▲□▶▲□▶▲□▶▲□▶ ■ のへで

Non-repeated cycle lengths and Sidon sequences

Tianchi Yang

University of Science and Technology of China

ytc@mail.ustc.edu.cn

Mar. 18, 2022

Sidon sequence

Overview

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Introduction

See Bondy and Murty, Graph Theory with Applications, p.247, Problem 11.

Open Problem 1(Erdős, 1975)

Let n + f(n) be the maximum possible number of edges in a graph on n vertices in which no two cycles have the same length. Determine f(n).

Introduction

See Bondy and Murty, Graph Theory with Applications, p.247, Problem 11.

Open Problem 1(Erdős, 1975)

Let n + f(n) be the maximum possible number of edges in a graph on n vertices in which no two cycles have the same length. Determine f(n).

•
$$f(n) \ge \lfloor (\sqrt{8n - 15} - 3)/2 \rfloor$$
. (Shi 1988)

- $f(n) \ge \sqrt{238n/99} \approx 1.55\sqrt{n}$. (Lai 2020)
- $f(n) \leq 1.98\sqrt{n}$. (Boros, Caro, Füredi and Yuster 2001)

$$1.55\sqrt{n} \le f(n) \le 1.98\sqrt{n}.$$

Introduction

The following upper bound is easy to get.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Introduction

The following upper bound is easy to get.

- Set e = n + f(n).
- Let B be a set of edges chosen independently and uniformly at random from E(G) with probability $1/\sqrt{e}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Introduction

The following upper bound is easy to get.

- Set e = n + f(n).
- Let B be a set of edges chosen independently and uniformly at random from E(G) with probability $1/\sqrt{e}$.
- Let g(B) be the number of cycles in G B.
- By deleting one edge in each cycle, we can get a graph with at most n-1 edges.
- Thus $e |B| g(B) \le n 1$ for any B.

Sidon sequence

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Introduction

Proof:

• The expectation $\mathbb{E}[|B|] = e \times 1/\sqrt{e} = \sqrt{e}$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Introduction

- The expectation $\mathbb{E}[|B|] = e \times 1/\sqrt{e} = \sqrt{e}$.
- A cycle $C_k \subseteq G B$ with probability at most $(1 1/\sqrt{e})^k$.
- So $\mathbb{E}[g(B)] = \sum_{k=3}^{+\infty} (1 1/\sqrt{e})^k < \sqrt{e}.$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Introduction

- The expectation $\mathbb{E}[|B|] = e \times 1/\sqrt{e} = \sqrt{e}$.
- A cycle $C_k \subseteq G B$ with probability at most $(1 1/\sqrt{e})^k$.
- So $\mathbb{E}[g(B)] = \sum_{k=3}^{+\infty} (1 1/\sqrt{e})^k < \sqrt{e}.$
- $\mathbb{E}[|B| + g(B)] = \mathbb{E}[|B|] + \mathbb{E}[g(B)] < 2\sqrt{e}.$
- We get $e \le n 1 + 2\sqrt{e} \le n + 2\sqrt{n}$.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへで

Introduction

Another interesting problem is to consider the restricted version of Erdős' problem for 2-connected graphs.

Problem 2

let $n + f_2(n)$ be the maximum number of edges in an *n*-vertex 2-connected graph in which no two cycles have the same length. Determine $f_2(n)$.

Introduction

Another interesting problem is to consider the restricted version of Erdős' problem for 2-connected graphs.

Problem 2

let $n + f_2(n)$ be the maximum number of edges in an *n*-vertex 2-connected graph in which no two cycles have the same length. Determine $f_2(n)$.

- $f_2(n) \le \sqrt{2n} + o(\sqrt{n})$. (Shi, 1988)
- $f_2(n) \ge \sqrt{n/2} o(\sqrt{n})$. (Chen, Lehel, Jacobson and Shreve, 1998)
- $f_2(n) \ge \sqrt{n} o(\sqrt{n})$. (Boros, Caro, Füredi and Yuster, 2001)

The upper bound

Theorem 2 (Shi)

 $f_2(n) \le \sqrt{2n} + o(\sqrt{n}).$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The upper bound

Theorem 2 (Shi)

$$f_2(n) \le \sqrt{2n} + o(\sqrt{n}).$$

- It is well known that a graph G is 2-connected if and only of it has an ear-decomposition.
- G has $f_2(n)$ ears.

The upper bound

Theorem 2 (Shi)

$$f_2(n) \le \sqrt{2n} + o(\sqrt{n}).$$

- It is well known that a graph G is 2-connected if and only of it has an ear-decomposition.
- G has $f_2(n)$ ears.
- G has at least $\frac{1}{2}(f_2(n) + 1)(f_2(n) + 2)$ cycles.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The upper bound

Theorem 2 (Shi)

$$f_2(n) \le \sqrt{2n} + o(\sqrt{n}).$$

- It is well known that a graph G is 2-connected if and only of it has an ear-decomposition.
- G has $f_2(n)$ ears.
- G has at least $\frac{1}{2}(f_2(n) + 1)(f_2(n) + 2)$ cycles.
- Since G has at most n cycles, then $f_2(n) \leq \sqrt{2n} + o(\sqrt{n})$.

< ロ > < 同 > < E > < E > E の < C</p>

The lower bound

Definition

A sequence of integers $a_1, a_2, ..., a_k$ is called a **Sidon sequence** (or Sidon set, B_2 -set) if all pairwise sums $a_i + a_j$ for $1 \le i \le j \le k$ are distinct.

- Let S(n) denote the maximum size of a Sidon subsequence of $\{1, 2, ..., n\}$.
- It is well known that $S(n) = \sqrt{n} + o(\sqrt{n})$.
- The upper bound was proved by Erdős and Turán.
- The lower bound was provided by Singer.

The lower bound

Theorem 3 (Boros, Caro, Füredi and Yuster)

$$f_2(n) \ge \sqrt{n} - O(n^{9/20}).$$

Construct an n-vertex 2-connected graph G as follows:

The lower bound

Theorem 3 (Boros, Caro, Füredi and Yuster)

$$f_2(n) \ge \sqrt{n} - O(n^{9/20}).$$

Construct an *n*-vertex 2-connected graph G as follows: Let $V(G) = \{v_0, v_1, ..., v_{n-1}\}$ and E(G) consist of the edges in a Hamilton cycle $C = v_0 v_1 ... v_{n-1} v_0$ and the edges $v_0 v_{a_i}$ for all 1 < i < k.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ■ めのの

The lower bound

Theorem 3 (Boros, Caro, Füredi and Yuster)

$$f_2(n) \ge \sqrt{n} - O(n^{9/20}).$$

Construct an *n*-vertex 2-connected graph G as follows: Let $V(G) = \{v_0, v_1, ..., v_{n-1}\}$ and E(G) consist of the edges in a Hamilton cycle $C = v_0 v_1 ... v_{n-1} v_0$ and the edges $v_0 v_{a_i}$ for all 1 < i < k. Then

- Each cycle in G contains two edges incident to v₀ (say v₀v_{ai} and v₀v_{aj}) and the subpath of C between v_{ai} and v_{aj} not containing v₀.
- All cycle lengths in G are of the form $a_j a_i + 2$ for $1 \le i < j \le k$, which are pairwise distinct.

Our main result

Conjecture 4 (Boros, Caro, Füredi and Yuster, 2001)

$$\lim_{n \to \infty} f_2(n) / \sqrt{n} = 1.$$

Theorem 5 (Ma and Yang, 2021)

$$f_2(n) = \sqrt{n} + o(\sqrt{n}).$$

A simple case

In the following case, all paths are '**well ordered**'. Then we will prove that $s = f_2(n) \le \sqrt{n} + o(\sqrt{n})$.

The paths are g_0, g_2, \dots, g_s . By $g_i \Delta g_j$ we denote the subgraph consisting of the edges which appears in exactly one of g_i and g_j . We say $g_i \Delta g_j$ is a cycle of order |j - i|.

A simple case

Let L be the sum of length of cycles with order at most k. On the one hand:

- There are (s r) cycles with order r.
- The number of cycles with order at most k(=o(s)) is $M = \sum_{r=1}^{k} (s-r) \approx sk.$
- These cycles have different length. So $L \ge 1 + \dots + M \approx \frac{1}{2}s^2k^2$.

A simple case

On the other hand:

- Each edge is contained in at most r cycles of order r, for $r \ge 2$.
- The sum of length of cycles with order r is at most r(1 + o(1))n.

• Totally, we have $L \leq \sum_{r=1}^{k} r(1 + o(1))n \approx \frac{1}{2}k^2n$. Thus we have

$$\frac{1}{2}s^2k^2 \le L \le \frac{1}{2}k^2(1+o(1))n,$$

and

$$s \le (1 + o(1))\sqrt{n}.$$

Introduction

Main result

Sidon sequence

Difficulities

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

SQ (~

Proof ideas 1

Ear-decomposition, linear order and paths: Firstly, we get ears P_1, \dots, P_s . Secondly, we define a linear order on V by tree L. Finally, we get s different u - v paths f_i with $P_i \subseteq f_i$.

Proof ideas 1

Lemma 6

For distinct $i, j \in \{0, 1, ..., s\}$, $f_i \Delta f_j$ consists of one or two cycles.

• A pair $\{f_i, f_j\}$ is called **type-I**, if $f_i \triangle f_j$ consists of two cycles.

In this case, we find a path f_k as the **base** of $\{f_i, f_j\}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Proof ideas 1

• A pair $\{f_i, f_j\}$ is called **type-II**, if it is not type-I and there exists some f_k such that a < b < c < d lie in f_k .

Such a path f_k is called a **crossing path** of $\{f_i, f_j\}$, and the crossing path f_k with minimum k is called the **base** of $\{f_i, f_j\}$

Proof ideas 1

• A pair $\{f_i, f_j\}$ is called **type-II**, if it is not type-I and there exists some f_k such that a < b < c < d lie in f_k .

Such a path f_k is called a **crossing path** of $\{f_i, f_j\}$, and the crossing path f_k with minimum k is called the **base** of $\{f_i, f_j\}$

• Finally, a pair $\{f_i, f_j\}$ is **normal**, if it is neither type-I nor type-II.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Proof ideas 2

Almost all pairs are normal.

Lemma 8

There exist disjoint set of paths $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4$ such that $\sum_{i \in [4]} |\mathcal{F}_i| \ge s - 90\sqrt{n}/\log n$, and each \mathcal{F}_i contains at most $2\sqrt{n}\log^2 n$ pairs of type-I and type-II.

Otherwise we will get more than n cycles.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Proof ideas 3

Reordering and partitioning \mathcal{F} :

We can reorder most paths and partition them into a bounded number of intervals such that for every relevant edge e, paths containing e in each interval are listed almost consecutively.

More results on Sidon sequence

Sidon's problem has many remarkable connections to Fourier anyalysis, abstract algebra, coding theory and extremal graph theory. It is a wonderful unity of mathematics.

Definition

A sequence of integers $a_1, a_2, ..., a_k$ is called a **Sidon sequence** (or Sidon set, B_2 -set) if all pairwise sums $a_i + a_j$ for $1 \le i \le j \le k$ are distinct.

- Let S(n) denote the maximum size of a Sidon subsequence of $\{1, 2, ..., n\}$.
- $S(n) > \sqrt{n}$ infinitely many times. (Singer, 1938)
- $S(n) \leq \sqrt{n} + O(n^{1/4})$. (Erdős and Turán, 1941)
- $S(n) \leq \sqrt{n} + n^{1/4} + 1$. (Lindström, 1969)
- $S(n) \le \sqrt{n} + n^{1/4} + 1/2$. (Chilleruelo, 2010)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

More results on Sidon sequence

Open Problem 3 (Erdős, \$ 500)

Prove or disprove that for every $\varepsilon > 0$ the equality $S(n) < \sqrt{n} + o(n^{\varepsilon})$ holds.

Putting the two methods together, they get

Theorem (Balogh, Furedi and Roy, 2021)

There exists a constant $\gamma \ge 0.002$ and a number n_0 such that for every $n > n_0$

$$S(n) \le \sqrt{n} + n^{1/4}(1-\gamma).$$

Introduction 0000000 Main result

Sidon sequence

Thank you!

Thank you very much for your attention!