Hypergraphs with infinitely many extremal constructions

Yixiao Zhang
(Joint with Jianfeng Hou, Heng Li, Xizhi Liu and Dhruv Mubayi)

Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University
2023.11.24

Definition

For an integer $r \geq 2$, an r-uniform hypergraph (henceforth r-graph) \mathscr{H} is a collection of r-subsets of some finite set V.

- Given a family \mathscr{F} of r-graphs we say \mathscr{H} is \mathscr{F}-free if it does not contain any member of \mathscr{F} as a subgraph.
- Turán number: The Turán number ex (n, \mathscr{F}) of \mathscr{F} is the maximum number of edges in an \mathscr{F}-free r-graph on n vertices.
- Turán density: The Turán density $\pi(\mathscr{F})$ of \mathscr{F} is defined as

$$
\pi(\mathscr{F}):=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, \mathscr{F})}{\binom{n}{r}} .
$$

- nondegenerate hypergraph : A family \mathscr{F} is called nondegenerate if $\pi(\mathscr{F})>0$.

Introduction

Theorem 1 (Mantel 1907)

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor .
$$

Theorem 2 (Turán 1941)

$$
\operatorname{ex}\left(n, K_{\ell+1}\right)=|T(n, \ell)|
$$

where $T(n, \ell)$ is the balanced complete ℓ-partite graph on n vertices, i.e., Turán graph.

國 W. Mantel, Solution to problem 28, by h. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh, and WA Wythoff, Wiskundige Opgaven 10 (1907) 60-61.
P. Turán, On an extermal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.

Introduction

The chromatic number of a graph G, denoted by $\chi(G)$, is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Theorem 3 (Erdős-Stone-Simonovits 1966)

Let H be a graph and $\chi(H) \geq 2$, then

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

星
P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091.

围
P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar 1 (1966) 51-57.

Introduction

Corollary 4
Let H be a graph and $\chi(H) \geq 2$, then

$$
\pi(H)=\frac{\chi(H)-2}{\chi(H)-1}
$$

Introduction

For $r \geq 3$ determining $\pi(\mathscr{F})$ for a family \mathscr{F} of r-graphs is known to be notoriously hard in general.

Conjecture 5 (Turán 1941)

For every integer $\ell \geq 3$ we have $\pi\left(K_{\ell+1}^{3}\right)=1-4 / \ell^{2}$.
Erdős offered $\$ 500$ for the determination of any $\pi\left(K_{\ell}^{r}\right)$ with $\ell>r \geq 3$ and $\$ 1000$ for all $\pi\left(K_{\ell}^{r}\right)$ with $\ell>r \geq 3$.
围 P. Turán, On an extermal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.

Introduction

Why Turán problem for hypergraph is so challenging ?

Theorem 6 (Kostochka 1982)

Assuming Turán's Tetrahedron conjecture is true, there are at least 2^{n-2} nonisomorphic extremal K_{4}^{3}-free constructions on $3 n$ vertices.

Theorem 7 (Razborov 2010)

$$
5 / 9 \leq \pi\left(K_{4}^{3}\right) \leq 0.561666
$$

俥
A. V. Kostochka, A class of constructions for Turán's (3,4)-problem, Combinatorica 2 (1982) 187-192.
荀
A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations, SIAM Journal on Discrete Mathematics 24 (2010) 946-963.

Stability

For a family \mathscr{F} of r-graphs, it is natural to ask for the "continuity" of the discrete \mathscr{F}-free r-graphs whose size is close to ex (n, \mathscr{F}).

- stability: Many families \mathscr{F} have the property that there is a unique \mathscr{F} free hypergraph \mathscr{G} on n vertices achieving ex (n, \mathscr{F}), and moreover, any \mathscr{F}-free hypergraph \mathscr{H} of size close to ex (n, \mathscr{F}) can be transformed to \mathscr{G} by deleting and adding very few edges.

Introduction

Theorem 8 (Erdős-Simonovits 1968)

Fix $\ell \geq 2$. For every $\delta>0$, there exists ε and $N_{0}=N_{0}(\varepsilon)$ such that the following holds for every $n>N_{0}$ if G is an n-vertex graph containing no copy of $K_{\ell+1}$ with at least $(1-\varepsilon)|T(n, \ell)|$ edges, then G can be transformed to $T(n, \ell)$ by adding and deleting at most δn^{2} edges.

- M. Simonovits, A method for solving extremal problems in graph theory, stability problems, Theory of Graphs (Proc. Colloq., Tihany, 1966) (1968) 279-319

Non-stable

There are many Turán problems for hypergraphs that (perhaps) do not have the stability property.

- non-stable : For many families of r-uniform hypergraphs \mathscr{M}, there are perhaps many near-extremal \mathscr{M}-free configurations that are far from each other in edit-distance. Such a property is called non-stable.
Two famous examples:
- K_{4}^{3}
- Erdős-Sós Conjecture

Conjecture 9 (Erdós-Sós Conjecture)

Let \mathscr{H} be a 3-graph with n vertices. If $L(v)$ is bipartite for all $v \in V(\mathscr{H})$, then $|\mathscr{H}| \leq(1 / 4+o(1))\binom{n}{3}$.

If Erdős-Sós Conjecture is true, then it also does not have the stability property as there are several different near-extremal constructions.

Stability number

- t-stable : Let $r \geq 2$ and $t \geq 1$ be integers. A family \mathscr{F} of r-graphs is t-stable if there exist m_{0} and r-graphs $\mathscr{G}_{1}(m), \ldots, \mathscr{G}_{t}(m)$ on m vertices for every $m \geq m_{0}$ such that the following holds. For every $\delta>0$ there exist $\varepsilon>0$ and N_{0} such that for all $n \geq N_{0}$ if \mathscr{H} is an \mathscr{F}-free r-graph on n vertices with $|\mathscr{H}|>(1-\varepsilon) \operatorname{ex}(n, \mathscr{F})$ then \mathscr{H} can be transformed to some $\mathscr{C}_{i}(n)$ by adding and removing at most δn^{r} edges.
- stability number: Denote by $\xi(\mathscr{F})$ the minimum integer t such that \mathscr{F} is t-stable, and set $\xi(\mathscr{F})=\infty$ if there is no such t. Call $\xi(\mathscr{F})$ the stability number of \mathscr{F}.

Introduction

Theorem 10 (Liu and Mubayi 2022)

If Conjecture 5 is ture i.e., $\pi\left(K_{4}^{3}\right)=5 / 9$, then $\xi\left(K_{4}^{3}\right)=\infty$.

Theorem 11 (Liu and Mubayi 2022)

There exists a finite family \mathscr{M} of 3-graphs such that $\xi(\mathscr{M})=2$.
This is the first finite 2 -stable family of hypergraphs.
目 X. Liu and D. Mubayi, A hypergraph Turán problem with no stability, Combinatorica 42 (2022) 433-462.

Introduction

Theorem 12 (Liu, Mubayi and Reiher 2023+)

For every positive integer there exists a finite family \mathscr{M} of 3-graphs such that $\xi(\mathscr{M})=t$.

Problem 13 (Liu and Mubayi 2022)

Determine ex (n, \mathscr{F}) for some family \mathscr{F} with $\xi(\mathscr{F})=\infty$.

Problem 14 (Liu, Mubayi and Reiher 2023+)

Does there exist a family \mathscr{F} of triple systems with $\pi(\mathscr{F})=2 / 9$ but $\xi(\mathscr{F}) \neq$ 1 ?

- X. Liu and D. Mubayi, A hypergraph Turán problem with no stability, Combinatorica 42 (2022) 433-462.

居
X. Liu, D. Mubayi, and C. Reiher. Hypergraphs with many extremal configurations, Israel. J. Math. to appear.

Definition

- blowup : An r-graph \mathscr{H} is a blowup of an r-graph \mathscr{G} if there exists a map $\psi: V(\mathscr{H}) \rightarrow V(\mathscr{G})$ so that $\psi(E) \in \mathscr{G}$ iff $E \in \mathscr{H}$.
- \mathscr{G}-colorable : \mathscr{H} is \mathscr{G}-colorable if there exists a map $\phi: V(\mathscr{H}) \rightarrow$ $V(\mathscr{G})$ so that $\phi(E) \in \mathscr{G}$ for all $E \in \mathscr{H}$.

Main Result

Theorem 15 (Hou, Li, Liu, Mubayi and Zhang 2023+)

For every integer $t \geq 3$ there exists a finite family \mathscr{F}_{t} of 3 -graphs such that the following statements hold.
(1) We have $\operatorname{ex}\left(n, \mathscr{F}_{t}\right) \leq \frac{(t-2)(t-1)}{6 t^{2}} n^{3}$ for all $n \in \mathbb{N}$, and equality holds whenever $t \mid n$.
(2) If $t \mid n$, then the number of nonisomorphic maximum \mathscr{F}_{t}-free 3-graphs on n vertices is at least $n / 2 t$.
(3) We have $\xi\left(\mathscr{F}_{t}\right)=\infty$.
(4) For every integer $t \geq 4$ there exist constants $\varepsilon=\varepsilon(t)>0$ and $N_{0}=N_{0}(t)$ such that the following holds for every integer $n \geq N_{0}$. Every n-vertex \mathscr{F}_{t}-free 3-graph with minimum degree at least $\left(\frac{(t-2)(t-1)}{2 t^{2}}-\varepsilon\right) n^{2}$ is $\Gamma_{t^{-}}$ colorable, where Γ_{t} is some fixed 3-graph on $t+2$ vertices.

Multilinear polynomials

Denote by Δ_{m-1} the standard ($m-1$)-dimensional simplex, i.e.

$$
\Delta_{m-1}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in[0,1]^{m}: x_{1}+\cdots+x_{m}=1\right\} .
$$

Given an m-variable continuous function f we define

$$
\lambda(f)=\max \left\{f\left(x_{1}, \ldots, x_{m}\right):\left(x_{1}, \ldots, x_{m}\right) \in \Delta_{m-1}\right\},
$$

and

$$
Z(f)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \Delta_{m-1}: f\left(x_{1}, \ldots, x_{m}\right)-\lambda(f)=0\right\} .
$$

Multilinear polynomials

We say p is multilinear if each term of p is of the form $\prod_{i \in S} x_{i}$ for some S.
We say p is nonnegative (or nonpositive) if $p\left(x_{1}, \ldots, x_{m}\right) \geq 0$ (or $p\left(x_{1}, \ldots, x_{m}\right) \leq$ 0) for all $\left(x_{1}, \ldots, x_{m}\right) \in \Delta_{m-1}$. For a pair $\{i, j\} \subset[m]$ we say p is symmetric with respect to X_{i} and X_{j} if

$$
p\left(X_{1}, \ldots, X_{i}, \ldots, X_{j}, \ldots, X_{m}\right)=p\left(X_{1}, \ldots, X_{j}, \ldots, X_{i}, \ldots, X_{m}\right) .
$$

Given two vectors $\vec{x}, \vec{y} \in \mathbb{R}^{m}$ define the line segment $L(\vec{x}, \vec{y})$ with endpoints \vec{x} and \vec{y} as

$$
L(\vec{x}, \vec{y})=\{\alpha \cdot \vec{x}+(1-\alpha) \cdot \vec{y}: \alpha \in[0,1]\} .
$$

Multilinear polynomials

Proposition 16

Let $p\left(X_{1}, \ldots, X_{m}\right)=p_{1}+p_{2}\left(X_{i}+X_{j}\right)+p_{3} X_{i} X_{j}$ be an m-variable multilinear polynomial that is symmetric with respect to X_{i} and X_{j}. Suppose that p_{3} is nonnegative, and p_{4}, p_{5} are nonnegative polynomials satisfying $p_{4}+p_{5}=p_{3}$. Then the $(m+2)$-variable polynomial

$$
\begin{aligned}
& \hat{p}\left(X_{1}, \ldots, X_{i}, X_{i}^{\prime}, \ldots, X_{j}, X_{j}^{\prime}, \ldots, X_{m}\right) \\
& \quad=p_{1}+p_{2}\left(X_{i}+X_{i}^{\prime}+X_{j}+X_{j}^{\prime}\right)+p_{4}\left(X_{i}+X_{i}^{\prime}\right)\left(X_{j}+X_{j}^{\prime}\right)+p_{5}\left(X_{i}+X_{j}\right)\left(X_{i}^{\prime}+X_{j}^{\prime}\right)
\end{aligned}
$$

satisfies $\lambda(\hat{p})=\lambda(p)$, and moreover, for every $\left(x_{1}, \ldots, x_{m}\right) \in Z(p)$ we have $L(\vec{y}, \vec{z}) \subset Z(\hat{p})$, where $\vec{y}, \vec{z} \in \Delta_{m+1}$ are defined by

$$
\begin{aligned}
& \vec{y}=\left(x_{1}, \ldots, x_{i-1},\left(x_{i}+x_{j}\right) / 2,0, x_{i+1}, \ldots, x_{j-1}, 0,\left(x_{i}+x_{j}\right) / 2, x_{j+1}, \ldots, x_{m}\right) \\
& \vec{z}=\left(x_{1}, \ldots, x_{i-1}, 0,\left(x_{i}+x_{j}\right) / 2, x_{i+1}, \ldots, x_{j-1},\left(x_{i}+x_{j}\right) / 2,0, x_{j+1}, \ldots, x_{m}\right)
\end{aligned}
$$

Lagrangian

For an r-graph \mathscr{G} on m vertices, the multilinear polynomial $p \mathscr{G}$ is defined by

$$
p_{\mathscr{G}}\left(X_{1}, \ldots, X_{m}\right)=\sum_{E \in \mathscr{G}} \prod_{i \in E} X_{i} .
$$

The Lagrangian of \mathscr{G} is defined by $\lambda(\mathscr{G})=\lambda\left(p_{\mathscr{G}}\right)$. Define

$$
Z(\mathscr{G})=Z\left(p_{\mathscr{G}}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \Delta_{m-1}: p_{\mathscr{G}}\left(x_{1}, \ldots, x_{m}\right)=\lambda(\mathscr{G})\right\} .
$$

Crossed blowup

Definition 17 (Crossed blowup)

Let \mathscr{G} be a 3-graph and $\left\{v_{1}, v_{2}\right\} \subset \mathscr{G}$ be a pair of vertices with $d\left(v_{1}, v_{2}\right)=k \geq$ 2. Fix an ordering of the vertices in $N_{\mathscr{G}}\left(v_{1}, v_{2}\right)$, say $N_{\mathscr{G}}\left(v_{1}, v_{2}\right)=\left\{u_{1}, \ldots, u_{k}\right\}$. The crossed blowup $\mathscr{G} \boxplus\left\{v_{1}, v_{2}\right\}$ of \mathscr{G} on $\left\{v_{1}, v_{2}\right\}$ is defined as follows.
(1) Remove all edges containing the pair $\left\{v_{1}, v_{2}\right\}$ from \mathscr{G},
(2) add two new vertices v_{1}^{\prime} and v_{2}^{\prime}, make v_{1}^{\prime} a clone of v_{1} and v_{2}^{\prime} a clone of v_{2},
(3) for every $i \in[k-1]$ add the edge set $\left\{u_{i} v_{1} v_{1}^{\prime}, u_{i} v_{1} v_{2}^{\prime}, u_{i} v_{2} v_{1}^{\prime}, u_{i} v_{2} v_{2}^{\prime}\right\}$, and for $i=k$ add the edge set $\left\{u_{k} v_{1} v_{2}, u_{k} v_{1} v_{2}^{\prime}, u_{k} v_{1}^{\prime} v_{2}, u_{k} v_{1}^{\prime} v_{2}^{\prime}\right\}$.

Crossed blowup

Figure 1: $\left\{u_{1} v_{1} v_{2}, u_{2} v_{1} v_{2}, u_{3} v_{1} v_{2}\right\}$ and $\left\{u_{1} v_{1} v_{2}, u_{2} v_{1} v_{2}, u_{3} v_{1} v_{2}\right\} \boxplus\left\{v_{1}, v_{2}\right\}$. The link of red vertices is the red $K_{2,2}$, the link of the yellow vertex is the yellow $K_{2,2}$.

Crossed blowup

Figure 2: K_{4}^{3} and $K_{4}^{3} \boxplus\{3,4\}$.

Crossed blowup

Let \mathscr{G} be a 3-graph. A pair $\left\{v_{1}, v_{2}\right\} \subset V(\mathscr{G})$ is symmetric in \mathscr{G} if

$$
L_{\mathscr{G}}\left(v_{1}\right)-v_{2}=L_{\mathscr{G}}\left(v_{2}\right)-v_{1}
$$

The crossed blowup of a 3-graph has the following properties.

Proposition 18

Suppose that \mathscr{G} is an m-vertex 3-graph and $\left\{v_{1}, v_{2}\right\} \subset V(\mathscr{G})$ is a pair of vertices with $d\left(v_{1}, v_{2}\right) \geq 2$. Then the following statements hold.
(1) The 3-graph \mathscr{G} is contained in $\mathscr{G} \boxplus\left\{v_{1}, v_{2}\right\}$ as an induced subgraph. In particular, $\lambda(\mathscr{G}) \leq \lambda\left(\mathscr{G} \boxplus\left\{v_{1}, v_{2}\right\}\right)$.
(2) The 3 -graph $\mathscr{G} \boxplus\left\{v_{1}, v_{2}\right\}$ is 2 -covered iff \mathscr{G} is 2 -covered.
(3) If $\left\{v_{1}, v_{2}\right\}$ is symmetric in \mathscr{G}, then $\lambda\left(\mathscr{G} \boxplus\left\{v_{1}, v_{2}\right\}\right)=\lambda(\mathscr{G})$. If, in addition, there exists $\left(x_{1}, \ldots, x_{m}\right) \in Z(\mathscr{G})$ with $x_{1}+x_{2}>0$, then the set $Z\left(\mathscr{G} \boxplus\left\{v_{1}, v_{2}\right\}\right)$ contains a one-dimensional simplex (i.e. a nontrivial line segment).

Main definition

Definition 19

Let $t \geq 1$ be an integer.
(1) Let

$$
\Gamma_{t+2}= \begin{cases}\{134,234\} \boxplus\{3,4\} & \text { if } t=1, \\ K_{t+2}^{3} \boxplus\{t+1, t+2\} & \text { if } t \geq 2 .\end{cases}
$$

(2) Let \mathfrak{d}_{t+2} be the collection of all Γ_{t+2}-colorable 3-graphs.
(3) Let $\gamma_{t+2}(n)=\max \left\{|\mathscr{H}|: v(\mathscr{H})=n\right.$ and $\left.\mathscr{H} \in \mathfrak{o}_{t+2}\right\}$.
(4) Let $\mathscr{F}_{t+2}=\left\{F: v(F) \leq 4(t+4)^{2}\right.$ and $\left.F \notin \mathfrak{o}_{t+2}\right\}$.

Blowup-invariance

Given an r-graph F we say \mathscr{H} is F-hom-free if there is no homomorphism from F to \mathscr{H}. This is equivalent to say that every blowup of \mathscr{H} is F-free. For a family \mathscr{F} of r-graphs we say \mathscr{H} is \mathscr{F}-hom-free if it is F-hom-free for all $F \in \mathscr{F}$. An easy observation is that if an r-graph F is 2-covered, then \mathscr{H} is F-free iff it is F-hom-free.

Definition 20 (Blowup-invariance)

A family \mathscr{F} of r-graphs is blowup-invariant if every \mathscr{F}-free r-graph is also \mathscr{F}-hom-free.

Turán number

For every r-graph \mathscr{G} let $\mathscr{F}_{\infty}(\mathscr{G})$ be the (infinite) family of all r-graphs that are not \mathscr{G}-colorable, i.e.

$$
\mathscr{F}_{\infty}(\mathscr{G})=\{r \text {-graph } F: \text { and } F \text { is not } \mathscr{G} \text {-colorable }\} .
$$

For every positive integer M define the family $\mathscr{F}_{M}(\mathscr{G})$ of r-graphs as

$$
\mathscr{F}_{M}(\mathscr{G})=\left\{F \in \mathscr{F}_{\infty}(\mathscr{G}): v(F) \leq M\right\} .
$$

Lemma 21

For every r-graph \mathscr{G} and every positive integer M the family $\mathscr{F}_{M}(\mathscr{G})$ is blowup-invariant.

Turán number

Let \mathscr{H} be an r-graph and $\{u, v\} \subset V(\mathscr{H})$ be two non-adjacent vertices (i.e., no edge contains both u and v). We say u and v are equivalent if $L_{\mathscr{H}}(u)=$ $L_{\mathscr{H}}(v)$ (in particular, two equivalent vertices are non-adjacent). Otherwise we say they are non-equivalent. An equivalence class of \mathscr{H} is a maximal vertex set in which every pair of vertices are equivalent. We say \mathscr{H} is symmetrized if it does not contain non-equivalent pairs of vertices.

Theorem 22

Suppose that \mathscr{F} is a blowup-invariant family of r-graphs. If \mathfrak{H} denotes the class of all symmetrized \mathscr{F}-free r-graphs, then ex $(n, \mathscr{F})=\mathfrak{h}(n)$ holds for every $n \in \mathbb{N}^{+}$, where $\mathfrak{h}(n)=\max \{|\mathscr{H}|: \mathscr{H} \in \mathfrak{H}$ and $v(\mathscr{H})=n\}$.

Vertex-extendibility

Definition 23 (Vertex-extendibility)

Let \mathscr{F} be a family of r-graphs and let \mathfrak{H} be a class of \mathscr{F}-free r-graphs. We say that \mathscr{F} is vertex-extendable with respect to \mathfrak{H} if there exist $\zeta>0$ and $N_{0} \in \mathbb{N}$ such that for every \mathscr{F}-free r-graph \mathscr{H} on $n \geq N_{0}$ vertices satisfying $\delta(\mathscr{H}) \geq$ $(\pi(\mathscr{F}) /(r-1)!-\zeta) n^{r-1}$ the following holds: if $\mathscr{H}-v$ is a subgraph of a member of \mathfrak{H} for some vertex $v \in V(\mathscr{H})$, then \mathscr{H} is a subgraph of a member of \mathfrak{H} as well.

Degree stability

Theorem 24 (Liu, Mubayi and Reiher 2023)

Suppose that \mathscr{F} is a blowup-invariant nondegenerate family of r-graphs and that \mathfrak{H} is a hereditary class of \mathscr{F}-free r-graphs. If \mathfrak{H} contains all symmetrized \mathscr{F}-free r-graphs and \mathscr{F} is vertex-extendable with respect to \mathfrak{H}, then the following statement holds. There exist $\varepsilon>0$ and N_{0} such that every \mathscr{F}-free r-graph on $n \geq N_{0}$ vertices with minimum degree at least $(\pi(\mathscr{F}) /(r-1)!-\varepsilon) n^{r-1}$ is contained in \mathfrak{H}.

- X. Liu, D. Mubayi, and C. Reiher. A unified approach to hypergraph stability, J. Combin. Theory Ser. B, 158:36C62, 2023

Feasible region

- shadow: The shadow of \mathscr{H} is defined as

$$
\partial \mathscr{H}=\left\{A \in\binom{V(\mathscr{H})}{r-1}: \text { there is } B \in \mathscr{H} \text { such that } A \subset B\right\}
$$

- density: The edge density of \mathscr{H} is defined as $\rho(\mathscr{H})=|\mathscr{H}| /\binom{v(\mathscr{H})}{r}$, and the shadow density of \mathscr{H} is defined as $\rho(\partial \mathscr{H})=|\partial \mathscr{H}| /\binom{v(\mathscr{H})}{r-1}$.
- feasible region: For a family \mathscr{F} the feasible region $\Omega(\mathscr{F})$ of \mathscr{F} is the set of points $(x, y) \in[0,1]^{2}$ such that there exists a sequence of \mathscr{F}-free r-graphs $\left(\mathscr{H}_{k}\right)_{k=1}^{\infty}$ with

$$
\lim _{k \rightarrow \infty} v\left(\mathscr{H}_{k}\right)=\infty, \quad \lim _{k \rightarrow \infty} \rho\left(\partial \mathscr{H}_{k}\right)=x, \quad \text { and } \quad \lim _{k \rightarrow \infty} \rho\left(\mathscr{H}_{k}\right)=y .
$$

Feasible region

- $\operatorname{proj} \Omega(\mathscr{F}):=\{x$: there is $y \in[0,1]$ such that $(x, y) \in \Omega(\mathscr{F})\}$.
- feasible region function: The function $g(\mathscr{F}): \operatorname{proj} \Omega(\mathscr{F}) \rightarrow[0,1]$ such that

$$
\Omega(\mathscr{F})=\{(x, y) \in[0, c(\mathscr{F})] \times[0,1]: 0 \leq y \leq g(\mathscr{F})(x)\} .
$$

Theorem 25 (Liu and Mubayi 2021)

The feasible region function $g(\mathscr{F})$ is not necessarily continuous. But $g(\mathscr{F})$ is a left-continuous almost everywhere differentiable function.X. Liu and D. Mubayi, The feasible region of hypergraphs, Journal of Combinatorial Theory, Series B 148 (2021) 23-59.

Feasible region

Problem 26 (Liu, Mubayi and Reiher 2023+)

For $r \geq 3$ does there exist a non-degenerate family \mathscr{F} of r-graphs so that $g(\mathscr{F})$ has infinitely many global maxima? If so, can the set $M(\mathscr{F})$ be uncountable? Can it even contain a non-trivial interval?

Figure 4: The function $g\left(\mathcal{F}_{t}\right)$ attains its maximum on the interval $\left[\frac{t-1}{t}, \frac{t-1}{t}+\frac{1}{t^{2}}\right]$.

Thank You for Your Attention!

