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Determinants and permanents

For a matrix A = [a; j]1<i j<n Over a commutative ring with
identity, its determinant and permanent are defined by

det(A) = det[a;,j]lgugn = Z sign(w) H aj n(i)
i=1

WGGn

and ,
per(A) = perfailicij<n = > [[ai0)
ﬂ'EGn i=1

respectively, where &, is the symmetric group of all permutations

of [n] :=1{1,...,n}.
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Determinants v.s. Permanents

Permanents are useful in Combinatorics!
e (Valiant 1979) The complexity of computing the permanent of
n x n (0, 1)-matrices is NP-hard.
@ The permanent of the biadjacency matrix of a bipartite graph
G counts the perfect matchings.
e Permanent-Determinant Method: If A’ is a coherent
signing of biadjacency matrix A, then per(A) = | det(A’)|.

@ L.G. Valiant, The complexity of computing the permanent,
Theoretical Comput. Sci., 8 (1979), 189-201.

[3 V.V. Vazirani and M. Yannakakis, Pfaffian orientations, 0-1
permanents, and even cycles in directed graphs, Discrete Appl.
Math., 25 (1989), 179-190.

M G. Kuperberg, Symmetries of Plane Partitions and the
Permanent-Determinant method, J. Combin. Theory Ser. A 68

(1994), 115-151.
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Part 1: Genocchi numbers and Euler numbers

==
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Sun's permanent conjecture

The Genocchi numbers (of the first kind) G, are defined by

s X
ZGH,T

n=1

Conjecture (Zhi-Wei Sun, Question 403386 on MathOverflow)

[E=1]
per = —Gpy1.
n 1<j,k<n
00 -1 -1 -1
00 0 0 -1 110
per{l 0 0 O Of|=per|l 1 1(=3
1 1 1 0 0 011
11 1 1 1
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Kreweras' triangle

1100000
11000 [1111000

110 [t1110 |1111110
11 1,1t 111 1),]t 111111
o011/ [o1111] [0111111
00011 0001111
00000 1 1]

e Dumont 1974: #D5,11 = (—1)" Gy, with
Dont1:={0 € Gapy1: Vi€ [2n], (i) > o(i+ 1) iff o(i) is even}.

o Kreweras' triangle Ky,_1 4 = #{0 € Dapy1:0(1) = k+ 1}
@ Four interpretations of Kreweras' triangle via rearrangement
and Foata’s first fundamental transformation
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Genocchi numbers of the second kind

Genocchi numbers of the second kind (or median Genocchi
1%5% )

numbers) Hzp_1 = (—1)" ijo (21'11) Gan—2j

Conjecture (P. Luschny, A005439 on OEIS)

2j—k—1
per szﬂ = (_1)nH2n—1-
n 1<j,k<2n

111100
111100
011110
011110
001111
001 1 1 1]

Proof: In bijection with Dellac configurations known to be counted
by the normalized median Genocchi numbers
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Euler numbers

Euler number E, counts up-down permutations in &,

Conjecture (D. Chen, Question 402572 at MathOverflow)

Let P, := [sgn(sin W%)]lg,”jgn. Then

per(P,) = per(Ps}) = (—1)"Exp.

Conjecture (D. Chen, Question 403336 at MathOverflow)

Let Q, := [sgn(sin W%)hgugn. Then per(Qp) = (—1)"E,.

Conjecture (D. Chen, Question 402572 at MathOverflow)

Let Az, := [sgn (tan 7T2’;:le):| U Then
<ij<2n

per(Az,) = per(AEnl) = (—1)"Ezp.

Zhicong Lin Permanents and permutation statistics



Signed Eulerian identities

1 1 1 1 1 0
1 1 1 0 1 1 1 1 0 -1

1 1 0 -1 1 1 1 0 -1 -1
Pa=11 0 -1 1"P=|1 1 0 -1 21 1
0 -1 -1 -1 1 0 -1 -1 -1 -1
0 -1 -1 -1 -1 -1

Roselle's signed Eulerian identities:

Se o o

= (-1)"Ex, if n=2m,
where

exc(m) == [{i € [n] : w(i) > i}],
Dp={m €&, :n(i)#iforall ie[n]}.
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An action on matrices

Actions on all —1's in P,,:

1st Way Consider an exc-variant denoted as excp, and show that both
exc and excp have the same sign-balance over derangements.

2nd Way Show that per(Pa,) = per(P,,}) via some elementary
operation on matrices.

Definition (An action on matrix)

Define ¢ ¢(A) to be the matrix obtained from A by multiplying the
k-th row and the /-th column by —1. Then per(¢x ¢(A)) = per(A).
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per(Az,) = per(Ayy)

(1 1 -1 -1 -1 07

1 -1 -1 0 1 -1 -1 -1 O 1

-1 -1 O 1 -1 -1 -1 0 1 1

A=l 0 1 1|°MT o1 1 0 1 11
0 1 1 -1 -1 0 1 1 1 -1
0 1 1 1 -1 -1

Actions on all —1's of Ay,:

M1 1 -1 1 1 0]

1 -1 1 0 1 -1 -1 1 0 -1

-1 -1 0 -1 -1 -1 -1 0 -1 -1

-1 -1 _

A4 1 0 1 1/{° A6 1 1 0 1 1 1
o -1 1 -1 1 o -1 1 1 -1

0 -1 -1 1 -1 -1
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An intriguing bijection

[1 1 -1 1 1 0]
1 -1 -11 0 -1
Al = _11 _11 _01 (1) _11 _11 = 7 = 315624, exph(w) = 3.
1 o -1 1 1 -1
0 -1 -1 1 -1 —1]

exc(m)  fix(mw) _ exph(m) ﬁx(Tr)‘
D S

TE€Ga, €62,

Replace each i with ¢(i) in the two-line notation of m € &3,, where

o(7) n+k ifi=2k—1forsomel<k<n,
1) =
‘ k if i =2k for some 1 < k < n.
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The group of the action ¢y

For any S C [n] X [n], define the transformation matrix Ts with
respect to S by

( 11 ¢k,l>(A)—AoTs,

(k,NeS

where A is any n x n matrix over R and o is the Hadamard product.

Let us consider the set of transformation matrices
Tn:={Ts:S C[n] x [n]}.

For instance, 7> consists of four matrices

R ey e B
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The group of the action ¢y

Proposition

For any positive integer n, the transformation group T, is
isomorphic to the group Z%”_z, where Zp = 7./27. Consequently,
‘771 | — 22n—2_

For any subset S C [n] x [n], we define ¢s =[], yes P«,1, and
call S a kernel if ¢5 is the identity action. If S is a kernel, then for
any (a,b) € S we have ¢, 5) = d5\((a,6)}-

Figure: Examples of generators for 7, when n=7,8
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Part 2: Binomial transformation of Euler numbers
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Binomial transformation of Euler numbers

Conjecture (D. Chen, Question 404768 at MathOverflow)

Let R, := [sgn(cos li<ij<n. Then

n+1)

per(Rn) =< _ >kzo (%) Ezkia ifn=2m+1,
’ > ko (%) Eax ifn=2m.

1 0 -1 -1 -1

1 -1 -1 -1 0 -1 -1 -1 -1

R, = -1 -1 -1 Rs=|-1 -1 -1 -1 -1
-1 - -1l -1 -1 -1 -1 0
-1 -1 -1 1

-1 -1 -1 0 1
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Step 1: adjust R,

1 1 1 1 0
1 0 1 1 1 0 -1
Ri=[1],Rs=|1 1 1|,R=|1 1 1 1 1],
0 -1 -1 1 0 -1 -1 -1
0 -1 -1 -1 -1
1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 -1
s 1 1] 5 |11 1 -1 s (11 1 1 -1 -1
Rz_[l 1]’R“_ 11 01 1 |PRFl o1 o1 1 1
1 -1 -1 -1 1 1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1

Definition (A variant of excedances)

For m € &, define
exc(m) := |{i € [n] : w(i) > i and 7(i) # [(n+ 1)/2]}]

Note that exc(m) — éxc(m) equals 1 or 0 depending on whether [Z£2] is an
excedance top or not.
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Step 2: interprete permanent and explain cancellation

per(Rem) = Y (1% and per(Remi) = Y (~1)%,

T€EG2m T€Domy1

where Domy1 = {m € Gamy1 : Fix(w) C {m+1}}.

Lemma

Via Foata's first fundamental transformation and Foata—Strehl/
action:

S (DT = 30 (—1)F = (—1)m Y@y,

TE€Gam €],

Y (DT = 3 (YT = (1) .

T€Dami1 €631
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Foata's first fundamental transformation

Foata's “transformation fondamentale” o : 7 — o(7):
o Write 77! in standard cycle form:
© each cycle has its largest letter in the leftmost position;
@ the cycles are listed from left to right in increasing order of
their largest letters.
@ The one-line notation of o() is obtained from the standard
cycle form of 71 by erasing all the parentheses.

Foata's first fundamental transformation o : G, — &, satisfies
Exct(m) = Dest(o(m)) for each m € &,.
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Foata—Strehl action

Figure: The Foata—Strehl action ¢, on 735412698 with x = 4.

[@ D. Foata and V. Strehl, Rearrangements of the symmetric
group and enumerative properties of the tangent and secant
numbers, Math. Z. 137 (1974), 257-264.
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Step 3: Poupard numbers via alternating permutations

Definition (Foata—Han 2013)
For any m € &, with w(i) = n, define

grn(7) := max{n(i — 1), 7(i + 1)},

called the greater neighbour of nin 7. Let 2, denote the set of
alternating (down-up) permutations and let

Apk = {m €A, : grn(m) = k}

Lemma

For each n > 1, there exists a bijection f : S}, — an+17\_%1J.
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Foata—Han's generating function formulae

Theorem (Foata—Han 2013)
Denote g,(k) := |Azp—1,k—1| and hy(k) := |Aon k|. Then

2n+17k ykfl

1+> > amlk 2+1—k)!(k—1)!:Sec(x+y)cos(xfy)’
n>11<k<2n+1

X2n+1—k yk— 1

1+ Z Z h,ﬂ,+1(k)(2nJr TR k1) sec?(x + y) cos(x — y).

n>11<k<2n+1

W
Lemma

Central Poupard numbers:

n

n n n
gn+1(n+1):z(k)52k and  hopa(n+1) = (k)EM.
0

k=0 k=
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Bala's continued fraction conjecture

Conjecture (P. Bala, A005799 on OEIS)

The number 2=" >~} _ (1) Exx has the exponential generating
function formula

2 2o (W E2k o _ 2

nl _ a4z
=0 5 1—e
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Descent polynomials on the multiset {1,1,...,

Let &7 be the set of multipermutations on {1,1,...,n,n}. Then

Z tef)\{c(ﬂ on Z tdes(ﬂ)

TEG, WEG 2)

The polynomial Z 2 t9e5(7) that we denote A(2)( t) is called the

nth 2-Eulerian polynom|a| F. Ardila (2020) proved that 2-Eulerian
polynomials are the h-polynomials of the dual bipermutahedron.

Theorem ( MacMahon, Combinatory analysis)

MacMahon's factorial generating function formula for Ag,z)( t)

AP (1) k+2\"
g ()

k>0
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Exponential generating function for Agz)(t)

Via Touchard's continued fraction formula:

(k-gl)zk = 1
;) ! 1 1~ q)
> —z+
(1-4°)z
1—z+ 1- )2
RN
Theorem (Setting t = —1 implies Bala's conjecture)

The e.g.f. for Agz)(t) has continued fraction expansion

(2) _
ZtAn (t)z":t—l—i— 1—t i
n! (1-— e(l-t) 2)¢
n=0 1l — i
1o (1 _ eZ(l—t)zz)t
e (1— e3(1—t)2z)t
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Part 3: Combinatorics of the y-positivity
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Palindromic and unimodal

A polynomial h(t) = Z?’:o hit' € R[t] is
@ palindromic if h; = hy_; for all i

@ unimodal if for some ¢
ho<hi <---<he>--->hg_1> hy

Example 1: h(t) = 1 + 20t + 48t% + 20t3 + t*
Example 2: h(t) = (1 +t)"

The 1989 survey of Stanley:
Log-concave and unimodal sequences in algebra, combinatorics, and
geometry, in Graph Theory and lts Applications: East and West

The 2014 survey of Brandén:
Unimodality, log-concavity, real-rootedness and beyond, in
Handbook of Enumerative Combinatorics
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Y-positivity

Definition (y-positive)

h(t) is palindromic <= it can be expanded as

ld/2]
h(t) = > th(1+1)972%

k=0

If v, > 0 for all k, then h(t) is said to be y-positive.

o Example: h(t) = 14 20t + 48t + 20t3 + t* is y-positive, as
h(t) = 1(1 + t)* + 16t + 42t% 4 168>
= 1(1 4 t)* 4 16¢t(1 + t)* + 10¢?
@ ~-positive = palindromic and unimodal (why?)

The 2018 survey of Athanasiadis
Gamma-positivity in combinatorics and geometry, SLC77
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The Eulerian polynomials are y-positive

Double descent of 7: 71 > m; > mi11
NDD,: set of all permutations in &,, with no double descents

Theorem (Foata & Schiitzenberger 1970)

The Eulerian polynomials are ~y-positive:

[(n—1)/2]
An(t) = Z tdes(ﬂ-) = Z r)/n7ktk(1 + t)n—1—2k’
T€G, k=0

where v, = #{m € NDD,, : des(w) = k,m1 < m2}.

Many proofs are known: recurrence, Foata—Strehl action, cd-index,
analysis (real-rootedness), continued fractions, symmetric functions,
poset topology (Rees products), ...
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Multiset Eulerian polynomials

The 2-Eulerian polynomial:
A£,2)(t) _ Z pdes(m)

summed over all permutations 7 of {12,22, ..., n?}.
o Ardila (2022) B, is bipermutohedron: hg:(t) = A$,2)(t)
o Carlitz and Hoggatt (1978) proved that Ag,z)(t) is palindromic
e Simion (1984) proved that Ag2)(t) is real-rooted

Since a palindromic polynomial with only real roots is y-positive, it
is natural to ask:

Problem

Is there any combinatorial interpretation for the y-coefficients 7,(12,3
of AP (t)?

. : : o i+j
Answer: weakly increasing trees & permanent of |sgn(cos 7 =)

Zhicong Lin Permanents and permutation statistics



Weakly increasing trees on a multiset

224

Figure: A weakly increasing tree on M = {1424 32 42}
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Weakly increasing trees on a multiset
H oy o A
> 2 2 2 2 2 2 2
T, T, T, T T,

TI 2 3 4 5 6
0 0 0 0 0 0
1 1 1 1&2 x.z !
1 2
1 > 1
2 2 1 I 2 1 2
2 2 2 2
T7 TS T9 T]D Tll T]2
0 0 0 0 0 0
1
1 ®1 191 1 1
EZ I T2 Ez 1: 2 2 E\ El
2 2 o 1 122
2 2
TI 3 TI 4 Tl 5 TI 6 TI 7 Tl 8

Figure: All 18 weakly increasing trees on the multiset {12, 22}
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Alternating multipermutations and Weakly increasing trees

@ Gessel (1990) proved that the number of alternating
multipermutations 7 € 622):

(1) <7(2) >7(3) <w(4) >7n(5) <+,

is 27" 350 (k) Eax-
e Lin-Ma—Ma—Zhou (2021) interpreted the 7-coefficients 7(22 in

n,

n—1
AP (1) = ny,zz th(1 4 £)2(n—1)—2k
k=0

as some class of weakly increasing trees.

)

The number of alternating multipermutations in 62,2
number of weakly increasing trees on {1,1,....,n—1,n—1,n}
with n leaves and without young leaves.

equals the
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Combinatorics of the ~-positivity of Ay, (t)

By Foata's first fundamental transformation:

2nA£,2)() A2m : Z pexe(r) _ Z t&gs(w)

T€EGom T€Gom
where des(r) := [Dest(r) \ {m + 1}|.
Theorem (Provides a new interpretation for 7512,2)

Denote by Val(r) the set of valleys of . Then Aam(t) has the
y-positivity expansion

m—1
A2m Z tdes ™) _ Z ‘52m,k’tk(1 + t)2m7272k7
T€Gam k=0

where 52,,,,;( is the set of ™ € Syp, with Ddes(w) \ {m+ 1} =0,
m+1 ¢ Val(m) and des(m) = k.
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Step 1: an intriguing equidistribution

Lemma

There exists a bijection 1) preserving the number of descents
between

Pm = {m € G, : Ddes(7) = 0, m+ 1 is a peak}

and

Vi :={m € Gomm : Ddes(nr) =0, m + 1 is a valley}.

Via the Francon—Viennot bijection that encodes permutations as
Laguerre histories and involution © below:
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Step 2: restricted Foata—Strehl action

For x € [2m] and m € Gy, introduce the restricted Foata—Strehl
action

_ (), if x#m+1,
ox(m) = {77, if x=m+ 1.

If we denote 7 the unique permutation in Orb(7) with
Ddes(7) \ {m+ 1} = 0, then

Z t&Ves(a) _ thes(fr)(l + t)\Dasc(fr)\{m—‘rl}L

o€0rb()

o If m+1isa double descent or a double ascent of #, then
Z t&gs(a) _ tfes(ﬁ)(l n t)2m7272(§\c;s(fr)‘
o€0rb()
o If m+ 1isa peak of &, then m + 1 is a valley of 7(7) and

Z tcf'es(o—) _ t&?s(ﬁ) (1+ t)2m7272&gs(fr)'
o€0rb(m) |1 Orb(n(7))
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