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Introduction

Let A(G) and D(G) be the adjacency matrix and diagonal matrix vertex
degrees of graph G, respectively.

The Laplacian matrix and signless Laplacian matrix of G are defined as
L(G) = D(G)− A(G) and Q(G) = D(G) + A(G), respectively.

The eigenvalues of L(G) and Q(G) are called Laplacian eigenvalues
and signless Laplacian eigenvalues of G, respectively, and are denoted
by µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) and q1(G) ≥ q2(G) ≥ · · · ≥ qn(G),
respectively.

ZiMing Zhou On the sum of the first two largest signless Laplacian eigenvalues 4 / 21



Introduction
The proof of our main result

A remark

Introduction

A natural and fundamental problem in spectral graph theory is the
relationship between the eigenvalues of a graph and its structural
parameters.

n∑
i=1

µi(G) =
n∑

i=1
qi(G) = 2e, where n and e are the order and size of G,

respectively.

k∑
i=1

µi(G) or
k∑

i=1
qi(G) for 1 ≤ k ≤ n − 1 ? .
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Some results and conjectures related to
∑k

i=1 µi(G) can be found in the
literature. First we state the Grone-Merris conjecture. For a graph G
with degree sequence {d(v)|v ∈ V(G)}, the following holds.

Conjecture 1.1 (Grone-Merris)

For any graph G with n vertices and for any k ∈ {1, 2, . . . , n},

k∑
i=1

µi(G) ≤
k∑

i=1

|{v ∈ V(G)|d(v) ≥ i}|.

This conjecture was proved by Hua Bai and now is called the
Grone-Merris theorem.
R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7(1994), 221–229.

H. Bai, The Grone–Merris conjecture, Trans. Amer. Math. Soc., 363(2011), 4463–4474.
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As a variation on the Grone–Merris conjecture, Brouwer proposed the
following conjecture for Laplacian eigenvalues.

Conjecture 1.2 (Brouwer)

For any graph G with n vertices and for any k ∈ {1, 2, . . . , n},

k∑
i=1

µi(G) ≤ e(G) +

(
k + 1

2

)
.

By using computer computations, Brouwer has checked Conjecture 1.2
for all graphs with at most 10 vertices.

A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, New York, 2012.
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For k = 1, the Conjecture 1.2 follows from the well-known inequality
µ1(G) ≤ n ≤ e(G) + 1.

For k = n and k = n − 1, the Conjecture 1.2 follows trivially from the
fact that

∑n−1
i=1 µi(G) =

∑n
i=1 µi(G) = 2e(G) ≤ e(G) +

(n
2

)
.

Haemers et al. showed that Conjecture 1.2 is true for k = 2, that is
µ1(G) + µ2(G) ≤ e(G) + 3 for any graph G.

W.H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs,
Linear Algebra Appl., 432(2010), 2214–2221.
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Moreover, the Conjecture 1.2 was proved to be true for several classes
of graphs (for all k ∈ {1, 2, . . . , n}) such as trees, threshold graphs,
unicyclic graphs, bicyclic graphs, regular graphs and split graphs.

X. Chen, Improved results on Brouwer’s conjecture for sum of the Laplacian eigenvalues of a graph,
Linear Algebra Appl., 557(2018), 327–338.

X. Chen, J. Li, Y. Fan, Note on an upper bound for sum of the Laplacian eigenvalues of a graph, Linear
Algebra Appl., 541(2018), 258–265.

W. Li, J. Guo, On the full Brouwer’s Laplacian spectrum conjecture, Discrete Mathematics.,
345(2022)113078.
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Let Sk(G) =
∑k

i=1 qi(G) be the sum of the first k largest signless
Laplacian eigenvalues of G.

Conjecture 1.3 (Ashraf)

For any graph G with n vertices and for any k ∈ {1, 2, . . . , n},

Sk(G) ≤ e(G) +

(
k + 1

2

)
.

By using computer computations, Ashraf et al. has checked Conjecture
1.3 for all graphs with at most 10 vertices.

F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph,
Linear Algebra Appl., 438(2013), 4539-4546.
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Ashraf et al. proved that Conjecture 1.3 is true for k = 2, that is
S2(G) ≤ e(G) + 3 for any graph G. But the key lemma they used is
incorrect which has a counterexample.

Zheng proved that Conjecture 1.3 is true for all connected triangle-free
graphs when k = 2.

F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph,
Linear Algebra Appl., 438(2013), 4539-4546.

Y. Zheng, A note on the sum of the two largest signless Laplacian eigenvalues, Ars Combin.,
148(2020), 183–191.
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Therefore, Conjecture 1.3 is still open when k = 2.

We prove that S2(G) < e(G) + 3 is true for any graphs which also
confirm the conjecture 1.3 when k = 2.

Theorem 1.1 (Zhou, He)

For any graph G with n vertices,

S2(G) < e(G) + 3.
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Ashraf et al. proved that Conjecture 1.3 is true for all graphs when
k ∈ {1, n − 1, n}, and for regular graphs(for all k).

Yang and You proved that Conjecture 1.3 is true for unicyclic graphs
and bicyclic graphs (for all k).

For more details, we refer to:

F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph,
Linear Algebra Appl., 438(2013), 4539-4546.

J. Yang, L. You, On a conjecture for signless Laplacian eigenvalues, Linear Algebra Appl., 446(2014),
115–132.

X. Chen, G. Hao, D. Jin, J. Li, Note on a conjecture for the sum of signless Laplacian eigenvalues,
Czech Math J., 68(2018), 601–610.
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This lemma is the key to our approach. It gives a sufficient condition
for the truth of Theorem3.1, that holds for almost all graphs.

Lemma 2.1 (Zhou, He)

If G is a graph with a nonempty subgraph H for which S2(H) ≤ e(H), then
S2(G) < e(G) + 3.

Noting that for H = 4K2 or H = 3K1,2, one has S2(H) = e(H), we may
assume G contains neither H = 4K2 nor H = 3K1,2 as a subgraph.
It is sufficient to consider only graphs G whose matching number m(G)
is at most 3.
We prove Theorem 3.1 for m(G) = 1, 2 and 3, respectively.
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Proof.

Case 1. m(G) = 1. It is easy to check that either G = K1,k−1 ∪ (n − k)K1 for
some 1 ≤ k ≤ n or G = K3 ∪ (n − 3)K1, the assertion holds.

Case 2. m(G) = 2. We may assume that G is a connected graph with at least
11 vertices. First suppose that G has no K3 as a subgraph, since m(G) = 2, G
has no odd cycle as a subgraph. It is obvious that G is a bipartite graph, the
assertion holds.
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Proof.
Next suppose that G has a subgraph H = K3.

Figure: Possible forms of graphs G with m(G) = 2
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Lemma 2.2 (Fiedler)

If λ1, λ2, . . . , λn are all eigenvalues of A, then the eigenvalues of ∆k(A) are
the

(n
k

)
distinct sums of the λi taken k at a time.

Corollary 2.1 (Zhou, He)

If q1, q2, . . . , qn are signless eigenvalues of G, and P(Qπ, x) contains the
largest two roots of PQ(G, x), then the largest eigenvalue of ∆2(Qπ) equals
S2(G).

Proof.

Case 3. m(G) = 3.

M. Fiedler, Special Matrices and their Applications in Numerical Mathematics, Martinus Nijhoff,
Dordrecht, 1984.
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Theorem 3.1 (Zhou, He)

For any graph G with n vertices,

S2(G) < e(G) + 3.

Remark 1
Ashraf et al. proved that

Sk(G) ≤ e(G) +

(
k + 1

2

)
is asymptotically tight for any k for the graph Kk ∨ Kt, the join of Kk and the
empty graph Kt.

F. Ashraf, G.R. Omidi, B. Tayfeh-Rezaibe, On the sum of signless Laplacian eigenvalues of graph,
Linear Algebra Appl., 438(2013), 4539-4546.
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