s}, fiAf; consists of one or two cycles.

o A pair {f;, f;} is called type-l, if f;/Af; consists of two cycles.

Type-I fi /i

In this case, we find a path f; as the base of {f;, f;}.
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Proof ideas 1

e A pair {f;, f;} is called type-Il, if it is not type-1 and there
exists some fi. such that a < b < c < d lie in f;.

Type-II £ f
u a b fr c d v T

Such a path f is called a crossing path of {f;, f;}, and the
crossing path f; with minimum £ is called the base of {f;, f;}
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Proof ideas 1

e A pair {f;, f;} is called type-Il, if it is not type-1 and there
exists some fi. such that a < b < c < d lie in f;.

Type-II £ f
u a b fr c d v T

Such a path f is called a crossing path of {f;, f;}, and the
crossing path f; with minimum £ is called the base of {f;, f;}

e Finally, a pair {f;, f;} is normal, if it is neither type-1 nor
type-Il.
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Proof ideas 2

Almost all pairs are normal.

There exist disjoint set of paths Fi, F2, F3, F4 such that
D _icp) il = s —90y/n/logn, and each F; contains at most

2\/7z,log2 n pairs of type-l and type-II.

Otherwise we will get more than n cycles.
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Proof ideas 3

Reordering and partitioning F:
We can reorder most paths and partition them into a bounded

number of intervals such that for every relevant edge e, paths
containing e in each interval are listed almost consecutively.
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More results on Sidon sequence

Sidon's problem has many remarkable connections to Fourier
anyalysis, abstract algebra, coding theory and extremal graph
theory. It is a wonderful unity of mathematics.

Definition

A sequence of integers a1, ag, ..., aj is called a Sidon sequence (or
Sidon set, Ba-set) if all pairwise sums a; 4+ a; for 1 <7< j <k are
distinct.

@ Let S(n) denote the maximum size of a Sidon subsequence of
{1,2,...,n}.

S(n) > y/n infinitely many times. (Singer, 1938)

S(n) < /n+ O(n*/*). (Erdés and Turéan, 1941)

S(n) < /n+ nt/* 4+ 1. (Lindstrém, 1969)

S(n) < /n+ n'/* +1/2. (Chilleruelo, 2010)
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More results on Sidon sequence

Open Problem 3 (Erdés, $ 500)

Prove or disprove that for every ¢ > 0 the equality
S(n) < /n+ o(n°) holds.

Putting the two methods together, they get

Theorem (Balogh, Furedi and Roy, 2021)
There exists a constant v > 0.002 and a number ng such that for
every n > ny

S(n) < v/n+n'/4(1—7).
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Thank you!

Thank you very much for your attention!



