On the sum of the first two largest signless Laplacian eigenvalues

ZiMing Zhou

University of Shanghai for Science and Technology

Joint work with Changxiang He

November 10, 2023

Outline

(1) Introduction
(2) The proof of our main result
(3) A remark

Outline

(2) The proof of our main result

(3) A remark

Introduction

- Let $A(G)$ and $D(G)$ be the adjacency matrix and diagonal matrix vertex degrees of graph G, respectively.
- The Laplacian matrix and signless Laplacian matrix of G are defined as $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$, respectively.
- The eigenvalues of $L(G)$ and $Q(G)$ are called Laplacian eigenvalues and signless Laplacian eigenvalues of G, respectively, and are denoted by $\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n}(G)$ and $q_{1}(G) \geq q_{2}(G) \geq \cdots \geq q_{n}(G)$, respectively.

Introduction

- A natural and fundamental problem in spectral graph theory is the relationship between the eigenvalues of a graph and its structural parameters.
- $\sum_{i=1}^{n} \mu_{i}(G)=\sum_{i=1}^{n} q_{i}(G)=2 e$, where n and e are the order and size of G, respectively.
- $\sum_{i=1}^{k} \mu_{i}(G)$ or $\sum_{i=1}^{k} q_{i}(G)$ for $1 \leq k \leq n-1$?.

Introduction

- Some results and conjectures related to $\sum_{i=1}^{k} \mu_{i}(G)$ can be found in the literature. First we state the Grone-Merris conjecture. For a graph G with degree sequence $\{d(v) \mid v \in V(G)\}$, the following holds.

Conjecture 1.1 (Grone-Merris)

For any graph G with n vertices and for any $k \in\{1,2, \ldots, n\}$,

$$
\sum_{i=1}^{k} \mu_{i}(G) \leq \sum_{i=1}^{k}|\{v \in V(G) \mid d(v) \geq i\}| .
$$

- This conjecture was proved by Hua Bai and now is called the Grone-Merris theorem.
R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7(1994), 221-229.
H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc., 363(2011), 4463-4474.

Introduction

- As a variation on the Grone-Merris conjecture, Brouwer proposed the following conjecture for Laplacian eigenvalues.

Conjecture 1.2 (Brouwer)

For any graph G with n vertices and for any $k \in\{1,2, \ldots, n\}$,

$$
\sum_{i=1}^{k} \mu_{i}(G) \leq e(G)+\binom{k+1}{2}
$$

- By using computer computations, Brouwer has checked Conjecture 1.2 for all graphs with at most 10 vertices.
A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, New York, 2012.

Introduction

- For $k=1$, the Conjecture 1.2 follows from the well-known inequality $\mu_{1}(G) \leq n \leq e(G)+1$.
- For $k=n$ and $k=n-1$, the Conjecture 1.2 follows trivially from the fact that $\sum_{i=1}^{n-1} \mu_{i}(G)=\sum_{i=1}^{n} \mu_{i}(G)=2 e(G) \leq e(G)+\binom{n}{2}$.
- Haemers et al. showed that Conjecture 1.2 is true for $k=2$, that is $\mu_{1}(G)+\mu_{2}(G) \leq e(G)+3$ for any graph G.

E
W.H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl., 432(2010), 2214-2221.

Introduction

- Moreover, the Conjecture 1.2 was proved to be true for several classes of graphs (for all $k \in\{1,2, \ldots, n\}$) such as trees, threshold graphs, unicyclic graphs, bicyclic graphs, regular graphs and split graphs.
X. Chen, Improved results on Brouwer's conjecture for sum of the Laplacian eigenvalues of a graph, Linear Algebra Appl., 557(2018), 327-338.X. Chen, J. Li, Y. Fan, Note on an upper bound for sum of the Laplacian eigenvalues of a graph, Linear Algebra Appl., 541(2018), 258-265.
W. Li, J. Guo, On the full Brouwer's Laplacian spectrum conjecture, Discrete Mathematics., 345(2022)113078.

Introduction

- Let $S_{k}(G)=\sum_{i=1}^{k} q_{i}(G)$ be the sum of the first k largest signless Laplacian eigenvalues of G.

Conjecture 1.3 (Ashraf)

For any graph G with n vertices and for any $k \in\{1,2, \ldots, n\}$,

$$
S_{k}(G) \leq e(G)+\binom{k+1}{2}
$$

- By using computer computations, Ashraf et al. has checked Conjecture 1.3 for all graphs with at most 10 vertices.
F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph, Linear Algebra Appl., 438(2013), 4539-4546.

Introduction

- Ashraf et al. proved that Conjecture 1.3 is true for $k=2$, that is $S_{2}(G) \leq e(G)+3$ for any graph G. But the key lemma they used is incorrect which has a counterexample.
- Zheng proved that Conjecture 1.3 is true for all connected triangle-free graphs when $k=2$.

F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph, Linear Algebra Appl., 438(2013), 4539-4546.
目
Y. Zheng, A note on the sum of the two largest signless Laplacian eigenvalues, Ars Combin., 148(2020), 183-191.

Introduction

- Therefore, Conjecture 1.3 is still open when $k=2$.
- We prove that $S_{2}(G)<e(G)+3$ is true for any graphs which also confirm the conjecture 1.3 when $k=2$.

Theorem 1.1 (Zhou, He)

For any graph G with n vertices,

$$
S_{2}(G)<e(G)+3 .
$$

Introduction

- Ashraf et al. proved that Conjecture 1.3 is true for all graphs when $k \in\{1, n-1, n\}$, and for regular graphs(for all k).
- Yang and You proved that Conjecture 1.3 is true for unicyclic graphs and bicyclic graphs (for all k).
- For more details, we refer to:

F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph, Linear Algebra Appl., 438(2013), 4539-4546.

J. Yang, L. You, On a conjecture for signless Laplacian eigenvalues, Linear Algebra Appl., 446(2014), 115-132.
X. Chen, G. Hao, D. Jin, J. Li, Note on a conjecture for the sum of signless Laplacian eigenvalues, Czech Math J., 68(2018), 601-610.

Outline

(1) Introduction

(2) The proof of our main result
(3) A remark

The proof of our main result

- This lemma is the key to our approach. It gives a sufficient condition for the truth of Theorem3.1, that holds for almost all graphs.

Lemma 2.1 (Zhou, He)

If G is a graph with a nonempty subgraph H for which $S_{2}(H) \leq e(H)$, then $S_{2}(G)<e(G)+3$.

- Noting that for $H=4 K_{2}$ or $H=3 K_{1,2}$, one has $S_{2}(H)=e(H)$, we may assume G contains neither $H=4 K_{2}$ nor $H=3 K_{1,2}$ as a subgraph.
- It is sufficient to consider only graphs G whose matching number $m(G)$ is at most 3 .
- We prove Theorem 3.1 for $m(G)=1,2$ and 3, respectively.

The proof of our main result

Proof.

Case 1. $m(G)=1$. It is easy to check that either $G=K_{1, k-1} \cup(n-k) K_{1}$ for some $1 \leq k \leq n$ or $G=K_{3} \cup(n-3) K_{1}$, the assertion holds.

Case 2. $m(G)=2$. We may assume that G is a connected graph with at least 11 vertices. First suppose that G has no K_{3} as a subgraph, since $m(G)=2, G$ has no odd cycle as a subgraph. It is obvious that G is a bipartite graph, the assertion holds.

The proof of our main result

Proof.

Next suppose that G has a subgraph $H=K_{3}$.

Figure: Possible forms of graphs G with $m(G)=2$

The proof of our main result

Lemma 2.2 (Fiedler)

If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are all eigenvalues of A, then the eigenvalues of $\Delta_{k}(A)$ are the $\binom{n}{k}$ distinct sums of the λ_{i} taken k at a time.

Corollary 2.1 (Zhou, He)

If $q_{1}, q_{2}, \ldots, q_{n}$ are signless eigenvalues of G, and $P\left(Q^{\pi}, x\right)$ contains the largest two roots of $P_{Q}(G, x)$, then the largest eigenvalue of $\Delta_{2}\left(Q^{\pi}\right)$ equals $S_{2}(G)$.

Proof.

Case 3. $m(G)=3$.
M. Fiedler, Special Matrices and their Applications in Numerical Mathematics, Martinus Nijhoff, Dordrecht, 1984.

Outline

(1) Introduction

(2) The proof of our main result

(3) A remark

A remark

Theorem 3.1 (Zhou, He)

For any graph G with n vertices,

$$
S_{2}(G)<e(G)+3 .
$$

Remark 1

Ashraf et al. proved that

$$
S_{k}(G) \leq e(G)+\binom{k+1}{2}
$$

is asymptotically tight for any k for the graph $K_{k} \vee \overline{K_{t}}$, the join of K_{k} and the empty graph K_{t}.
F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph, Linear Algebra Appl., 438(2013), 4539-4546.

