Rainbow structures in a collection of graphs with degree conditions

Center for Combinatorics and LPMC, Nankai University

Abstract

Let $\mathbf{G} = \{G_1, \ldots, G_s\}$ be a collection of not necessarily distinct *n*-vertex graphs with the same vertex set V. We use \mathbf{G} to denote an edge-colored multigraph of

G with $V(\mathbf{G}) = V$ and $E(\mathbf{G})$ a multiset consisting of $E(G_1), \ldots, E(G_s)$, and the edge e of **G** is colored by i if $e \in E(G_i)$. A graph H is rainbow in **G** if any two edges of H belong to different graphs of **G**. We say that **G** is rainbow vertex-pancyclic if each vertex of V is contained in a rainbow cycle of **G** with length ℓ for every integer $\ell \in [3, n]$, and that **G** is rainbow panconnected if for any pair of vertices u and v of V there exists a rainbow path of **G** with length ℓ joining u and v for every integer $\ell \in [d_{\mathbf{G}}(u, v), n - 1]$.

In this talk, we study the existences of rainbow spanning trees and rainbow Hamiltonian paths in \mathbf{G} under the Ore-type conditions. Moreover, we study the rainbow vertex-pancyclicity and rainbow panconnectedness, as well as the existence of rainbow cliques in \mathbf{G} under the Dirac-type conditions. We also give some examples to show the sharpness of our results. This is joint work with Ping Li and Xueliang Li.

Contact Information

• Web: https://scmscomb.github.io/student

