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Sampling problem:

Draw (approximate) random samples from a distribution

Gibbs distribuiton:

I high-dimensional joint distribution

I described by few parameters and

local interactions

I typical input size: poly(n) {0, 1}n

hard regime

has poly-time algorithm

Computational phase transition:

computational complexity of

sampling problem changes sharply

around certain parameter values
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Counting & sampling independent set (#IS)

I G = ([n],E) with n vertices and max degree ∆.

I #IS: how many independent sets are there in G?

An example

number of

independent set: 6

I exact counting independent set is #P-hard.

I approximate counting
[JVV86]

⇐⇒ approximate sampling:
I ∆ ≤ 5, poly-time algorithm for approx. sampling [Wei06]
I ∆ ≥ 6, no poly-time algorithm unless NP = RP [Sly10]
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Hardcore model
I G = ([n],E) with n vertices and max degree ∆.

I Fugacity λ > 0 is a real number.

I Ind(G) = {S ⊆ [n] | S is an independent set}.
I Gibbs distribution

∀S ∈ Ind(G), µ(S) := λ|S|
Z , where ZG(λ) :=

∑
I∈Ind(G) λ

|I|.

An example

1 λ λ

λ λ λ2

Partition function:

Z = 1 + 4λ + λ2

This model is self-reducible
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Computational phase transition
On ∆-regular tree:

λc(∆)
λ : 0 ∞

uniqueness non-uniqueness

tree uniqueness threshold: λc(∆) := (∆ − 1)(∆−1)/(∆ − 2)∆ ≈ e
∆

· · · · · · · · · · · · · · · · · ·
`

root

σ : boundary condition on level `

Tree uniqueness

PrS∼µ [root ∈ S | σ] does not

depend on σ when ` → ∞
if and only if λ ≤ λc(∆)

On general graph with maximum degree ∆:

λc(∆)
λ : 0 ∞

easy hard

Computational phase transition:
I λ < λc: poly-time algorithm for approx. sampling [Wei06]

I λ > λc: no poly-time algorithm unless NP = RP [Sly10]
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Hardcore model on bipartite graph (weighted #BIS)

It is easy: there is a poly-time algorithm to find a matximum

independent set in the bipartite graph (Kőnig’s theorem1).

It is hard: many important problems are proved to be

#BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

I stable matchings (counting)

I ferro. Potts model (parti. func.)

I ferro. Ising with mixed external fields (parti. func.)

[ DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21 ]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

I it has no FPRAS in general I it is easier than #SAT

1In any bipartite graph, the number of edges in a maximum matching

equals the number of vertices in a minimum vertex cover.
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Previous algorithmic results
Non-uniqueness regime:

I α-expander bipartite graph:

I λ ≥ (C0∆)4/α, an nO(log∆) time sampler [JKP20]
I λ ≥ (C1∆)6/α, an O(n logn) time sampler [CGG+21]
I λ ≥ (C2∆)2/α, an nO(log∆) time sampler [FGKP23]

I ∆-regular α-expander bipartite graph:

I λ ≥ f(α) log∆

∆1/4 , an nO(∆) time sampler [JPP22]

I random ∆-regular bipartite graph:

I ∆ ≥ ∆0, λ ≥ log4 ∆
∆ , an nO(1) time sampler [LLLM19]

I ∆ ≥ ∆1, λ ≥ 50 log2 ∆
∆ , an n1+O( log2(∆)

∆ ) time sampler [JKP20]

I ∆ ≥ ∆2, λ ≥ 100 log∆
∆ , an O(n logn) time sampler [CGŠV22]

I unbalanced bipartite graph:

I 6∆L∆Rλ ≤ (1 + λ)
δR
∆L , an nO(log(∆L∆R)) time sampler [CP20]

I 3.4∆L∆Rλ ≤ (1 + λ)
δR
∆L , an nO(log(∆L∆R)) time sampler [FGKP23]

I (1 + e)∆L∆Rλ ≤ (1 + λ)
δR
∆L , an O(n logn) time sampler [BCP22]
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Previous algorithmic results
Uniqueness regime: [. . ., AJKPV22, CFYZ22, CE22]

I general graph: if λ < λc(∆), there is an O(n logn) time sampler

I bipartite graph: if λ = 1,∆L ≤ 5, an O(n2) time sampler [LL15]

(λ = 1 ∧ λ < λc(∆) ⇔ ∆ ≤ 5)

λc(∆) =
(∆ − 1)∆−1

(∆ − 2)∆

∆L

Our results

For δ ∈ (0, 1), ∆L ≥ 3, if λ ≤ (1 − δ)λc(∆L), then
I the system is in the uniqueness regime

I there is a sampler that runs in time

T := n

(
∆L logn

λ

)O(1/δ)

I the mixing time of Glauber dynamics is bounded by O(n2) · T

I When ∆L = 1, G is a forest, which is trivial.

I When ∆L = 2, this model becomes an Ising model. Our results still

work, but since λc(2) = ∞, it is quite technical to state them here.
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Our results

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X0;
for t from 1 to T do:
I pick a vertex v ∈ V uniformly at random;

I with prob. λ
1+λ , let S = Xt−1 ∪ {v};

with prob. 1
1+λ , let S = Xt−1 \ {v};

I if S ∈ Ind(G) then Xt = S else Xt = Xt−1;

irreducible + aperiodic + reversible =⇒ Xt ∼ µ as t → ∞
mixing time: essential running time of Glauber dynamics

Tmix := max
X0

min{t | DTV(Xt ‖ µ) ≤ 1/100}

total variation distance: conanical distance between distributions

DTV(Xt ‖ µ) := 1
2

∑
S∈Ind(G)

|Pr [Xt = S] − µ(S)|
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Background

Proof outline

Fast sampler

Mixing of Glauber dynamics on L ∪ R
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Background

Let ν be a distribution over Ω = {−1,+1}n. ∀σ ∈ Ω, ‖σ‖+ = |{i | σi = 1}|

impose external field θ > 0

θ ∗ ν: a distribution on Ω:

∀σ, (θ ∗ ν)(σ) ∝ ν(σ) · θ‖σ‖+

flip the distribution

ν: a distribution on Ω:

∀σ, ν(σ) = ν(−σ)

I hardcore model: µ (fugacity λ) =⇒ θ ∗ µ (fugacity θλ)

An example

1 λ λ

λ λ λ2

µ: hardcore model with

fugacity λ
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Background

Let ν be a distribution over Ω = {−1,+1}n.
For 0 < θ, Field dynamics PFD

θ,ν: Markov chain (Xt)t≥0 on Ω:

X0 is an arbitrary vector in Ω and let s ∈ {−1,+1} so that θs ≤ 1;
for each t > 0:

1. generate R ⊆ [n]: for i ∈ [n] with Xt−1(i) = s

add i to R with prob. 1 − θs

2. let Xt = σ with prob. Prσ∼θ∗ν [σ | σR = s]
I an example: ν = µ is a hardcore distribution and θ ∈ (0, 1), s = +1.

Xt−1 R Prσ∼θ∗ν [· | σR = s] Xt

irreducible + aperiodic + reversible [CFYZ21] =⇒ Xt ∼ ν as t → ∞ ����

rapid mixing of PFD
θ,ν + sampler for θ ∗ ν = sampler for ν
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Background

Theorem ([CFYZ21, AJKPV22, CFYZ22, CE22])
Let 0 < θ and ν be a distribution over {−1,+1}n that

1. λ ∗ ν is O(1)-marginally stable for all λ between θ, 1,

2. λ ∗ ν is η-spectrally independent for all λ between θ, 1,

3. the Glauber dynamics on θ ∗ ν mixes in time Õ(n),
then

1 ∧ 2 ⇒ Tmix(PFDθ,ν) ≈ max {θ, 1/θ}O(η).

1 ∧ 2 ∧ 3 ⇒ sampler for ν in time Õ(n) · max {θ, 1/θ}O(η)

1 ∧ 2 ∧ 3
Var⇒ Tmix(PGDν ) ≈ Õ(n) · n · max {θ, 1/θ}O(η)︸                     ︷︷                     ︸

relaxation time
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Background

Let ν be a distribution over {−1,+1}n and X ∼ ν be a random vector.

influence matrix Ψν ∈ ℝn×n [ALO20]

Ψν(i, j) := Pr
[
Xj = +1 | Xi = +1

]
− Pr

[
Xj = +1 | Xi = −1

]
=

Cov(Xi,Xj)
Var(Xi)

η-spectral independence [ALO20]

λmax(Ψν) ≤ η ⇐ ‖Ψν‖∞ ≤ η

in self-reducible models

Corr(X) ∈ ℝn×n

Corr(X)ij =
Cov(Xi,Xj)√

Var(Xi)Var(Xj)

Ψν is similar to Corr(X)
K-marginal stability [CFYZ22, CE22]

there is ρ ∈ {ν,ν} that for i ∈ [n], S ⊆ Λ ⊆ [n] \ {i}, τ ∈ Ω(ρΛ),

Rτi ≤ K · RτS

i
and Rτi ≤ K

13 / 20
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K-marginal stability [CFYZ22, CE22]

Some reqirement on the marginal probability of ν.
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Theorem ([CFYZ21, AJKPV22, CFYZ22, CE22])
Let 0 < θ and ν be a distribution over {−1,+1}n that

1. λ ∗ ν is O(1)-marginally stable for all λ between θ, 1,

2. λ ∗ ν is η-spectrally independent for all λ between θ, 1,

3. the Glauber dynamics on θ ∗ ν mixes in time Õ(n),
then

1 ∧ 2 ⇒ Tmix(PFDθ,ν) ≈ max {θ, 1/θ}O(η).

1 ∧ 2 ∧ 3 ⇒ sampler for ν in time Õ(n) · max {θ, 1/θ}O(η)

1 ∧ 2 ∧ 3
Var⇒ Tmix(PGDν ) ≈ Õ(n) · n · max {θ, 1/θ}O(η)︸                     ︷︷                     ︸

relaxation time
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Proof outline

example

un

un−1

...

u2

u1

v

Let λ = 1 be the fugacity

µ: Gibbs distribution of the hardcore modelΨµ


∞ is unbounded

I
Ψµ


∞ = n

2

What could we do? ����ΨµL


∞ is bounded

I
ΨµL


∞ = n

2n+2 = O(1)

Maybe we could take ν = µL.
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Proof outline: fast sampler for µ
µ is the Gibbs distribution of the hardcore model and ν is µL

ν

BHC(λ,λ)
θ ∗ ν

BHC(θλ,λ)PFD
θ,ν with θ = Θ(∆ logn

λ ) > 1

O(1/δ)-spectrally independent O(1)-marginally stable

Glauber dynamics mixes in Õ(n)
I fast sampler for ν in time n · (∆ logn

λ )O(1/δ) (⇒ fast sampler for µ)

I Glauber dynamics on ν mixes in time n2 · (∆ logn
λ )O(1/δ)

For ν = µL on BHC(λ,α): δ-uniqueness =⇒ O(1/δ)-spectral independence

λ α

∆L

BHC(λ,α)
0 2 4 6 8

0

10

20

α

λ

(λc,λc)

1
d e1+ 1

d

∆L = 3

uniqueness
uniqueness (boundary)

Let d = ∆L − 1, this para-
metric curve is the boundary
of our uniqueness regime, for

w > d−1 :


α(w) = dw(w+1)w+1

(dw−1)w+1

λ(w) = wd(d+1)d+1

(dw−1)d+1
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Proof outline: mixing of GD on µ
I Glauber dynamics on ν = µL is rapidly mixing.

I It works like a block dynamics that update a random vertex on the

left and all the vertices on the right in each step.

I We finish the proof by comparing it and the Glauber dynamics on µ

via the block factorization [CMT15, CP20, CLV21].

O(1) Õ(∆)

block dynamics Glauber dynamics
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Thank you
arXiv:2305.00186

Summary

For δ ∈ (0, 1), ∆L ≥ 3, if λ ≤ (1 − δ)λc(∆L), then
I the system is in the uniqueness regime

I there is a sampler that runs in time

T := n

(
∆L logn

λ

)O(1/δ)

I the mixing time of Glauber dynamics is bounded by O(n2) · T

Open problems

I Remove the depedency on ∆L in the running time of the sampler.

I Better mixing time for the Glauber dynamics.

I Bipartite hardcore model for negative λ.
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