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Setting the Stage



The Beginning

Noisy Channel Encoding Theorem (Shannon ’48)
For a binary symmetric channel with error rate p ∈ (0, 1), let
C = 1−H(p). For any rate R < C, there exists a code in {0, 1}n of size 2Rn
that w.h.p. correctly transmits information.

He wants to create a method of coding, but he doesn’t know what to do
so he makes a random code. Then he is stuck. And then he asks the
impossible question, “What would the average random code do?” He
then proves that the average code is arbitrarily good, and that therefore
there must be at least one good code. Who but a man of infinite courage
could have dared to think those thoughts?

— Richard Hamming, on Claude Shannon.
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Phylogeny of Coding Theory

Coding Theory

Data CompressionError Correction

Worst-case

DeletionsErasuresBitflips

Levenshtein

Average-case

Shannon Hamming

Noisy Noiseless

Everything is binary!
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Noise Models

Noise models
Electromagnetic signal Bitflip errors 1101→ 1001
Auditory experience Erasure errors 1101→ 1?01
Transcribed lyrics Deletion errors 1101→ 101
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Background: Bitflips and Erasures

Definition
A code of length n and distance d is a subset C ⊆ {0, 1}n such that
mindHamming(s, t) = d over all distinct s, t ∈ C. Let A(n,d) denote the
size of the largest such code.

Such a code corrects ⌊d−12 ⌋ bitflip errors or d− 1 erasure errors.

Basic Questions

(1) When d is fixed and n→ ∞, what is the order of A(n,d)?
(2) For which p ∈ (0, 1) is A(n,pn) ≥ 2Ω(n)? A code with size 2Ω(n) is called

“positive rate.”
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Background: Bitflips and Erasures

Constant number of errors
When d is fixed and n→ ∞, what is the order of A(n,d)?

BCH Codes (Hocquenghem ’59, Bose and Ray-Chaudhuri ’60)
For d ≥ 1,

A(n,d) = Θ(2n/n⌊
d−1
2 ⌋).

Linear number of errors
For which p ∈ (0, 1) is A(n,pn) ≥ 2Ω(n)?

Theorem (Gilbert ’52, Varshamov ’57)
For p ∈ (0, 12 ),

A(n,pn) ≥ 2(1−H(p)−o(1))n.

Varshamov’s Proof. For a uniform random (1− H(p)− ε)n× n matrix G
over F2, its rowspace is w.h.p. a code of distance pn.
(For p ≥ 1

2 , A(n,pn) ≤ 2n.)
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Deletion Codes



Worst-Case Deletion Errors

Definition
The binary d-deletion channel takes in a string s ∈ {0, 1}n and
(adversarially) outputs a substring of length n− d.

A binary d-deletion code of length n is a subset C ⊆ {0, 1}n such that
LCS(s, t) < n− d for all distinct s, t ∈ C.

Comparing deletions to bitflip/erasure errors:

• Deletion codes also correct bitflips and erasures.
• Deletion errors are not invariant under permutations.

Let Γn,d be the confusability graph on {0, 1}n defined by s ∼ t if
LCS(s, t) ≥ n− d. A deletion code is just an independent set in Γn,d.

7



Worst-Case Deletion Errors

Definition
The binary d-deletion channel takes in a string s ∈ {0, 1}n and
(adversarially) outputs a substring of length n− d.

A binary d-deletion code of length n is a subset C ⊆ {0, 1}n such that
LCS(s, t) < n− d for all distinct s, t ∈ C.

Comparing deletions to bitflip/erasure errors:

• Deletion codes also correct bitflips and erasures.
• Deletion errors are not invariant under permutations.

Let Γn,d be the confusability graph on {0, 1}n defined by s ∼ t if
LCS(s, t) ≥ n− d. A deletion code is just an independent set in Γn,d.

7



Worst-Case Deletion Errors

Definition
The binary d-deletion channel takes in a string s ∈ {0, 1}n and
(adversarially) outputs a substring of length n− d.

A binary d-deletion code of length n is a subset C ⊆ {0, 1}n such that
LCS(s, t) < n− d for all distinct s, t ∈ C.

Comparing deletions to bitflip/erasure errors:

• Deletion codes also correct bitflips and erasures.
• Deletion errors are not invariant under permutations.

Let Γn,d be the confusability graph on {0, 1}n defined by s ∼ t if
LCS(s, t) ≥ n− d. A deletion code is just an independent set in Γn,d.

7



Worst-Case Deletion Errors

Definition
The binary d-deletion channel takes in a string s ∈ {0, 1}n and
(adversarially) outputs a substring of length n− d.

A binary d-deletion code of length n is a subset C ⊆ {0, 1}n such that
LCS(s, t) < n− d for all distinct s, t ∈ C.

Comparing deletions to bitflip/erasure errors:

• Deletion codes also correct bitflips and erasures.

• Deletion errors are not invariant under permutations.

Let Γn,d be the confusability graph on {0, 1}n defined by s ∼ t if
LCS(s, t) ≥ n− d. A deletion code is just an independent set in Γn,d.

7



Worst-Case Deletion Errors

Definition
The binary d-deletion channel takes in a string s ∈ {0, 1}n and
(adversarially) outputs a substring of length n− d.

A binary d-deletion code of length n is a subset C ⊆ {0, 1}n such that
LCS(s, t) < n− d for all distinct s, t ∈ C.

Comparing deletions to bitflip/erasure errors:

• Deletion codes also correct bitflips and erasures.
• Deletion errors are not invariant under permutations.

Let Γn,d be the confusability graph on {0, 1}n defined by s ∼ t if
LCS(s, t) ≥ n− d. A deletion code is just an independent set in Γn,d.

7



Worst-Case Deletion Errors

Definition
The binary d-deletion channel takes in a string s ∈ {0, 1}n and
(adversarially) outputs a substring of length n− d.

A binary d-deletion code of length n is a subset C ⊆ {0, 1}n such that
LCS(s, t) < n− d for all distinct s, t ∈ C.

Comparing deletions to bitflip/erasure errors:

• Deletion codes also correct bitflips and erasures.
• Deletion errors are not invariant under permutations.

Let Γn,d be the confusability graph on {0, 1}n defined by s ∼ t if
LCS(s, t) ≥ n− d. A deletion code is just an independent set in Γn,d.

7



Deletion Codes

Definition
A d-deletion code of length n is a set C ⊆ {0, 1}n such that
LCS(s, t) < n− d for all distinct s, t ∈ C.

Let D(n,d) be the size of the largest d-deletion code of length n.

Ex. C = {1n, 0n} is an (n− 1)-deletion code of length n and size 2.

Ex (VT code ’65). C = {s ∈ {0, 1}n|
∑
isi ≡ 0 (mod n+ 1)} is a 1-deletion

code of length n, and has size Θ(2n/n).

These turn out to be the only known optimal deletion codes!

Theorem (Levenshtein ’65)
For d = 1, D(n, 1) = Θ(2n/n).

For d ≥ 2,
2n
n2d ≪d D(n,d) ≪d

2n
nd .
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High error rate

Question
When is positive information rate achievable? That is, for which
p ∈ (0, 1) is D(n,pn) ≥ 2Ω(n)?

We call p∗ = supp over all such p the zero-rate threshold of the
adversarial deletion channel.

Trivial upper bound: If p ≥ 1
2 , D(n,pn) = 2 because among any three

strings, two share the same majority bit. Thus, p∗ ≤ 1
2 .

Theorem (Lueker ’03)
If s and t are uniform random elements of {0, 1}n, then w.v.h.p.
.78n ≤ LCS(s, t) ≤ .82n. Thus, p∗ ≥ .18 and uniform random codes can’t
correct more than .22n deletion errors.

Theorem (Bukh, Guruswami, Håstad ’16)
There exist explicit, efficient pn-deletion codes up to
p∗ ≥

√
2− 1 ≈ .414.
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Bounds

Constant number of errors.
For d ≥ 2,

2n
n2d ≪d D(n,d) ≪d

2n
nd .

Linear number of errors.
The zero-rate threshold satisfies

√
2− 1 ≤ p∗ ≤ 1

2 .
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Our Results



Bounds

Constant number of errors. (Alon, Bourla, Graham, H., Kravitz ’22)
For d ≥ 2,

2nlog n
n2d ≪d D(n,d) ≪d

2n
nd .

Linear number of errors. (Guruswami, H., Li ’22)
The zero-rate threshold satisfies

√
2− 1 ≤ p∗ ≤ 1

2−10
−60.
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Constant Number of Deletions



Constant Number of Deletions

Theorem (Alon, Bourla, Graham, H., Kravitz ’22)
If d ≥ 2, then

D(n,d) ≫d
2n log n
n2d .

Observe that D(n,d) = α(Γn,d), the size of the largest independent set in
Γn,d. This graph has N = 2n vertices and max degree ∆ = 2d

(n
d
)2 ≤ n2d.

Lemma (Ajtai, Komlós, Szemerédi ’80, Shearer ’83)
If Γ is a triangle-free graph with N vertices, maximum degree ∆, and
O(ND2−ε) triangles, then

α(Γ) ≫ N log∆

∆
.

Thus, it suffices to show that the number of triangles in Γn,d is O(2nn4d−ε).

12
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Counting Triangles

Lemma.
The number of triangles in Γn,d is O(2nn3d logd n).

Proof Sketch (d = 1)
Let u be a uniform random element of V(Γn,1) = {0, 1}n, and let v,w be
two i.i.d. uniform random neighbors of u. We show that
Pr[v ∼ w] = O(log n/n).

u

w

v

del i
ins j

del j

in
s
i

del k

ins
ℓ

del k
ins ℓ

vj k

w
i ℓ
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Bounds

Constant number of errors. (Alon, Bourla, Graham, H., Kravitz ’22)
For d ≥ 2,

2nlog n
n2d ≪d D(n,d) ≪d

2n
nd .

• First order-of-growth improvement to Levenshtein’s original bounds.
• Same technique was used by Jiang and Vardy ’04 to improve the
Gilbert-Varshamov bound for bitflip errors by a logarithmic factor.

• Uses a strong pseudorandomness property of random strings
u, v,w: every log n-length subinterval is unique.
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Linear Number of Deletions

Theorem (Guruswami, H., Li ’22)

If p ≥ 1
2 − 10−60, then D(n,pn) ≤ 2(log n)10

60
. Thus p∗ ≤ 1

2 − 10−60.

Equivalently, among any 2(log n)10
60
strings in {0, 1}n, some two satisfy

LCS(s, t) ≥ ( 12 + 10−60)n.

Proof Strategy
Classify strings according to how much they “look like” 1ℓ0ℓ1ℓ0ℓ · · · for
each power of two ℓ. A crude analogy is assigning log n “Fourier
coefficients” to s that measure its oscillation on each scale.

Pigeonhole to find s, t with the same oscillation statistics. This
guarantees LCS(s, t) is large for three possible reasons:

(1) If s, t oscillate at a large scale ℓ = Ω(n).
(2) If s, t share at least one “large Fourier coefficient” at the same scale.
(3) If s, t share many “small Fourier coefficients” at different scales.
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Matching Strategies

Case 1: Imbalanced Strings
1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Case 2: Single-Frequency Strings
1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Case 3: Many-Frequency Strings
1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Flagged bits
Blue d(I) ≥ 0.99
Green d(I) ≥ 0.6
Yellow d(I) ≥ 0.49
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Technical Difficulty

Case 3: Many-Frequency Strings

1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1

Blue and yellow regions are adjusted to have the same number of
zeros, but different numbers of ones, so our two pointers can get
misaligned!

The regularity method comes to the rescue!
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The Regularity Method

Theorem (Szemerédi ’78)
For every ε > 0, all sufficiently large graphs G can be partitioned into
Oε(1) (nearly-)equal-sized vertex sets such that all but an ε-fraction of
these pairs are ε-regular.

A pair of vertex sets X and Y are ε-regular if for all subsets A ⊆ X and
B ⊆ Y satisfying |A| ≥ ε|X| and |B| ≥ ε|Y|, we have |d(A,B)− d(X, Y)| < ε.

18
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The Regularity Method

• Shows that for a weak pseudorandomness property, every graph
can be nearly partitioned into pseudorandom parts.

• Useful for counting and embedding subgraphs.
• Numerous applications in extremal and additive combinatorics, for
example Szemerédi’s Theorem on arithmetic progressions.

• Connections to dynamics starting from the work of Furstenberg.
• Notorious for horrible quantitative bounds.
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Regularity Lemmas for Binary Strings

Lemma (Axenovich, Person, Puzynina ’12)
For every ε > 0 all sufficiently long binary strings s can be partitioned
into 2ε−c (nearly-)equal-sized subintervals such that all but an
ε-fraction of these subintervals are ε-regular.

A string s is ε-regular if for every subinterval I of length at least ε|s|, we
have |d(sI)− d(s)| < ε.

We prove a stronger regularity lemma which states that the distribution
of the blue intervals of length ℓ is regular at every dyadic scale ℓ

simultaneously.
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Bounds

Linear number of errors. (Guruswami, H., Li ’22)
The zero-rate threshold satisfies

√
2− 1 ≤ p∗ ≤ 1

2−10
−60.

• First application (to our knowledge) of the regularity method for
strings to coding theory.

• It would be interesting to determine D(n,pn) for p = 1/2− ε. The
best known bounds are now

log n≪ε D(n,pn) ≪ 2(log n)
1060

.

• Fuzzy question: graph regularity leads to graphons. Is there a useful
theory of the limit objects coming from string regularity?
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Epilogue



An Algorithms Connection

Computing LCS of two binary strings can be done in quadratic time using
dynamic programming, and this is best possible (up to logarithms) under
certain complexity theory hypotheses.

What about approximation?

There exists a trivial 1/2-approximation algorithm in linear time: pick the
longest constant common subsequence.

Morally, this is the same 1/2 barrier that appears in the deletion codes
problem!

Theorem (H., Li ’23, building on Rubinstein, Song ’20)
For all ε > 0, there exists δ > 0 and a O(n1+ε)-time algorithm which
gives a ( 12 + δ)-approximation for the LCS of two binary strings.

Uses the same “oscillation statistics” machinery.
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