# Hypergraphs with infinitely many extremal constructions

### Yixiao Zhang

#### (Joint with Jianfeng Hou, Heng Li, Xizhi Liu and Dhruv Mubayi)

Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University

2023.11.24

## Definition

For an integer  $r \ge 2$ , an *r*-uniform hypergraph (henceforth *r*-graph)  $\mathcal{H}$  is a collection of *r*-subsets of some finite set *V*.

- Given a family  $\mathscr{F}$  of *r*-graphs we say  $\mathscr{H}$  is  $\mathscr{F}$ -free if it does not contain any member of  $\mathscr{F}$  as a subgraph.
- *Turán number* : The *Turán number*  $ex(n, \mathscr{F})$  of  $\mathscr{F}$  is the maximum number of edges in an  $\mathscr{F}$ -free *r*-graph on *n* vertices.
- *Turán density* : The *Turán density*  $\pi(\mathscr{F})$  of  $\mathscr{F}$  is defined as

$$\pi(\mathscr{F}) := \lim_{n \to \infty} \frac{\operatorname{ex}(n, \mathscr{F})}{\binom{n}{r}}.$$

• nondegenerate hypergraph : A family  $\mathscr{F}$  is called nondegenerate if  $\pi(\mathscr{F}) > 0$ .

4 E K 4 E K

Theorem 1 (Mantel 1907)

$$\operatorname{ex}(n,K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor.$$

#### Theorem 2 (Turán 1941)

$$\mathrm{ex}(n, K_{\ell+1}) = |T(n, \ell)|,$$

where  $T(n, \ell)$  is the balanced complete  $\ell$ -partite graph on n vertices, i.e., *Turán graph*.

- W. Mantel, Solution to problem 28, by h. *Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh, and WA Wythoff, Wiskundige Opgaven* **10** (1907) 60–61.
- P. Turán, On an external problem in graph theory, *Mat. Fiz. Lapok* **48** (1941) 436–452.

伺 ト イ ヨ ト イ ヨ ト

The **chromatic number** of a graph *G*, denoted by  $\chi(G)$ , is the smallest number of colors needed to color the vertices of *G* so that no two adjacent vertices share the same color.

Theorem 3 (Erdős-Stone-Simonovits 1966)

*Let H be a graph and*  $\chi(H) \ge 2$ *, then* 

$$\operatorname{ex}(n,H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

- P. Erdős and A. H. Stone, On the structure of linear graphs, *Bull. Amer. Math. Soc.* **52** (1946) 1087–1091.
- P. Erdős and M. Simonovits, A limit theorem in graph theory, *Studia Sci. Math. Hungar* **1** (1966) 51–57.

#### Corollary 4

*Let H be a graph and*  $\chi(H) \ge 2$ *, then* 

$$\pi(H) = \frac{\chi(H) - 2}{\chi(H) - 1}.$$

Ξ.

For  $r \ge 3$  determining  $\pi(\mathscr{F})$  for a family  $\mathscr{F}$  of *r*-graphs is known to be notoriously hard in general.

Conjecture 5 (Turán 1941)

For every integer  $\ell \geq 3$  we have  $\pi(K^3_{\ell+1}) = 1 - 4/\ell^2$ .

Erdős offered \$500 for the determination of any  $\pi(K_{\ell}^r)$  with  $\ell > r \ge 3$  and \$1000 for all  $\pi(K_{\ell}^r)$  with  $\ell > r \ge 3$ .

P. Turán, On an extermal problem in graph theory, *Mat. Fiz. Lapok* **48** (1941) 436–452.

くほう くほう

э.

Why Turán problem for hypergraph is so challenging ?

#### Theorem 6 (Kostochka 1982)

Assuming Turán's Tetrahedron conjecture is true, there are at least  $2^{n-2}$  nonisomorphic extremal  $K_4^3$ -free constructions on 3n vertices.

#### Theorem 7 (Razborov 2010)

$$5/9 \le \pi(K_4^3) \le 0.561666.$$

A. V. Kostochka, A class of constructions for Turán's (3,4)-problem, *Combinatorica* **2** (1982) 187–192.

A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations, *SIAM Journal on Discrete Mathematics* **24** (2010) 946–963.

For a family  $\mathscr{F}$  of *r*-graphs, it is natural to ask for the "continuity" of the discrete  $\mathscr{F}$ -free *r*-graphs whose size is close to  $ex(n, \mathscr{F})$ .

stability: Many families ℱ have the property that there is a unique ℱ-free hypergraph 𝔅 on n vertices achieving ex(n,ℱ), and moreover, any ℱ-free hypergraph ℋ of size close to ex(n,ℱ) can be transformed to 𝔅 by deleting and adding very few edges.

#### Theorem 8 (Erdős-Simonovits 1968)

Fix  $\ell \geq 2$ . For every  $\delta > 0$ , there exists  $\varepsilon$  and  $N_0 = N_0(\varepsilon)$  such that the following holds for every  $n > N_0$  if G is an n-vertex graph containing no copy of  $K_{\ell+1}$  with at least  $(1 - \varepsilon)|T(n, \ell)|$  edges, then G can be transformed to  $T(n, \ell)$  by adding and deleting at most  $\delta n^2$  edges.

M. Simonovits, A method for solving extremal problems in graph theory, stability problems, *Theory of Graphs (Proc. Colloq., Tihany, 1966)* (1968) 279–319 There are many Turán problems for hypergraphs that (perhaps) do not have the stability property.

• *non-stable* : For many families of *r*-uniform hypergraphs  $\mathcal{M}$ , there are perhaps many near-extremal  $\mathcal{M}$ -free configurations that are far from each other in edit-distance. Such a property is called non-stable.

Two famous examples:

- $K_4^3$
- Erdős-Sós Conjecture

Conjecture 9 (Erdős-Sós Conjecture)

Let  $\mathscr{H}$  be a 3-graph with n vertices. If L(v) is bipartite for all  $v \in V(\mathscr{H})$ , then  $|\mathscr{H}| \leq (1/4 + o(1)) \binom{n}{3}$ .

If Erdős-Sós Conjecture is true, then it also does not have the stability property as there are several different near-extremal constructions.

白 マイヨ マイヨ マ

3

- *t-stable* : Let  $r \ge 2$  and  $t \ge 1$  be integers. A family  $\mathscr{F}$  of *r*-graphs is *t*-stable if there exist  $m_0$  and *r*-graphs  $\mathscr{G}_1(m), \ldots, \mathscr{G}_t(m)$  on *m* vertices for every  $m \ge m_0$  such that the following holds. For every  $\delta > 0$  there exist  $\varepsilon > 0$  and  $N_0$  such that for all  $n \ge N_0$  if  $\mathscr{H}$  is an  $\mathscr{F}$ -free *r*-graph on *n* vertices with  $|\mathscr{H}| > (1 \varepsilon) \exp(n, \mathscr{F})$  then  $\mathscr{H}$  can be transformed to some  $\mathscr{G}_i(n)$  by adding and removing at most  $\delta n^r$  edges.
- *stability number* : Denote by  $\xi(\mathscr{F})$  the minimum integer *t* such that  $\mathscr{F}$  is *t*-stable, and set  $\xi(\mathscr{F}) = \infty$  if there is no such *t*. Call  $\xi(\mathscr{F})$  *the stability number* of  $\mathscr{F}$ .

#### Theorem 10 (Liu and Mubayi 2022)

If Conjecture 5 is ture i.e., 
$$\pi(K_4^3) = 5/9$$
, then  $\xi(K_4^3) = \infty$ .

#### Theorem 11 (Liu and Mubayi 2022)

*There exists a finite family*  $\mathcal{M}$  *of 3-graphs such that*  $\xi(\mathcal{M}) = 2$ *.* 

This is the first finite 2-stable family of hypergraphs.

X. Liu and D. Mubayi, A hypergraph Turán problem with no stability, *Combinatorica* **42** (2022) 433–462.

글 🖌 🖌 글 🕨

э

#### Theorem 12 (Liu, Mubayi and Reiher 2023+)

For every positive integer t there exists a finite family  $\mathcal{M}$  of 3-graphs such that  $\xi(\mathcal{M}) = t$ .

#### Problem 13 (Liu and Mubayi 2022)

Determine  $ex(n, \mathscr{F})$  for some family  $\mathscr{F}$  with  $\xi(\mathscr{F}) = \infty$ .

#### Problem 14 (Liu, Mubayi and Reiher 2023+)

Does there exist a family  $\mathscr{F}$  of triple systems with  $\pi(\mathscr{F}) = 2/9$  but  $\xi(\mathscr{F}) \neq 1$ ?

- X. Liu and D. Mubayi, A hypergraph Turán problem with no stability, *Combina-torica* **42** (2022) 433–462.
- X. Liu, D. Mubayi, and C. Reiher. Hypergraphs with many extremal configurations, *Israel. J. Math.* to appear.

- blowup : An r-graph ℋ is a blowup of an r-graph 𝒢 if there exists a map ψ: V(ℋ) → V(𝒢) so that ψ(E) ∈ 𝒢 iff E ∈ ℋ.
- $\mathscr{G}$ -colorable :  $\mathscr{H}$  is  $\mathscr{G}$ -colorable if there exists a map  $\phi \colon V(\mathscr{H}) \to V(\mathscr{G})$  so that  $\phi(E) \in \mathscr{G}$  for all  $E \in \mathscr{H}$ .

#### Theorem 15 (Hou, Li, Liu, Mubayi and Zhang 2023+)

For every integer  $t \ge 3$  there exists a finite family  $\mathscr{F}_t$  of 3-graphs such that the following statements hold.

- (1) We have  $ex(n, \mathscr{F}_t) \leq \frac{(t-2)(t-1)}{6t^2} n^3$  for all  $n \in \mathbb{N}$ , and equality holds whenever  $t \mid n$ .
- (2) If  $t \mid n$ , then the number of nonisomorphic maximum  $\mathscr{F}_t$ -free 3-graphs on n vertices is at least n/2t.
- (3) We have  $\xi(\mathscr{F}_t) = \infty$ .
- (4) For every integer t ≥ 4 there exist constants ε = ε(t) > 0 and N<sub>0</sub> = N<sub>0</sub>(t) such that the following holds for every integer n ≥ N<sub>0</sub>. Every n-vertex *F<sub>t</sub>*-free 3-graph with minimum degree at least ((t-2)(t-1)/(2t<sup>2</sup>) ε) n<sup>2</sup> is Γ<sub>t</sub>-colorable, where Γ<sub>t</sub> is some fixed 3-graph on t + 2 vertices.

「同・・ヨ・・ヨ・

Denote by  $\Delta_{m-1}$  the standard (m-1)-dimensional simplex, i.e.

$$\Delta_{m-1} = \{(x_1, \dots, x_m) \in [0, 1]^m : x_1 + \dots + x_m = 1\}.$$

Given an m-variable continuous function f we define

$$\lambda(f) = \max\left\{f(x_1,\ldots,x_m)\colon (x_1,\ldots,x_m)\in\Delta_{m-1}\right\},\,$$

and

$$Z(f) = \{(x_1,...,x_m) \in \Delta_{m-1} : f(x_1,...,x_m) - \lambda(f) = 0\}.$$

御 と く ヨ と く ヨ と

э.

We say *p* is *multilinear* if each term of *p* is of the form  $\prod_{i \in S} x_i$  for some *S*.

We say *p* is *nonnegative* (or *nonpositive*) if  $p(x_1, ..., x_m) \ge 0$  (or  $p(x_1, ..., x_m) \le 0$ ) for all  $(x_1, ..., x_m) \in \Delta_{m-1}$ . For a pair  $\{i, j\} \subset [m]$  we say *p* is symmetric with respect to  $X_i$  and  $X_j$  if

$$p(X_1,\ldots,X_i,\ldots,X_j,\ldots,X_m)=p(X_1,\ldots,X_j,\ldots,X_i,\ldots,X_m).$$

Given two vectors  $\vec{x}, \vec{y} \in \mathbb{R}^m$  define the line segment  $L(\vec{x}, \vec{y})$  with endpoints  $\vec{x}$  and  $\vec{y}$  as

$$L(\vec{x}, \vec{y}) = \{ \alpha \cdot \vec{x} + (1 - \alpha) \cdot \vec{y} \colon \alpha \in [0, 1] \}.$$

#### Proposition 16

Let  $p(X_1,...,X_m) = p_1 + p_2(X_i + X_j) + p_3X_iX_j$  be an *m*-variable multilinear polynomial that is symmetric with respect to  $X_i$  and  $X_j$ . Suppose that  $p_3$  is nonnegative, and  $p_4, p_5$  are nonnegative polynomials satisfying  $p_4 + p_5 = p_3$ . Then the (m+2)-variable polynomial

$$\hat{p}(X_1, ..., X_i, X'_i, ..., X_j, X'_j, ..., X_m) = p_1 + p_2(X_i + X'_i + X_j + X'_j) + p_4(X_i + X'_i)(X_j + X'_j) + p_5(X_i + X_j)(X'_i + X'_j)$$
satisfies  $\lambda(\hat{p}) = \lambda(p)$ , and moreover, for every  $(x_1, ..., x_m) \in Z(p)$  we have

satisfies  $\kappa(p) = \kappa(p)$ , and moreover, for every  $(x_1, \ldots, x_m) \in \Sigma(p)$  we have  $L(\vec{y}, \vec{z}) \subset Z(\hat{p})$ , where  $\vec{y}, \vec{z} \in \Delta_{m+1}$  are defined by

$$\vec{y} = (x_1, \dots, x_{i-1}, (x_i + x_j)/2, 0, x_{i+1}, \dots, x_{j-1}, 0, (x_i + x_j)/2, x_{j+1}, \dots, x_m), \vec{z} = (x_1, \dots, x_{i-1}, 0, (x_i + x_j)/2, x_{i+1}, \dots, x_{j-1}, (x_i + x_j)/2, 0, x_{j+1}, \dots, x_m).$$

For an *r*-graph  $\mathscr{G}$  on *m* vertices, the multilinear polynomial  $p_{\mathscr{G}}$  is defined by

$$p_{\mathscr{G}}(X_1,\ldots,X_m) = \sum_{E\in\mathscr{G}}\prod_{i\in E}X_i.$$

The Lagrangian of  $\mathscr{G}$  is defined by  $\lambda(\mathscr{G}) = \lambda(p_{\mathscr{G}})$ . Define

$$Z(\mathscr{G}) = Z(p_{\mathscr{G}}) = \{(x_1, \ldots, x_n) \in \Delta_{m-1} \colon p_{\mathscr{G}}(x_1, \ldots, x_m) = \lambda(\mathscr{G})\}.$$

э

#### Definition 17 (Crossed blowup)

Let  $\mathscr{G}$  be a 3-graph and  $\{v_1, v_2\} \subset \mathscr{G}$  be a pair of vertices with  $d(v_1, v_2) = k \ge 2$ . Fix an ordering of the vertices in  $N_{\mathscr{G}}(v_1, v_2)$ , say  $N_{\mathscr{G}}(v_1, v_2) = \{u_1, \dots, u_k\}$ . The crossed blowup  $\mathscr{G} \boxplus \{v_1, v_2\}$  of  $\mathscr{G}$  on  $\{v_1, v_2\}$  is defined as follows.

- (1) Remove all edges containing the pair  $\{v_1, v_2\}$  from  $\mathcal{G}$ ,
- (2) add two new vertices v<sub>1</sub> and v<sub>2</sub>, make v<sub>1</sub> a clone of v<sub>1</sub> and v<sub>2</sub> a clone of v<sub>2</sub>,
- (3) for every  $i \in [k-1]$  add the edge set  $\{u_i v_1 v'_1, u_i v_1 v'_2, u_i v_2 v'_1, u_i v_2 v'_2\}$ , and for i = k add the edge set  $\{u_k v_1 v_2, u_k v_1 v'_2, u_k v'_1 v_2, u_k v'_1 v'_2\}$ .

## Crossed blowup



Figure 1:  $\{u_1v_1v_2, u_2v_1v_2, u_3v_1v_2\}$  and  $\{u_1v_1v_2, u_2v_1v_2, u_3v_1v_2\} \boxplus \{v_1, v_2\}$ . The link of red vertices is the red  $K_{2,2}$ , the link of the yellow vertex is the yellow  $K_{2,2}$ .

< ∃ >

-

Ξ.



Figure 2:  $K_4^3$  and  $K_4^3 \boxplus \{3, 4\}$ .

< ∃ >

æ

Let  $\mathscr{G}$  be a 3-graph. A pair  $\{v_1, v_2\} \subset V(\mathscr{G})$  is symmetric in  $\mathscr{G}$  if

$$L_{\mathscr{G}}(v_1) - v_2 = L_{\mathscr{G}}(v_2) - v_1.$$

The crossed blowup of a 3-graph has the following properties.

Proposition 18

Suppose that  $\mathscr{G}$  is an m-vertex 3-graph and  $\{v_1, v_2\} \subset V(\mathscr{G})$  is a pair of vertices with  $d(v_1, v_2) \geq 2$ . Then the following statements hold.

- (1) The 3-graph  $\mathscr{G}$  is contained in  $\mathscr{G} \boxplus \{v_1, v_2\}$  as an induced subgraph. In particular,  $\lambda(\mathscr{G}) \leq \lambda(\mathscr{G} \boxplus \{v_1, v_2\})$ .
- (2) The 3-graph  $\mathscr{G} \boxplus \{v_1, v_2\}$  is 2-covered iff  $\mathscr{G}$  is 2-covered.
- (3) If {v<sub>1</sub>, v<sub>2</sub>} is symmetric in G, then λ(G ⊞ {v<sub>1</sub>, v<sub>2</sub>}) = λ(G). If, in addition, there exists (x<sub>1</sub>,...,x<sub>m</sub>) ∈ Z(G) with x<sub>1</sub> + x<sub>2</sub> > 0, then the set Z(G ⊞ {v<sub>1</sub>, v<sub>2</sub>}) contains a one-dimensional simplex (i.e. a nontrivial line segment).

#### Definition 19

Let  $t \ge 1$  be an integer. (1) Let

$$\Gamma_{t+2} = \begin{cases} \{134, 234\} \boxplus \{3, 4\} & \text{if } t = 1, \\ K_{t+2}^3 \boxplus \{t+1, t+2\} & \text{if } t \ge 2. \end{cases}$$

(2) Let  $\mathfrak{d}_{t+2}$  be the collection of all  $\Gamma_{t+2}$ -colorable 3-graphs. (3) Let  $\gamma_{t+2}(n) = \max\{|\mathscr{H}|: v(\mathscr{H}) = n \text{ and } \mathscr{H} \in \mathfrak{d}_{t+2}\}.$ (4) Let  $\mathscr{F}_{t+2} = \{F: v(F) \leq 4(t+4)^2 \text{ and } F \notin \mathfrak{d}_{t+2}\}.$ 

< ∃ > 3

Given an *r*-graph *F* we say  $\mathcal{H}$  is *F*-hom-free if there is no homomorphism from *F* to  $\mathcal{H}$ . This is equivalent to say that every blowup of  $\mathcal{H}$  is *F*-free. For a family  $\mathcal{F}$  of *r*-graphs we say  $\mathcal{H}$  is  $\mathcal{F}$ -hom-free if it is *F*-hom-free for all  $F \in \mathcal{F}$ . An easy observation is that if an *r*-graph *F* is 2-covered, then  $\mathcal{H}$ is *F*-free iff it is *F*-hom-free.

Definition 20 (Blowup-invariance)

A family  $\mathscr{F}$  of r-graphs is blowup-invariant if every  $\mathscr{F}$ -free r-graph is also  $\mathscr{F}$ -hom-free.

For every *r*-graph  $\mathscr{G}$  let  $\mathscr{F}_{\infty}(\mathscr{G})$  be the (infinite) family of all *r*-graphs that are not  $\mathscr{G}$ -colorable, i.e.

 $\mathscr{F}_{\infty}(\mathscr{G}) = \{r\text{-graph } F: \text{ and } F \text{ is not } \mathscr{G}\text{-colorable}\}.$ 

For every positive integer *M* define the family  $\mathscr{F}_M(\mathscr{G})$  of *r*-graphs as

$$\mathscr{F}_{M}(\mathscr{G}) = \{F \in \mathscr{F}_{\infty}(\mathscr{G}) \colon v(F) \leq M\}.$$

#### Lemma 21

For every r-graph  $\mathcal{G}$  and every positive integer M the family  $\mathcal{F}_M(\mathcal{G})$  is blowup-invariant.

御 と く き と く き と

3

Let  $\mathscr{H}$  be an *r*-graph and  $\{u,v\} \subset V(\mathscr{H})$  be two non-adjacent vertices (i.e., no edge contains both *u* and *v*). We say *u* and *v* are *equivalent* if  $L_{\mathscr{H}}(u) = L_{\mathscr{H}}(v)$  (in particular, two equivalent vertices are non-adjacent). Otherwise we say they are *non-equivalent*. An equivalence class of  $\mathscr{H}$  is a maximal vertex set in which every pair of vertices are equivalent. We say  $\mathscr{H}$  is *symmetrized* if it does not contain non-equivalent pairs of vertices.

#### Theorem 22

Suppose that  $\mathscr{F}$  is a blowup-invariant family of r-graphs. If  $\mathfrak{H}$  denotes the class of all symmetrized  $\mathscr{F}$ -free r-graphs, then  $ex(n, \mathscr{F}) = \mathfrak{h}(n)$  holds for every  $n \in \mathbb{N}^+$ , where  $\mathfrak{h}(n) = \max\{|\mathscr{H}| : \mathscr{H} \in \mathfrak{H} \text{ and } v(\mathscr{H}) = n\}$ .

#### Definition 23 (Vertex-extendibility)

Let  $\mathscr{F}$  be a family of r-graphs and let  $\mathfrak{H}$  be a class of  $\mathscr{F}$ -free r-graphs. We say that  $\mathscr{F}$  is vertex-extendable with respect to  $\mathfrak{H}$  if there exist  $\zeta > 0$  and  $N_0 \in \mathbb{N}$ such that for every  $\mathscr{F}$ -free r-graph  $\mathscr{H}$  on  $n \ge N_0$  vertices satisfying  $\delta(\mathscr{H}) \ge (\pi(\mathscr{F})/(r-1)! - \zeta)n^{r-1}$  the following holds: if  $\mathscr{H} - v$  is a subgraph of a member of  $\mathfrak{H}$  for some vertex  $v \in V(\mathscr{H})$ , then  $\mathscr{H}$  is a subgraph of a member of  $\mathfrak{H}$  as well.

#### Theorem 24 (Liu, Mubayi and Reiher 2023)

Suppose that  $\mathscr{F}$  is a blowup-invariant nondegenerate family of r-graphs and that  $\mathfrak{H}$  is a hereditary class of  $\mathscr{F}$ -free r-graphs. If  $\mathfrak{H}$  contains all symmetrized  $\mathscr{F}$ -free r-graphs and  $\mathscr{F}$  is vertex-extendable with respect to  $\mathfrak{H}$ , then the following statement holds. There exist  $\varepsilon > 0$  and  $N_0$  such that every  $\mathscr{F}$ -free r-graph on  $n \ge N_0$  vertices with minimum degree at least  $(\pi(\mathscr{F})/(r-1)! - \varepsilon)n^{r-1}$  is contained in  $\mathfrak{H}$ .

X. Liu, D. Mubayi, and C. Reiher. A unified approach to hypergraph stability, *J. Combin. Theory Ser. B*, 158:36C62, 2023

• *shadow* : The *shadow* of  $\mathcal{H}$  is defined as

$$\partial \mathscr{H} = \left\{ A \in \binom{V(\mathscr{H})}{r-1} : \text{ there is } B \in \mathscr{H} \text{ such that } A \subset B \right\}.$$

- *density* : The *edge density* of  $\mathscr{H}$  is defined as  $\rho(\mathscr{H}) = |\mathscr{H}| / \binom{v(\mathscr{H})}{r}$ , and the *shadow density* of  $\mathscr{H}$  is defined as  $\rho(\partial \mathscr{H}) = |\partial \mathscr{H}| / \binom{v(\mathscr{H})}{r-1}$ .
- *feasible region*: For a family *F* the *feasible region* Ω(*F*) of *F* is the set of points (x,y) ∈ [0,1]<sup>2</sup> such that there exists a sequence of *F*-free *r*-graphs (ℋ<sub>k</sub>)<sup>∞</sup><sub>k=1</sub> with

$$\lim_{k\to\infty} v(\mathscr{H}_k) = \infty, \quad \lim_{k\to\infty} \rho(\partial \mathscr{H}_k) = x, \quad \text{and} \quad \lim_{k\to\infty} \rho(\mathscr{H}_k) = y.$$

## Feasible region

- proj $\Omega(\mathscr{F})$ : = {x: there is  $y \in [0,1]$  such that  $(x,y) \in \Omega(\mathscr{F})$  }.
- *feasible region function* : The function  $g(\mathscr{F})$ : proj $\Omega(\mathscr{F}) \to [0,1]$  such that

$$\Omega(\mathscr{F}) = \left\{ (x, y) \in [0, c(\mathscr{F})] \times [0, 1] \colon 0 \le y \le g(\mathscr{F})(x) \right\}.$$

#### Theorem 25 (Liu and Mubayi 2021)

The feasible region function  $g(\mathscr{F})$  is not necessarily continuous. But  $g(\mathscr{F})$  is a left-continuous almost everywhere differentiable function.

X. Liu and D. Mubayi, The feasible region of hypergraphs, *Journal of Combinatorial Theory, Series B* **148** (2021) 23–59.

#### Problem 26 (Liu, Mubayi and Reiher 2023+)

For  $r \ge 3$  does there exist a non-degenerate family  $\mathscr{F}$  of r-graphs so that  $g(\mathscr{F})$  has infinitely many global maxima? If so, can the set  $M(\mathscr{F})$  be uncountable? Can it even contain a non-trivial interval?



Figure 4: The function  $g(\mathcal{F}_t)$  attains its maximum on the interval  $\left[\frac{t-1}{t}, \frac{t-1}{t} + \frac{1}{t^2}\right]$ .

## Thank You for Your Attention!

∃ **)** 3