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Overview

1 Introduction

2 Main result

3 Sidon sequence
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Introduction

See Bondy and Murty, Graph Theory with Applications, p.247,
Problem 11.
Open Problem 1(Erdős, 1975)
Let n + f(n) be the maximum possible number of edges in a graph
on n vertices in which no two cycles have the same length.
Determine f(n).

f(n) ≥ "(
√

8n − 15 − 3)/2%. (Shi 1988)
f(n) ≥

√
238n/99 ≈ 1.55√n. (Lai 2020)

f(n) ≤ 1.98√n. (Boros, Caro, Füredi and Yuster 2001)

1.55
√

n ≤ f(n) ≤ 1.98
√

n.
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Introduction

The following upper bound is easy to get.
Theorem 1

f(n) ≤ 2
√

n.

Proof:

Set e = n + f(n).
Let B be a set of edges chosen independently and uniformly
at random from E(G) with probability 1/√e.
Let g(B) be the number of cycles in G − B.
By deleting one edge in each cycle, we can get a graph with
at most n − 1 edges.
Thus e − |B|− g(B) ≤ n − 1 for any B.
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Introduction

Proof:
The expectation E[|B|] = e × 1/√e =

√e.

A cycle Ck ⊆ G − B with probability at most (1 − 1/√e)k.
So E[g(B)] =

∑+∞
k=3(1 − 1/√e)k <

√e.
E[|B|+ g(B)] = E[|B|] + E[g(B)] < 2√e.
We get e ≤ n − 1 + 2√e ≤ n + 2√n.
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Introduction

Another interesting problem is to consider the restricted version of
Erdős’ problem for 2-connected graphs.
Problem 2
let n + f2(n) be the maximum number of edges in an n-vertex
2-connected graph in which no two cycles have the same length.
Determine f2(n).

f2(n) ≤
√

2n + o(√n). (Shi, 1988)
f2(n) ≥

√
n/2 − o(√n). (Chen, Lehel, Jacobson and Shreve,

1998)
f2(n) ≥

√n − o(√n). (Boros, Caro, Füredi and Yuster, 2001)
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The upper bound

Theorem 2 (Shi)

f2(n) ≤
√

2n + o(
√

n).

Proof:

It is well known that a graph G is 2-connected if and only of
it has an ear-decomposition.
G has f2(n) ears.
G has at least 1

2(f2(n) + 1)(f2(n) + 2) cycles.
Since G has at most n cycles, then f2(n) ≤

√
2n + o(√n).
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The lower bound

Definition
A sequence of integers a1, a2, ..., ak is called a Sidon sequence (or
Sidon set, B2-set) if all pairwise sums ai + aj for 1 ≤ i ≤ j ≤ k are
distinct.

Let S(n) denote the maximum size of a Sidon subsequence of
{1, 2, ...,n}.
It is well known that S(n) = √n + o(√n).
The upper bound was proved by Erdős and Turán.
The lower bound was provided by Singer.
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The lower bound

Theorem 3 (Boros, Caro, Füredi and Yuster)

f2(n) ≥
√

n − O(n9/20).

Construct an n-vertex 2-connected graph G as follows:

Let V(G) = {v0, v1, ..., vn−1} and E(G) consist of the edges in a
Hamilton cycle C = v0v1...vn−1v0 and the edges v0vai for all
1 < i < k. Then

Each cycle in G contains two edges incident to v0 (say v0vai
and v0vaj) and the subpath of C between vai and vaj not
containing v0.
All cycle lengths in G are of the form aj − ai + 2 for
1 ≤ i < j ≤ k, which are pairwise distinct.
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Our main result

Conjecture 4 (Boros, Caro, Füredi and Yuster, 2001)

lim
n→∞

f2(n)/
√

n = 1.

Theorem 5 (Ma and Yang, 2021)

f2(n) =
√

n + o(
√

n).
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A simple case

In the following case, all paths are ‘well ordered’. Then we will
prove that s = f2(n) ≤

√n + o(√n).

The paths are g0, g2, · · · , gs. By gi∆gj we denote the subgraph
consisting of the edges which appears in exactly one of gi and gj.
We say gi∆gj is a cycle of order |j − i|.
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A simple case

Let L be the sum of length of cycles with order at most k.
On the one hand:

There are (s − r) cycles with order r.
The number of cycles with order at most k(= o(s)) is
M =

∑k
r=1(s − r) ≈ sk.

These cycles have different length. So
L ≥ 1 + · · ·+ M ≈ 1

2s2k2.
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A simple case

On the other hand:
Each edge is contained in at most r cycles of order r, for
r ≥ 2.
The sum of length of cycles with order r is at most
r(1 + o(1))n.
Totally, we have L ≤

∑k
r=1 r(1 + o(1))n ≈ 1

2k2n.
Thus we have

1
2s2k2 ≤ L ≤ 1

2k2(1 + o(1))n,

and
s ≤ (1 + o(1))

√
n.
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Difficulities
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Proof ideas 1

Ear-decomposition, linear order and paths:
Firstly, we get ears P1, · · · ,Ps. Secondly, we define a linear order
on V by tree L. Finally, we get s different u − v paths fi with
Pi ⊆ fi.
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Proof ideas 1

Lemma 6
For distinct i, j ∈ {0, 1, ..., s}, fi∆fj consists of one or two cycles.

A pair {fi, fj} is called type-I, if fi+fj consists of two cycles.

In this case, we find a path fk as the base of {fi, fj}.
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Proof ideas 1

A pair {fi, fj} is called type-II, if it is not type-I and there
exists some fk such that a < b < c < d lie in fk.

Such a path fk is called a crossing path of {fi, fj}, and the
crossing path fk with minimum k is called the base of {fi, fj}

Finally, a pair {fi, fj} is normal, if it is neither type-I nor
type-II.
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Proof ideas 2

Almost all pairs are normal.
Lemma 8
There exist disjoint set of paths F1,F2,F3,F4 such that∑

i∈[4] |Fi| ≥ s − 90√n/ log n, and each Fi contains at most
2√n log2 n pairs of type-I and type-II.

Otherwise we will get more than n cycles.
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Proof ideas 3

Reordering and partitioning F :
We can reorder most paths and partition them into a bounded
number of intervals such that for every relevant edge e, paths
containing e in each interval are listed almost consecutively.
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More results on Sidon sequence
Sidon’s problem has many remarkable connections to Fourier
anyalysis, abstract algebra, coding theory and extremal graph
theory. It is a wonderful unity of mathematics.
Definition
A sequence of integers a1, a2, ..., ak is called a Sidon sequence (or
Sidon set, B2-set) if all pairwise sums ai + aj for 1 ≤ i ≤ j ≤ k are
distinct.

Let S(n) denote the maximum size of a Sidon subsequence of
{1, 2, ...,n}.
S(n) > √n infinitely many times. (Singer, 1938)
S(n) ≤ √n + O(n1/4). (Erdős and Turán, 1941)
S(n) ≤ √n + n1/4 + 1. (Lindström, 1969)
S(n) ≤ √n + n1/4 + 1/2. (Chilleruelo, 2010)
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More results on Sidon sequence

Open Problem 3 (Erdős, $ 500)
Prove or disprove that for every ε > 0 the equality
S(n) < √n + o(nε) holds.

Putting the two methods together, they get

Theorem (Balogh, Furedi and Roy, 2021)
There exists a constant γ ≥ 0.002 and a number n0 such that for
every n > n0

S(n) ≤
√

n + n1/4(1 − γ).
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Thank you!

Thank you very much for your attention!


