Uniqueness and Rapid Mixing in the Bipartite Hardcore Model

Xiaoyu Chen

🚺 Nanjing University

based on joint work with

Jingcheng Liu

Yitong Yin

Sampling problem:

Draw (approximate) random samples from a distribution

Gibbs distribuiton:

- high-dimensional joint distribution
- described by few parameters and local interactions

typical input size: poly(n)

Computational phase transition:

computational complexity of sampling problem changes sharply around certain parameter values

Counting & sampling independent set (#IS)

- G = ([n], E) with n vertices and max degree Δ .
- #IS: how many independent sets are there in G?

An example

number of independent set: 6

- exact counting independent set is #P-hard.
- approximate counting $\stackrel{[JVV86]}{\longleftrightarrow}$ approximate sampling:
 - $\Delta \leq 5$, poly-time algorithm for approx. sampling [Wei06]
 - $\Delta \ge 6$, no poly-time algorithm unless NP = RP [Sly10]

Hardcore model

- G = ([n], E) with n vertices and max degree Δ .
- Fugacity $\lambda > 0$ is a real number.
- $Ind(G) = \{S \subseteq [n] \mid S \text{ is an independent set} \}.$
- Gibbs distribution

$$\forall S \in \text{Ind}(G), \quad \mu(S) := \tfrac{\lambda^{|S|}}{Z}, \quad \text{where } Z_G(\lambda) := \textstyle \sum_{I \in \text{Ind}(G)} \lambda^{|I|}.$$

An example

Partition function:

$$\mathsf{Z} = 1 + 4\lambda + \lambda^2$$

This model is self-reducible

Computational phase transition

On Δ -regular tree:

 σ : boundary condition on level ℓ

On general graph with maximum degree Δ :

Computational phase transition:

- $\lambda < \lambda_c$: poly-time algorithm for approx. sampling [Wei06]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

Computational phase transition

On Δ -regular tree:

 σ : boundary condition on level ℓ

On general graph with maximum degree Δ :

$$\begin{array}{ccc} \mathsf{easy} & \lambda_{\mathsf{c}}(\Delta) & \mathsf{hard} \\ & & & & \bullet \\ \end{array} \\ & & & & \bullet \\ \end{array}$$

Computational phase transition:

- $\lambda < \lambda_c$: poly-time algorithm for approx. sampling [Wei06]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

- parti. func.)
- ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

▶ it has no FPRAS in general

it is easier than #SAT

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

- parti. func.)
- ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

▶ it has no FPRAS in general ▶ it is easier than #SAT

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

(parti. func.)

ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21]

Conjecture[DGGJ04]: #BIS represents an intermediate complexity class: ▶ it has no FPRAS in general ▶ it is easier than #SAT

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

- (parti. func.)
- ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

it has no FPRAS in general

it is easier than #SAT

Previous algorithmic results

Non-uniqueness regime:

α-expander bipartite graph: • $\lambda > (C_0 \Delta)^{4/\alpha}$, an $n^{O(\log \Delta)}$ time sampler [JKP20] • $\lambda \ge (C_1 \Delta)^{6/\alpha}$, an $O(n \log n)$ time sampler [CGG+21] $\lambda > (C_2 \Delta)^{2/\alpha}$, an $n^{O(\log \Delta)}$ time sampler [FGKP23] • Δ -regular α -expander bipartite graph: $\lambda \geq \frac{f(\alpha) \log \Delta}{\Lambda^{1/4}}$, an $n^{O(\Delta)}$ time sampler [JPP22] random Δ -regular bipartite graph: • $\Delta \ge \Delta_0, \lambda \ge \frac{\log^4 \Delta}{\Delta}$, an $n^{O(1)}$ time sampler [LLLM19] • $\Delta \ge \Delta_1, \lambda \ge \frac{50 \log^2 \Delta}{\Lambda}$, an $n^{1+O(\frac{\log^2(\Delta)}{\Lambda})}$ time sampler [JKP20] • $\Delta \geq \Delta_2, \lambda \geq \frac{100 \log \Delta}{\Delta}$, an $O(n \log n)$ time sampler [CGŠV22] unbalanced bipartite graph:

Previous algorithmic results

Uniqueness regime:

[..., AJKPV22, CFYZ22, CE22]

- ▶ general graph: if $\lambda < \lambda_c(\Delta)$, there is an $O(n \log n)$ time sampler
- ▶ bipartite graph: if $\lambda = 1, \Delta_L \le 5$, an $O(n^2)$ time sampler [LL15] ($\lambda = 1 \land \lambda < \lambda_c(\Delta) \Leftrightarrow \Delta \le 5$)

$$\lambda_{c}(\Delta) = \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}$$

Our results

For $\delta \in (0, 1)$, $\Delta_L \ge 3$, if $\lambda \le (1 - \delta)\lambda_c(\Delta_L)$, then

- the system is in the uniqueness regime
- there is a sampler that runs in time

$$\mathsf{T} := \mathsf{n}\left(\frac{\Delta_{\mathsf{L}}\log\mathsf{n}}{\lambda}\right)^{\mathsf{O}(1/\delta)}$$

- the mixing time of Glauber dynamics is bounded by $O(n^2) \cdot T$
- When $\Delta_{L} = 1$, G is a forest, which is trivial.
- When $\Delta_L = 2$, this model becomes an Ising model. Our results still work, but since $\lambda_c(2) = \infty$, it is quite technical to state them here.

Uniqueness regime:

[..., AJKPV22, CFYZ22, CE22]

- ▶ general graph: if $\lambda < \lambda_c(\Delta)$, there is an $O(n \log n)$ time sampler
- ▶ bipartite graph: if $\lambda = 1, \Delta_L \le 5$, an $O(n^2)$ time sampler [LL15] ($\lambda = 1 \land \lambda < \lambda_c(\Delta) \Leftrightarrow \Delta \le 5$)

$$\lambda_{c}(\Delta) = \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}$$

Our results

For $\delta \in (0, 1)$, $\Delta_L \ge 3$, if $\lambda \le (1 - \delta)\lambda_c(\Delta_L)$, then

- the system is in the uniqueness regime
- there is a sampler that runs in time

$$\mathsf{T} := \mathsf{n}\left(\frac{\Delta_{\mathsf{L}}\log\mathsf{n}}{\lambda}\right)^{\mathsf{O}(1/\delta)}$$

- ► the mixing time of Glauber dynamics is bounded by O(n²) · T
- When $\Delta_L = 1$, G is a forest, which is trivial.
- When $\Delta_L = 2$, this model becomes an Ising model. Our results still work, but since $\lambda_c(2) = \infty$, it is quite technical to state them here.

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu$ as $t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

• if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu$ as $t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu$ as $t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;
- if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu$ as $t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu$ as $t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu$ as $t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu$ as $t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

• if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Proof outline

Fast sampler Mixing of Glauber dynamics on $L \cup R$

Let v be a distribution over $\Omega = \{-1, +1\}^n$. $\forall \sigma \in \Omega$, $\|\sigma\|_+ = |\{i \mid \sigma_i = 1\}|$

impose external field $\theta > 0$

 $\theta * \nu$: a distribution on Ω :

 $\forall \sigma, (\theta * \nu)(\sigma) \propto \nu(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

 $\overline{\nu}$: a distribution on Ω :

$$\forall \sigma, \quad \overline{\nu}(\sigma) = \nu(-\sigma)$$

• hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

An example

 μ : hardcore model with fugacity λ

Let v be a distribution over $\Omega = \{-1, +1\}^n$. $\forall \sigma \in \Omega$, $\|\sigma\|_+ = |\{i \mid \sigma_i = 1\}|$

impose external field $\theta > 0$

 $\theta * \nu$: a distribution on Ω :

 $\forall \sigma, (\theta * \nu)(\sigma) \propto \nu(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

 $\overline{\nu}$: a distribution on Ω :

$$\forall \sigma, \quad \overline{\nu}(\sigma) = \nu(-\sigma)$$

• hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

An example

 μ : hardcore model with fugacity λ

Let v be a distribution over $\Omega = \{-1, +1\}^n$. $\forall \sigma \in \Omega$, $\|\sigma\|_+ = |\{i \mid \sigma_i = 1\}|$

impose external field $\theta > 0$

 $\theta * \nu$: a distribution on Ω :

 $\forall \sigma, (\theta * \nu)(\sigma) \propto \nu(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

 $\overline{\nu}$: a distribution on Ω :

$$\forall \sigma, \quad \overline{\nu}(\sigma) = \nu(-\sigma)$$

• hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

An example

 $\theta \ast \mu :$ hardcore model with fugacity $\theta \lambda$

Let ν be a distribution over $\Omega = \{-1, +1\}^n$. For $0 < \theta$, Field dynamics $P_{\theta, \nu}^{FD}$: Markov chain $(X_t)_{t \ge 0}$ on Ω :

 X_0 is an arbitrary vector in Ω and let $s \in \{-1, +1\}$ so that $\theta^s \le 1$; for each t > 0:

- 1. generate $R \subseteq [n]$: for $i \in [n]$ with $X_{t-1}(i) = s$ add i to R with prob. $1 - \theta^s$
- 2. let $X_t = \sigma$ with prob. $Pr_{\sigma \sim \theta * \nu} [\sigma | \sigma_R = s]$

• an example: $v = \mu$ is a hardcore distribution and $\theta \in (0, 1)$, s = +1.

irreducible + aperiodic + reversible [CFYZ21] $\implies X_t \sim \nu \quad \text{as } t \rightarrow \infty \quad \textcircled{B}$

rapid mixing of $P_{\theta,v}^{FD}$ + sampler for $\theta * v$ = sampler for v

Let v be a distribution over $\Omega = \{-1, +1\}^n$. For $0 < \theta$, Field dynamics $P_{\theta,v}^{FD}$: Markov chain $(X_t)_{t \ge 0}$ on Ω :

 X_0 is an arbitrary vector in Ω and let $s \in \{-1, +1\}$ so that $\theta^s \le 1$; for each t > 0:

- 1. generate $R \subseteq [n]$: for $i \in [n]$ with $X_{t-1}(i) = s$ add i to R with prob. $1 - \theta^s$
- 2. let $X_t = \sigma$ with prob. $Pr_{\sigma \sim \theta * \nu} [\sigma | \sigma_R = s]$
- ► an example: $v = \mu$ is a hardcore distribution and $\theta \in (0, 1)$, s = +1.

irreducible + aperiodic + reversible [CFYZ21] $\implies X_t \sim \nu \quad \text{as } t \rightarrow \infty \quad \ref{eq:transformation}$

rapid mixing of $P_{A,v}^{FD}$ + sampler for $\theta * v$ = sampler for v

Let v be a distribution over $\Omega = \{-1, +1\}^n$. For $0 < \theta$, Field dynamics $P_{\theta,v}^{FD}$: Markov chain $(X_t)_{t \ge 0}$ on Ω :

 X_0 is an arbitrary vector in Ω and let $s \in \{-1, +1\}$ so that $\theta^s \le 1$; for each t > 0:

- 1. generate $R \subseteq [n]$: for $i \in [n]$ with $X_{t-1}(i) = s$ add i to R with prob. $1 - \theta^s$
- 2. let $X_t = \sigma$ with prob. $Pr_{\sigma \sim \theta * \nu} [\sigma | \sigma_R = s]$
- ► an example: $v = \mu$ is a hardcore distribution and $\theta \in (0, 1)$, s = +1.

irreducible + aperiodic + reversible [CFYZ21] $\implies X_t \sim \nu \quad \text{as } t \rightarrow \infty \quad \ref{eq:transformation}$

rapid mixing of $P_{\theta,\nu}^{FD}$ + sampler for $\theta * \nu$ = sampler for ν

Let v be a distribution over $\Omega = \{-1, +1\}^n$. For $0 < \theta$, Field dynamics $P_{\theta,v}^{FD}$: Markov chain $(X_t)_{t \ge 0}$ on Ω :

 X_0 is an arbitrary vector in Ω and let $s \in \{-1, +1\}$ so that $\theta^s \le 1$; for each t > 0:

- 1. generate $R \subseteq [n]$: for $i \in [n]$ with $X_{t-1}(i) = s$ add i to R with prob. $1 - \theta^s$
- 2. let $X_t = \sigma$ with prob. $Pr_{\sigma \sim \theta * \nu} [\sigma | \sigma_R = s]$
- ► an example: $v = \mu$ is a hardcore distribution and $\theta \in (0, 1)$, s = +1.

Theorem ([CFYZ21, AJKPV22, CFYZ22, CE22]) Let $0 < \theta$ and v be a distribution over $\{-1, +1\}^n$ that

- 1. $\lambda * \nu$ is O(1)-marginally stable for all λ between θ , 1,
- 2. $\lambda * \nu$ is η -spectrally independent for all λ between θ , 1,
- 3. the Glauber dynamics on $\theta * \nu$ mixes in time $\widetilde{O}(n)$,

then

$$1 \land 2 \ \Rightarrow T_{\text{mix}}(P_{\theta,\nu}^{\text{FD}}) \approx \max{\{\theta, 1/\theta\}}^{O(\eta)}$$

$$1 \wedge 2 \wedge 3 \Rightarrow$$
 sampler for ν in time $\widetilde{O}(n) \cdot \max \{\theta, 1/\theta\}^{O(\eta)}$

 $1 \land 2 \land 3 \stackrel{\text{Var}}{\Rightarrow} T_{\text{mix}}(P_{\nu}^{\text{GD}}) \approx \widetilde{O}(n) \cdot n \cdot \max{\{\theta, 1/\theta\}}^{O(\eta)}$

relaxation time

Let ν be a distribution over $\{-1,+1\}^n$ and $X\sim\nu$ be a random vector.

influence matrix $\Psi_{\nu} \in \mathbb{R}^{n \times n}$ [ALO20]

 $\Psi_{\mathbf{v}}(i,j) := \Pr\left[X_{j} = +1 \mid X_{i} = +1\right] - \Pr\left[X_{j} = +1 \mid X_{i} = -1\right] = \frac{\operatorname{Cov}(X_{i},X_{j})}{\operatorname{Var}(X_{i})}$

η-spectral independence [ALO20]

 $\lambda_{\max}(\Psi_{\nu}) \leq \eta \Leftarrow \|\Psi_{\nu}\|_{\infty} \leq \eta$

 $\Psi_{\mathbf{v}}$ is similar to Corr(X)

K-marginal stability [CFYZ22, CE22]

there is $\rho \in \{\nu, \overline{\nu}\}$ that for $i \in [n], S \subseteq \Lambda \subseteq [n] \setminus \{i\}, \tau \in \Omega(\rho_{\Lambda})$,

 $R_i^{\tau} \leq K \cdot R_i^{\tau_S}$ and $R_i^{\tau} \leq K$

Let ν be a distribution over $\{-1,+1\}^n$ and $X\sim\nu$ be a random vector.

 $\Psi_{v}(i,j) := \Pr\left[X_{j} = +1 \mid X_{i} = +1\right] - \Pr\left[X_{j} = +1 \mid X_{i} = -1\right] = \frac{\operatorname{Cov}(X_{i},X_{j})}{\operatorname{Vor}(X_{i})}$

η-spectral independence [ALO20]

influence matrix $\Psi_{\nu} \in \mathbb{R}^{n \times n}$ [ALO20]

 $\lambda_{\max}(\Psi_{\nu}) \leq \eta \Leftarrow \|\Psi_{\nu}\|_{\infty} \leq \eta$

 $Corr(X) \in \mathbb{R}^{n \times n}$ $Corr(X)_{ij} = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i)Var(X_j)}}$

 Ψ_{ν} is similar to Corr(X)

K-marginal stability [CFYZ22, CE22]

in self-reducible models

there is $\rho \in \{\nu, \overline{\nu}\}$ that for $i \in [n], S \subseteq \Lambda \subseteq [n] \setminus \{i\}, \tau \in \Omega(\rho_{\Lambda})$

 $R_i^{\tau} \leq K \cdot R_i^{\tau_S}$ and $R_i^{\tau} \leq K$

Let ν be a distribution over $\{-1,+1\}^n$ and $X\sim\nu$ be a random vector.

 $\Psi_{v}(i,j) := \Pr\left[X_{j} = +1 \mid X_{i} = +1\right] - \Pr\left[X_{j} = +1 \mid X_{i} = -1\right] = \frac{\text{Cov}(X_{i},X_{j})}{\text{Vor}(X_{i})}$

η-spectral independence [ALO20]

influence matrix $\Psi_{\nu} \in \mathbb{R}^{n \times n}$ [ALO20]

 $\lambda_{\max}(\Psi_{\nu}) \leq \eta \Leftarrow \|\Psi_{\nu}\|_{\infty} \leq \eta$

 $Corr(X) \in \mathbb{R}^{n \times n}$ $Corr(X)_{ij} = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i)Var(X_j)}}$

in self-reducible models

 Ψ_{ν} is similar to Corr(X)

K-marginal stability [CFYZ22, CE22]

there is $\rho \in \{\nu, \overline{\nu}\}$ that for $i \in [n], S \subseteq \Lambda \subseteq [n] \setminus \{i\}, \tau \in \Omega(\rho_{\Lambda})$,

 $R_i^{\tau} \leq K \cdot R_i^{\tau_S}$ and $R_i^{\tau} \leq K$

Let ν be a distribution over $\{-1,+1\}^n$ and $X\sim\nu$ be a random vector.

 $\Psi_{v}(i,j) := \Pr\left[X_{j} = +1 \mid X_{i} = +1\right] - \Pr\left[X_{j} = +1 \mid X_{i} = -1\right] = \frac{\text{Cov}(X_{i},X_{j})}{\text{Vor}(X_{i})}$

η-spectral independence [ALO20]

influence matrix $\Psi_{\nu} \in \mathbb{R}^{n \times n}$ [ALO20]

 $\lambda_{\max}(\Psi_{\nu}) \leq \eta \Leftarrow \|\Psi_{\nu}\|_{\infty} \leq \eta$

 $\begin{aligned} & \text{Corr}(X) \in \mathbb{R}^{n \times n} \\ & \text{Corr}(X)_{ij} = \frac{\text{Cov}(X_i, X_j)}{\sqrt{\text{Var}(X_i)\text{Var}(X_j)}} \end{aligned}$

in self-reducible models

 Ψ_{ν} is similar to Corr(X)

K-marginal stability [CFYZ22, CE22]

Some reqirement on the marginal probability of ν .

Theorem ([CFYZ21, AJKPV22, CFYZ22, CE22]) Let $0 < \theta$ and v be a distribution over $\{-1, +1\}^n$ that

- 1. $\lambda * \nu$ is O(1)-marginally stable for all λ between θ , 1,
- 2. $\lambda * \nu$ is η -spectrally independent for all λ between θ , 1,
- 3. the Glauber dynamics on $\theta * \nu$ mixes in time $\widetilde{O}(n)$,

then

$$1 \land 2 \ \Rightarrow T_{\text{mix}}(P^{\text{FD}}_{\theta,\nu}) \approx \max{\{\theta, 1/\theta\}}^{O(\eta)}$$

$$1 \wedge 2 \wedge 3 \Rightarrow$$
 sampler for v in time $\widetilde{O}(n) \cdot \max \{\theta, 1/\theta\}^{O(\eta)}$

 $1 \land 2 \land 3 \stackrel{\text{Var}}{\Rightarrow} T_{\text{mix}}(P_{\nu}^{\text{GD}}) \approx \widetilde{O}(n) \cdot n \cdot \max{\{\theta, 1/\theta\}}^{O(\eta)}$

relaxation time

Proof outline

Fast sampler Mixing of Glauber dynamics on $L \cup R$

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

Maybe we could take $v = \mu_L$.

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

Maybe we could take $v = \mu_L$.

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

Maybe we could take $\nu = \mu_L$.

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

Maybe we could take $\nu = \mu_L$.

17/20

Proof outline Fast sampler Mixing of Glauber dynamics on $L \cup R$

Proof outline: mixing of GD on $\boldsymbol{\mu}$

- Glauber dynamics on $v = \mu_L$ is rapidly mixing.
- It works like a block dynamics that update a random vertex on the left and all the vertices on the right in each step.
- We finish the proof by comparing it and the Glauber dynamics on μ via the block factorization [CMT15, CP20, CLV21].

Thank you arXiv:2305.00186

Summary

For $\delta \in (0, 1)$, $\Delta_L \ge 3$, if $\lambda \le (1 - \delta)\lambda_c(\Delta_L)$, then

- the system is in the uniqueness regime
- there is a sampler that runs in time

$$\mathsf{T} := \mathsf{n}\left(\frac{\Delta_{\mathsf{L}}\log\mathsf{n}}{\lambda}\right)^{\mathsf{O}(1/\delta)}$$

▶ the mixing time of Glauber dynamics is bounded by $O(n^2) \cdot T$

Open problems

- Remove the depedency on Δ_{L} in the running time of the sampler.
- Better mixing time for the Glauber dynamics.
- Bipartite hardcore model for negative λ .