# Upper bounds on the bichromatic number of some graphs 

Yueping Shi
School of Mathematics,

Sun Yat-sen University

Joint work with Baogang Xu

- Basic definitions
- Basic definitions
- Known results
- Basic definitions
- Known results
- Our results
- Basic definitions
- Known results
- Our results
- The proof
- Basic definitions
- Known results
- Our results
- The proof
- Open problems

1. Basic definitions

## 1. Basic definitions

- Split graphs: graphs, whose vertex set can be partitioned into one independent set and one clique.
[Földes and Hammer (1977)]


## 1. Basic definitions

- Split graphs: graphs, whose vertex set can be partitioned into one independent set and one clique.
[Földes and Hammer (1977)]
- The cochromatic number of $G$ : the minimum number that is required to partition the vertex set of a graph into that many sets, each of which being either an independent set or a clique.
[Lesniak and Straight (1977)]

1. Basic definitions

## 1. Basic definitions

- $(k, l)$-coloring: a $(k, l)$-coloring of a graph $G$ is a partition of the vertex set of $G$ into $k+I$ (possibly empty) subsets

$$
S_{1}, S_{2}, \ldots, S_{k}, C_{1}, C_{2}, \ldots, C_{l}
$$

such that each $S_{i}$ is an independent set and each $C_{j}$ is a clique in $G$.

## 1. Basic definitions

- ( $k, l$ )-coloring: a $(k, l)$-coloring of a graph $G$ is a partition of the vertex set of $G$ into $k+I$ (possibly empty) subsets

$$
S_{1}, S_{2}, \ldots, S_{k}, C_{1}, C_{2}, \ldots, C_{l}
$$

such that each $S_{i}$ is an independent set and each $C_{j}$ is a clique in $G$.

- Call a graph $G$ is $(k, l)$-colorable if $G$ has a $(k, l)$-coloring.


## 1. Basic definitions

- $(k, l)$-coloring: a $(k, l)$-coloring of a graph $G$ is a partition of the vertex set of $G$ into $k+I$ (possibly empty) subsets

$$
S_{1}, S_{2}, \ldots, S_{k}, C_{1}, C_{2}, \ldots, C_{l}
$$

such that each $S_{i}$ is an independent set and each $C_{j}$ is a clique in $G$.

- Call a graph $G$ is $(k, l)$-colorable if $G$ has a $(k, l)$-coloring.
- Split graphs are precisely the ( 1,1 )-colorable graphs.


## 1. Basic definitions

- ( $k, l$ )-coloring: a $(k, l)$-coloring of a graph $G$ is a partition of the vertex set of $G$ into $k+l$ (possibly empty) subsets

$$
S_{1}, S_{2}, \ldots, S_{k}, C_{1}, C_{2}, \ldots, C_{l}
$$

such that each $S_{i}$ is an independent set and each $C_{j}$ is a clique in $G$.

- Call a graph $G$ is $(k, l)$-colorable if $G$ has a $(k, l)$-coloring.
- Split graphs are precisely the (1,1)-colorable graphs.
- Example.

(3, 0)-colorable

(1, 2)-colorable

$(0,3)$-colorable

1. Basic definitions

## 1. Basic definitions

Let $\bar{G}$ denote the complement of a graph $G$.

## 1. Basic definitions

Let $\bar{G}$ denote the complement of a graph $G$.
The clique covering number $\theta(G)$ : the minimum number of cliques needed to cover the vertex set of a graph $G$.

## 1. Basic definitions

Let $\bar{G}$ denote the complement of a graph $G$.
The clique covering number $\theta(G)$ : the minimum number of cliques needed to cover the vertex set of a graph $G$.

- $G$ is $(k, I)$-colorable iff $\bar{G}$ is $(I, k)$-colorable.


## 1. Basic definitions

Let $\bar{G}$ denote the complement of a graph $G$.
The clique covering number $\theta(G)$ : the minimum number of cliques needed to cover the vertex set of a graph $G$.

- $G$ is $(k, I)$-colorable iff $\bar{G}$ is $(I, k)$-colorable.
- ( $k, 0$ )-colorable graphs are precisely $k$-colorable graphs.


## 1. Basic definitions

Let $\bar{G}$ denote the complement of a graph $G$.
The clique covering number $\theta(G)$ : the minimum number of cliques needed to cover the vertex set of a graph $G$.

- $G$ is $(k, I)$-colorable iff $\bar{G}$ is $(I, k)$-colorable.
- ( $k, 0$ )-colorable graphs are precisely $k$-colorable graphs.
- ( $0, /$ )-colorable graphs are exactly those graphs of clique covering number at most $l$.

1. Basic definitions

## 1. Basic definitions

- The bichromatic number of $G$ :
$\chi^{b}(G)=\min \{r: \forall k, I$ with $k+I=r, G$ is $(k, l)$-colorable $\}$
[Prömel and Steger (1993)]


## 1. Basic definitions

- The bichromatic number of $G$ :
$\chi^{b}(G)=\min \{r: \forall k, I$ with $k+I=r, G$ is $(k, l)$-colorable $\}$
[Prömel and Steger (1993)]
- Remark: $\chi^{b}(G)=\chi^{b}(\bar{G})$.


## 1. Basic definitions

- The bichromatic number of $G$ :
$\chi^{b}(G)=\min \{r: \forall k, I$ with $k+I=r, G$ is $(k, I)$-colorable $\}$ [Prömel and Steger (1993)]
- Remark: $\chi^{b}(G)=\chi^{b}(\bar{G})$.
- An example for the case $\chi^{b}(G)=4$. Not $(2,1)$-colorable!

$(3,0)$-colorable
$\Rightarrow$ (4, 0)-colorable,(3, 1)-colorable,(2, 2)-colorable,(1, 3)-colorable,(0, 4)colorable.

1. Basic definitions

## 1. Basic definitions

- The cochromatic number of $G$ :
$\chi^{c}(G)=\min \{r: \exists k, I$ with $k+I=r, G$ is $(k, l)$-colorable $\}$
[Lesniak and Straight (1977)]


## 1. Basic definitions

- The cochromatic number of $G$ :
$\chi^{c}(G)=\min \{r: \exists k, I$ with $k+I=r, G$ is $(k, l)$-colorable $\}$
[Lesniak and Straight (1977)]
- Let $\chi(G)$ and $\theta(G)$ denote the chromatic number and the clique covering number of $G$, respectively. $(\theta(G)=\chi(\bar{G}))$


## 1. Basic definitions

- The cochromatic number of $G$ :
$\chi^{c}(G)=\min \{r: \exists k, I$ with $k+I=r, G$ is $(k, l)$-colorable $\}$
[Lesniak and Straight (1977)]
- Let $\chi(G)$ and $\theta(G)$ denote the chromatic number and the clique covering number of $G$, respectively. $(\theta(G)=\chi(\bar{G}))$
- Upper bound:

$$
\chi^{c}(G) \leq \min \{\chi(G), \theta(G)\}
$$

[Lesniak and Straight (1977)]

## 1. Basic definitions

$\chi^{b}(G)=\min \{r: \forall k, I$ with $k+I=r, G$ is $(k, l)$-colorable $\}$

## 1. Basic definitions

$$
\chi^{b}(G)=\min \{r: \forall k, l \text { with } k+I=r, G \text { is }(k, l) \text {-colorable }\}
$$

- Lower bound:

$$
\begin{aligned}
& \chi^{b}(G) \geq \max \{\chi(G),\theta(G)\} . \\
& \quad[\text { Prömel and Steger (1993)] }
\end{aligned}
$$

## 1. Basic definitions

$\chi^{b}(G)=\min \{r: \forall k, I$ with $k+I=r, G$ is $(k, l)$-colorable $\}$

- Lower bound:

$$
\chi^{b}(G) \geq \max \{\chi(G), \theta(G)\}
$$

[Prömel and Steger (1993)]

- Upper bound:

$$
\chi^{b}(G) \leq \chi(G)+\theta(G)-1
$$

[Prömel and Steger (1993)]
Proof: If $k+I=\chi(G)+\theta(G)-1$, then $k \geq \chi(G)$ or $I \geq \theta(G)$.
It follows that $G$ is $(k, l)$-colorable.

## 1. Basic definitions

- Complete n-partite graph: a n-partite graph (i.e., a set of graph vertices admits a partition into $n$ classes s.t. no two vertices within the same class are adjacent) s.t. every pair of vertices from different classes are adjacent.


## 1. Basic definitions

- Complete n-partite graph: a n-partite graph (i.e., a set of graph vertices admits a partition into $n$ classes s.t. no two vertices within the same class are adjacent) s.t. every pair of vertices from different classes are adjacent.
- Let $K_{p_{1}, p_{2}, \ldots, p_{n}}$ be the complete $n$-partite graph with $p_{i}$ vertices in the $i$-th partite set, $1 \leq i \leq n, p_{0}=0<p_{1} \leq p_{2} \leq \ldots \leq p_{n}$.


## 1. Basic definitions

- Complete n-partite graph: a n-partite graph (i.e., a set of graph vertices admits a partition into $n$ classes s.t. no two vertices within the same class are adjacent) s.t. every pair of vertices from different classes are adjacent.
- Let $K_{p_{1}, p_{2}, \ldots, p_{n}}$ be the complete $n$-partite graph with $p_{i}$ vertices in the $i$-th partite set, $1 \leq i \leq n, p_{0}=0<p_{1} \leq p_{2} \leq \ldots \leq p_{n}$.


## Proposition (Lesniak and Straight, Ars Combin., 1977)

$$
\chi^{c}\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=\min \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\} .
$$

## 1. Basic definitions

- Complete n-partite graph: a n-partite graph (i.e., a set of graph vertices admits a partition into $n$ classes s.t. no two vertices within the same class are adjacent) s.t. every pair of vertices from different classes are adjacent.
- Let $K_{p_{1}, p_{2}, \ldots, p_{n}}$ be the complete $n$-partite graph with $p_{i}$ vertices in the $i$-th partite set, $1 \leq i \leq n, p_{0}=0<p_{1} \leq p_{2} \leq \ldots \leq p_{n}$.
Proposition (Lesniak and Straight, Ars Combin., 1977)

$$
\chi^{c}\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=\min \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\} .
$$

Proposition

$$
\chi^{b}\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\} .
$$

1. Basic definitions

## Proposition

$$
\chi^{b}\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\} .
$$

Proof: Let $G=K_{p_{1}, p_{2}, \ldots, p_{n}}$. Consider $\bar{G}=K_{p_{1}} \cup K_{p_{2}} \cup \ldots \cup K_{p_{n}}$. Let $n-k+p_{k}=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\}$.

## 1. Basic definitions

## Proposition

$$
\chi^{b}\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\} .
$$

Proof: Let $G=K_{p_{1}, p_{2}, \ldots, p_{n}}$. Consider $\bar{G}=K_{p_{1}} \cup K_{p_{2}} \cup \ldots \cup K_{p_{n}}$.
Let $n-k+p_{k}=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\}$.

- $\chi^{b}(\bar{G}) \leq n-k+p_{k}$.
(Since $\bar{G}$ is $\left(p_{i}, n-i\right)$-colorable, $\bar{G}$ is $\left(n-k+p_{k}-(n-i), n-i\right)$ colorable.)


## 1. Basic definitions

## Proposition

$$
\chi^{b}\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\} .
$$

Proof: Let $G=K_{p_{1}, p_{2}, \ldots, p_{n}}$. Consider $\bar{G}=K_{p_{1}} \cup K_{p_{2}} \cup \ldots \cup K_{p_{n}}$.
Let $n-k+p_{k}=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\}$.

- $\chi^{b}(\bar{G}) \leq n-k+p_{k}$.
(Since $\bar{G}$ is $\left(p_{i}, n-i\right)$-colorable, $\bar{G}$ is $\left(n-k+p_{k}-(n-i), n-i\right)$ colorable.)
- $\chi^{b}(\bar{G})>n-k+p_{k}-1$.
(If $1 \leq k \leq n$, then $\bar{G}$ is not ( $p_{k}-1, n-k$ )-colorable.
If $k=0$, then $\bar{G}$ is not $(0, n-1)$-colorable.)


## 1. Basic definitions

## Proposition

$$
\chi^{b}\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\} .
$$

Proof: Let $G=K_{p_{1}, p_{2}, \ldots, p_{n}}$. Consider $\bar{G}=K_{p_{1}} \cup K_{p_{2}} \cup \ldots \cup K_{p_{n}}$.
Let $n-k+p_{k}=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\}$.

- $\chi^{b}(\bar{G}) \leq n-k+p_{k}$.
(Since $\bar{G}$ is $\left(p_{i}, n-i\right)$-colorable, $\bar{G}$ is $\left(n-k+p_{k}-(n-i), n-i\right)$ colorable.)
- $\chi^{b}(\bar{G})>n-k+p_{k}-1$.
(If $1 \leq k \leq n$, then $\bar{G}$ is not $\left(p_{k}-1, n-k\right)$-colorable.
If $k=0$, then $\bar{G}$ is not $(0, n-1)$-colorable.)
- $\chi^{b}(G)=\chi^{b}(\bar{G})=\max \left\{n-i+p_{i} \mid 0 \leq i \leq n\right\}$.


## 2. Known results

The independence number $\alpha(G)$ : the size of a maximum independent vertex set of a graph $G$.

## 2. Known results

The independence number $\alpha(G)$ : the size of a maximum independent vertex set of a graph $G$.

## Proposition (Epple and Huang, JGT, 2010)

For every graph $G$ on $n$ vertices, $\chi^{b}(G) \geq \sqrt{n}$.

## 2. Known results

The independence number $\alpha(G)$ : the size of a maximum independent vertex set of a graph $G$.

## Proposition (Epple and Huang, JGT, 2010)

For every graph $G$ on $n$ vertices, $\chi^{b}(G) \geq \sqrt{n}$.

- Proof: $\chi^{b}(G) \cdot \chi^{b}(G) \geq \chi(G) \cdot \theta(G) \geq \chi(G) \cdot \alpha(G) \geq n$.


## 2. Known results

The independence number $\alpha(G)$ : the size of a maximum independent vertex set of a graph $G$.

## Proposition (Epple and Huang, JGT, 2010)

For every graph $G$ on $n$ vertices, $\chi^{b}(G) \geq \sqrt{n}$.

- Proof: $\chi^{b}(G) \cdot \chi^{b}(G) \geq \chi(G) \cdot \theta(G) \geq \chi(G) \cdot \alpha(G) \geq n$.


## Theorem (Epple and Huang, JGT, 2010)

The problem of computing the bichromatic number of a graph is NP-hard.
2. Known results

The bidegree of $G: \Delta^{b}(G)=\max \{\Delta(G), \Delta(\bar{G})\}$.

## 2. Known results

The bidegree of $G: \Delta^{b}(G)=\max \{\Delta(G), \Delta(\bar{G})\}$.

- Brooks-type theorem:


## 2. Known results

The bidegree of $G: \Delta^{b}(G)=\max \{\Delta(G), \Delta(\bar{G})\}$.

- Brooks-type theorem:


## Theorem (Epple and Huang, JGT, 2014)

For any graph G,

$$
\chi^{b}(G) \leq \Delta^{b}(G)+1
$$

Equality holds iff $G$ is one of $K_{n}, K_{m, m}, C_{5}, Q$ or their complements.

- The graph $Q$ in the above theorem is depicted below.



## 2. Known results

The class of cograph is recursively defined as follows:
(i) $K_{1}$ is a cograph;
(ii) if $G$ is a cograph, then $\bar{G}$ is a cograph;
(iii) if $G, H$ are cographs, then disjoint union of $G$ and $H$ is a cograph.
[Corneil, Lerchs and Burlingham (1981)]

## 2. Known results

cograph: a graph not contain $P_{4}$ (i.e., the path with four vertices) as an induced subgraph.
[D. Seinsche (1974)]

## 2. Known results

cograph: a graph not contain $P_{4}$ (i.e., the path with four vertices) as an induced subgraph.
[D. Seinsche (1974)]
box cograph: a box cograph is a cograph $G$ having exactly $\chi(G) \theta(G)$ vertices.

The class of box cographs $G$ is denoted by $\mathcal{B}(r, s)$ if $\chi(G)=r$ and $\theta(G)=s$.
[Epple and Huang (2010)]

## 2. Known results

cograph: a graph not contain $P_{4}$ (i.e., the path with four vertices) as an induced subgraph.
[D. Seinsche (1974)]
box cograph: a box cograph is a cograph $G$ having exactly $\chi(G) \theta(G)$ vertices.

The class of box cographs $G$ is denoted by $\mathcal{B}(r, s)$ if $\chi(G)=r$ and $\theta(G)=s$.
[Epple and Huang (2010)]

- Example: a box cograph of dimension 3 by 4 .


2. Known results

Theorem (Epple and Huang, JGT, 2010)
Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

Outline of the proof: Consider a $k$-coloring $S_{1}, S_{2}, \ldots, S_{k}$ and a $l$-clique covering $C_{1}, C_{2}, \ldots, C_{1}$ of $G$.

## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

Outline of the proof: Consider a $k$-coloring $S_{1}, S_{2}, \ldots, S_{k}$ and a I-clique covering $C_{1}, C_{2}, \ldots, C_{I}$ of $G$.

- $G$ is not $(k-1, I-1)$-colorable.

$$
\begin{aligned}
& \left(\chi^{b}(G)>k+I-2 . G \text { is not }\left(k^{\prime}, I^{\prime}\right)\right. \text {-colorable for some } \\
& k^{\prime}+I^{\prime}=k+I-2 \text {. Since } G \text { is }(k, 0) \text {-colorable and }(0, I) \text {-colorable, } \\
& \left.k^{\prime} \leq k-1 \text { and } I^{\prime} \leq I-1 \text {. Thus } k^{\prime}=k-1 \text { and } I^{\prime}=I-1 .\right)
\end{aligned}
$$

2. Known results

Theorem (Epple and Huang, JGT, 2010)
Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

- $G$ is not $(k-1, l-1)$-colorable.


## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

- $G$ is not $(k-1, I-1)$-colorable.
- $\left|S_{i} \cap C_{j}\right|=1$. $\left(\left|S_{i} \cap C_{j}\right| \leq 1\right.$. Suppose $\left|S_{i} \cap C_{j}\right|=0$ for some $i$ and $j$. Then $\left\{S_{1}, \ldots, S_{i-1}, S_{i+1}, \ldots, S_{k}, C_{1} \cap S_{i}, \ldots, C_{j-1} \cap S_{i}, C_{j+1} \cap S_{i}, \ldots\right.$, $\left.C_{I} \cap S_{i}\right\}$ is a $(k-1, I-1)$-coloring of $\left.G.\right)$


## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

- $G$ is not $(k-1, I-1)$-colorable.
- $\left|S_{i} \cap C_{j}\right|=1$. $\left(\left|S_{i} \cap C_{j}\right| \leq 1\right.$. Suppose $\left|S_{i} \cap C_{j}\right|=0$ for some $i$ and $j$. Then $\left\{S_{1}, \ldots, S_{i-1}, S_{i+1}, \ldots, S_{k}, C_{1} \cap S_{i}, \ldots, C_{j-1} \cap S_{i}, C_{j+1} \cap S_{i}, \ldots\right.$, $\left.C_{I} \cap S_{i}\right\}$ is a $(k-1, I-1)$-coloring of $G$.)
- $G$ has kl vertices.


## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k, \theta(G)=I, \chi^{b}(G)=k+I-1$, then $G \in \mathcal{B}(k, l)$.

- $G$ is not $(k-1, l-1)$-colorable.
- $\left|S_{i} \cap C_{j}\right|=1$. $\left(\left|S_{i} \cap C_{j}\right| \leq 1\right.$. Suppose $\left|S_{i} \cap C_{j}\right|=0$ for some $i$ and $j$. Then $\left\{S_{1}, \ldots, S_{i-1}, S_{i+1}, \ldots, S_{k}, C_{1} \cap S_{i}, \ldots, C_{j-1} \cap S_{i}, C_{j+1} \cap S_{i}, \ldots\right.$, $\left.C_{I} \cap S_{i}\right\}$ is a $(k-1, I-1)$-coloring of $\left.G.\right)$
- $G$ has $k l$ vertices.
- $G$ is a cograph.
(Frequently employ the property: if $G$ is a cograph with at least two vertices then either $G$ or $\bar{G}$ is disconnected.)


## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k$ and $\theta(G)=I$. Then $\chi^{b}(G) \leq k+I-1$, and the following statements (i), (ii) and (iii) are equivalent:
(i) $\chi^{b}(G)=k+I-1$,
(ii) $G$ is not $(k-1, I-1)$-colorable,
(iii) $G \in \mathcal{B}(k, l)$.

## 2. Known results

## Theorem (Epple and Huang, JGT, 2010)

Let $G$ be a graph with $\chi(G)=k$ and $\theta(G)=I$. Then $\chi^{b}(G) \leq k+I-1$, and the following statements (i), (ii) and (iii) are equivalent:
(i) $\chi^{b}(G)=k+I-1$,
(ii) $G$ is not $(k-1, I-1)$-colorable,
(iii) $G \in \mathcal{B}(k, l)$.

- An example for the case $\chi^{b}(G)-\theta(G)$ arbitrarily large.

Given positive integers $m$ and $n$, let $m K_{n}$ denote the disjoint union of $m$ copies of $K_{n}$. It is clear that $m K_{n} \in \mathcal{B}(n, m)$, and thus

$$
\chi^{b}\left(m K_{n}\right)=\chi(G)+\theta(G)-1=n+m-1 .
$$

## 3. Our results

The clique number $\omega(G)$ : the maximum order over all cliques of $G$.

$$
\chi^{b}\left(m K_{n}\right)=n+m-1=\omega\left(m K_{n}\right)+\theta\left(m K_{n}\right)-1 .
$$

## 3. Our results

The clique number $\omega(G)$ : the maximum order over all cliques of $G$.

$$
\chi^{b}\left(m K_{n}\right)=n+m-1=\omega\left(m K_{n}\right)+\theta\left(m K_{n}\right)-1 .
$$

A natural upper bound: $\chi^{b}(G) \leq \chi(G)+\theta(G)-1$.

## 3. Our results

The clique number $\omega(G)$ : the maximum order over all cliques of $G$.

$$
\chi^{b}\left(m K_{n}\right)=n+m-1=\omega\left(m K_{n}\right)+\theta\left(m K_{n}\right)-1
$$

A natural upper bound: $\chi^{b}(G) \leq \chi(G)+\theta(G)-1$.

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and the following statements (i), (ii), (iii) and (iv) are equivalent:
(i) $\chi^{b}(G)=\theta(G)+1$,
(ii) $G$ is not $(1, \theta(G)-1)$-colorable,
(iii) $G \in \mathcal{B}\left(2, \frac{|V(G)|}{2}\right)$,
(iv) $G$ is the disjoint union of balanced complete bipartite graphs.

## 3. Our results

## Theorem

Let $G$ be a graph with $\omega(G)<4$. Then $\chi^{b}(G) \leq \theta(G)+2$, and the following statements (i), (ii) and (iii) are equivalent:
(i) $\chi^{b}(G)=\theta(G)+2$,
(ii) $G$ is not $(2, \theta(G)-1)$-colorable,
(iii) $G \in \mathcal{B}\left(3, \frac{|V(G)|}{3}\right)$.

## 3. Our results

## Theorem

Let $G$ be a graph with $\omega(G)<4$. Then $\chi^{b}(G) \leq \theta(G)+2$, and the following statements (i), (ii) and (iii) are equivalent:
(i) $\chi^{b}(G)=\theta(G)+2$,
(ii) $G$ is not $(2, \theta(G)-1)$-colorable,
(iii) $G \in \mathcal{B}\left(3, \frac{|V(G)|}{3}\right)$.

- Remark: If $\omega(G)<4$, then $\chi^{b}(G) \leq \theta(G)+\omega(G)-1$.


## 3. Our results

## Theorem

Let $G$ be a graph with $\omega(G)<4$. Then $\chi^{b}(G) \leq \theta(G)+2$, and the following statements (i), (ii) and (iii) are equivalent:
(i) $\chi^{b}(G)=\theta(G)+2$,
(ii) $G$ is not $(2, \theta(G)-1)$-colorable,
(iii) $G \in \mathcal{B}\left(3, \frac{|V(G)|}{3}\right)$.

- Remark: If $\omega(G)<4$, then $\chi^{b}(G) \leq \theta(G)+\omega(G)-1$.
- Problem: If $\omega(G) \geq 4$ ?


## 3. Our results

## Theorem

Let $G$ be a line graph of a simple graph with $\omega(G)<r+1, r \geq 4$. Then $\chi^{b}(G) \leq \theta(G)+r-1$, and the following statements (i), (ii) and (iii) are equivalent:
(i) $\chi^{b}(G)=\theta(G)+r-1$,
(ii) $G$ is not $(r-1, \theta(G)-1)$-colorable,
(iii) $G$ is the disjoint union of $K_{r}$.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

Proof: Let $G$ be a triangle free graph with $|V(G)|=n \geq 1$ and $\theta(G)=I$.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

Proof: Let $G$ be a triangle free graph with $|V(G)|=n \geq 1$ and $\theta(G)=I$. If $I=1$, then $G=K_{1}$ or $K_{2}$, and thus $\chi^{b}(G) \leq 2$.
$\chi^{b}(G)=2$ iff $G\left(=K_{2}\right)$ is not $(1,0)$-colorable.
Assume that $I \geq 2$.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

Proof: Let $G$ be a triangle free graph with $|V(G)|=n \geq 1$ and $\theta(G)=1$. If $I=1$, then $G=K_{1}$ or $K_{2}$, and thus $\chi^{b}(G) \leq 2$.
$\chi^{b}(G)=2$ iff $G\left(=K_{2}\right)$ is not $(1,0)$-colorable.
Assume that $I \geq 2$.
Let $C_{0}=\emptyset$, and let $C_{1}, C_{2}, \ldots, C_{1}$ be a partition of $V(G)$ s.t.
each $C_{j}$ is a clique.
For $i \in\{0,1, \ldots, I-2\}$, let $G_{i}=G-\cup_{j=0}^{i} C_{j}$.
4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

## Lemma (Erdős, Gimbel and Straight, Europ. J. Combin. 1990)

 If $G$ is triangle free graph other than $K_{2}$, then $\chi(G)=\chi^{C}(G)$.
## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

## Lemma (Erdős, Gimbel and Straight, Europ. J. Combin. 1990)

If $G$ is triangle free graph other than $K_{2}$, then $\chi(G)=\chi^{c}(G)$.
Since $\left(C_{l-1} \cup C_{l}\right) \subseteq V\left(G_{i}\right), G_{i} \neq K_{2}$. By Lemma,

$$
\chi\left(G_{i}\right)=\chi^{c}\left(G_{i}\right) \leq \theta\left(G_{i}\right)=1-i .
$$

Then $V\left(G_{i}\right)$ can be partitioned into $I-i$ independent sets

$$
\left\{S_{1}, S_{2}, \ldots, S_{I-i}\right\} .
$$

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and
$\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

Then $V\left(G_{i}\right)$ can be partitioned into $I-i$ independent sets

$$
\left\{S_{1}, S_{2}, \ldots, S_{I-i}\right\}
$$

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

Then $V\left(G_{i}\right)$ can be partitioned into $I-i$ independent sets

$$
\left\{S_{1}, S_{2}, \ldots, S_{l-i}\right\}
$$

It follows that $\left\{S_{1}, S_{2}, \ldots, S_{I-i}, C_{1}, C_{2}, \ldots, C_{i}\right\}$ is an $(I-i, i)$-coloring of $G$.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

Then $V\left(G_{i}\right)$ can be partitioned into $I-i$ independent sets

$$
\left\{S_{1}, S_{2}, \ldots, S_{l-i}\right\}
$$

It follows that $\left\{S_{1}, S_{2}, \ldots, S_{I-i}, C_{1}, C_{2}, \ldots, C_{i}\right\}$ is an $(I-i, i)$-coloring of $G$.
i.e., $G$ is $(I-i, i)$-colorable for each $i \in\{0,1, \ldots, I-2\}$., and
$G$ is $(I-i+1, i)$-colorable for each $i \in\{0,1, \ldots, I-1\}$.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

If $G$ is $(1, I-1)$-colorable, $\chi^{b}(G) \leq I$ since $G$ is $(0, I)$-colorable.
If $G$ is not $(1, I-1)$-colorable, $\chi^{b}(G)=I+1$ since $G$ is
$(1, I)$-colorable and ( $0, I+1$ )-colorable.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph. Then $\chi^{b}(G) \leq \theta(G)+1$, and $\chi^{b}(G)=\theta(G)+1$ iff $G$ is not $(1, \theta(G)-1)$-colorable.

If $G$ is $(1, I-1)$-colorable, $\chi^{b}(G) \leq I$ since $G$ is $(0, I)$-colorable.
If $G$ is not $(1, I-1)$-colorable, $\chi^{b}(G)=I+1$ since $G$ is
$(1, I)$-colorable and ( $0, I+1$ )-colorable.
It follows that $\chi^{b}(G) \leq I+1$, and $\chi^{b}(G)=I+1$ iff $G$ is not
(1, I - 1)-colorable.
This completes the proof.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph on $n$ vertices, $\theta(G)=I$. Then $G$ is not $(1, I-1)$-colorable iff $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph on $n$ vertices, $\theta(G)=I$. Then $G$ is not $(1, I-1)$-colorable iff $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$.

## Proof:

$\Leftarrow$ : If $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$, then $G$ is not $(1, I-1)$-colorable.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph on $n$ vertices, $\theta(G)=I$. Then $G$ is not $(1, I-1)$-colorable iff $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$.

## Proof:

$\Leftarrow$ : If $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$, then $G$ is not $(1, I-1)$-colorable.
$\Rightarrow$ : Since $G$ is triangle free, $I \geq \frac{n}{2}$.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph on $n$ vertices, $\theta(G)=I$. Then $G$ is not $(1, I-1)$-colorable iff $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$.

## Proof:

$\Leftarrow$ : If $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$, then $G$ is not $(1, I-1)$-colorable.
$\Rightarrow$ : Since $G$ is triangle free, $I \geq \frac{n}{2}$.
Suppose that $G$ is not $(1, I-1)$-colorable.

## 4. The proof

## Theorem

Let $G$ be a triangle free graph on $n$ vertices, $\theta(G)=I$. Then $G$ is not $(1, I-1)$-colorable iff $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$.

## Proof:

$\Leftarrow$ : If $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$, then $G$ is not $(1, I-1)$-colorable.
$\Rightarrow$ : Since $G$ is triangle free, $I \geq \frac{n}{2}$.
Suppose that $G$ is not $(1, I-1)$-colorable.
Then $I=\frac{n}{2}$, and so $n$ is even.
(If $I>\frac{n}{2}$, then there exists a clique $C_{i}$ s.t. $\left|C_{i}\right|=1$, and so $G$ is
(1, I - 1)-colorable.)

## 4. The proof

## Lemma (Epple, Ph.D. Thesis, 2011)

Let $G$ be a nonbipartite triangle free graph on $n$ vertices with $n$ even. Then $G$ is $\left(1, \frac{n}{2}-1\right)$-colorable.

## Lemma (Epple, Ph.D. Thesis, 2011)

Let $G$ be a bipartite graph on $n$ vertices with $n$ even. If $G$ is not a box cograph, then $G$ is $\left(1, \frac{n}{2}-1\right)$-colorable.

## 4. The proof

## Lemma (Epple, Ph.D. Thesis, 2011)

Let $G$ be a nonbipartite triangle free graph on $n$ vertices with $n$ even. Then $G$ is $\left(1, \frac{n}{2}-1\right)$-colorable.

## Lemma (Epple, Ph.D. Thesis, 2011)

Let $G$ be a bipartite graph on $n$ vertices with $n$ even. If $G$ is not a box cograph, then $G$ is $\left(1, \frac{n}{2}-1\right)$-colorable.
$G$ is not $(1, I-1)$-colorable, $I=\frac{n}{2}, n$ is even. By Lemmas, $G$ is bipartite and is a box cograph, i.e., $G \in \mathcal{B}\left(2, \frac{n}{2}\right)$.

## 5. Open problems

## Problem <br> Every graph $G$ with $\omega(G)<5 \Rightarrow \chi^{b}(G) \leq \theta(G)+3$ ?

## 5. Open problems

## Problem <br> Every graph $G$ with $\omega(G)<5 \Rightarrow \chi^{b}(G) \leq \theta(G)+3$ ?

Remark: Every graph $G$ with $\omega(G)<5 \Rightarrow \chi(G) \leq \theta(G)+3$ ?

## 5. Open problems

## Problem

Every graph $G$ with $\omega(G)<5 \Rightarrow \chi^{b}(G) \leq \theta(G)+3$ ?
Remark: Every graph $G$ with $\omega(G)<5 \Rightarrow \chi(G) \leq \theta(G)+3$ ?
If this is true, then the problem is solved.
Proof: Let $G$ be a graph with $\omega(G)<5, \theta(G)=I, I \geq 1$. Let $C_{0}=\emptyset$, Let $C_{1}, C_{2}, \ldots, C_{l}$ be a partition of $V(G)$, s.t. each $C_{j}$ is a clique. For $i \in\{0,1, \ldots, I-1\}$, let $G_{i}=G-\cup_{j=0}^{i} C_{j}$. If $\chi\left(G_{i}\right) \leq \theta\left(G_{i}\right)+3=I-i+3$ is true. Then $V\left(G_{i}\right)$ can be partitioned into $I-i+3$ independent sets $\left\{S_{1}, S_{2}, \ldots, S_{I-i+3}\right\}$. It follows that $\left\{S_{1}, S_{2}, \ldots, S_{I-i+3}, C_{1}, C_{2}, \ldots, C_{i}\right\}$ is an $(I-i+3, i)$-coloring of $G$, i.e., $G$ is $(I-i+3, i)$-colorable for each $i \in\{0,1, \ldots, I-1\}$. Since $G$ is $(0, I)$-colorable, $G$ is $(t, I+3-t)$-color -able for each $t \in\{0,1,2,3\}$. So $\chi^{b}(G) \leq \theta(G)+3$.

## 5. Open problems

Problem (Huang, GTCA(The 8th International Symposium on Graph
Theory and Combinatorial Algorithms), 2019)
Characterize graphs $G$ for which $\chi^{b}(G)=\chi^{c}(G)$.

## 5. Open problems

Problem (Huang, GTCA(The 8th International Symposium on Graph Theory and Combinatorial Algorithms), 2019)
Characterize graphs $G$ for which $\chi^{b}(G)=\chi^{c}(G)$.

## Lemma (Ekim and Gimbel, Discrete Math. 2009)

The only triangle free graphs with $\chi(G)=\theta(G)$ are
$P_{3}, K_{1} \cup K_{2}, P_{4}, 2 K_{2}, C_{4}, C_{5}$, together with the two graph are depicted below.


## 5. Open problems

Problem (Huang, GTCA, 2019)
Characterize graphs $G$ for which $\chi^{b}(G)=\chi^{c}(G)$.

## 5. Open problems

## Problem (Huang, GTCA, 2019)

Characterize graphs $G$ for which $\chi^{b}(G)=\chi^{c}(G)$.

## Corollary

The only triangle free graphs with $\chi^{b}(G)=\chi^{c}(G)$ are $P_{3}, K_{1} \cup K_{2}, P_{4}, C_{5}$, together with the two graph are depicted below.


## 5. Open problems

## 5. Open problems

## Problem (Huang, GTCA, 2019)

What can be said about graphs $G$ for which $\chi^{b}(G)=\chi(G)$ ?

## 5. Open problems

## Problem (Huang, GTCA, 2019)

What can be said about graphs $G$ for which $\chi^{b}(G)=\chi(G)$ ?

## Problem (Huang, GTCA, 2019)

Characterize planar graphs $G$ for which $\chi^{b}(G)=\theta(G)$.

## Thank you!

