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Determinants and permanents

For a matrix A = [ai ,j ]1≤i ,j≤n over a commutative ring with
identity, its determinant and permanent are defined by

det(A) = det[ai ,j ]1≤i ,j≤n =
∑
π∈Sn

sign(π)
n∏

i=1

ai ,π(i)

and

per(A) = per[ai ,j ]1≤i ,j≤n =
∑
π∈Sn

n∏
i=1

ai ,π(i)

respectively, where Sn is the symmetric group of all permutations
of [n] := {1, . . . , n}.

per

1 1 0
1 1 1
0 1 1

 = 3
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Determinants v.s. Permanents

Permanents are useful in Combinatorics!
(Valiant 1979) The complexity of computing the permanent of
n × n (0, 1)-matrices is NP-hard.
The permanent of the biadjacency matrix of a bipartite graph
G counts the perfect matchings.
Permanent-Determinant Method: If A′ is a coherent
signing of biadjacency matrix A, then per(A) = | det(A′)|.

L.G. Valiant, The complexity of computing the permanent,
Theoretical Comput. Sci., 8 (1979), 189–201.

V.V. Vazirani and M. Yannakakis, Pfaffian orientations, 0-1
permanents, and even cycles in directed graphs, Discrete Appl.
Math., 25 (1989), 179–190.

G. Kuperberg, Symmetries of Plane Partitions and the
Permanent-Determinant method, J. Combin. Theory Ser. A 68
(1994), 115–151.
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Genocchi numbers and Euler numbers

Part 1: Genocchi numbers and Euler numbers
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Sun’s permanent conjecture

The Genocchi numbers (of the first kind) Gn are defined by

2x
ex + 1

=
∞∑
n=1

Gn
xn

n!
.

Conjecture (Zhi-Wei Sun, Question 403386 on MathOverflow)

per
[⌊

2j − k

n

⌋]
1≤j ,k≤n

= −Gn+1.

per


0 0 −1 −1 −1
0 0 0 0 −1
1 0 0 0 0
1 1 1 0 0
1 1 1 1 1

 = per

1 1 0
1 1 1
0 1 1

 = 3
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Kreweras’ triangle

1 1 0
1 1 1
0 1 1

 ,

1 1 0 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 0 1 1

 ,


1 1 0 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 0 1 1


Dumont 1974: #D2n+1 = (−1)nG2n with

D2n+1 := {σ ∈ S2n+1 : ∀ i ∈ [2n], σ(i) > σ(i + 1) iff σ(i) is even}.
Kreweras’ triangle K2n−1,k = #{σ ∈ D2n+1 : σ(1) = k + 1}
Four interpretations of Kreweras’ triangle via rearrangement
and Foata’s first fundamental transformation
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Genocchi numbers of the second kind

Genocchi numbers of the second kind (or median Genocchi

numbers) H2n−1 = (−1)n
∑b n−1

2 c
j=0

( n
2j+1

)
G2n−2j

Conjecture (P. Luschny, A005439 on OEIS)

per
[⌊

2j − k − 1
2n

⌋]
1≤j ,k≤2n

= (−1)nH2n−1.



1 1 1 1 0 0
1 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 1 1 1 1


Proof: In bijection with Dellac configurations known to be counted
by the normalized median Genocchi numbers
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Euler numbers

Euler number En counts up-down permutations in Sn

Conjecture (D. Chen, Question 402572 at MathOverflow)

Let Pn := [sgn(sinπ i+j
n+1)]1≤i ,j≤n. Then

per(P2n) = per(P−1
2n ) = (−1)nE2n.

Conjecture (D. Chen, Question 403336 at MathOverflow)

Let Qn := [sgn(sinπ i+2j
n+1 )]1≤i ,j≤n. Then per(Qn) = (−1)nEn.

Conjecture (D. Chen, Question 402572 at MathOverflow)

Let A2n :=
[
sgn

(
tanπ i+j

2n+1

)]
1≤i ,j≤2n

. Then

per(A2n) = per(A−1
2n ) = (−1)nE2n.
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Signed Eulerian identities

P4 =


1 1 1 0
1 1 0 −1
1 0 −1 −1
0 −1 −1 −1

 , P6 =



1 1 1 1 1 0
1 1 1 1 0 −1
1 1 1 0 −1 −1
1 1 0 −1 −1 −1
1 0 −1 −1 −1 −1
0 −1 −1 −1 −1 −1

 .

Roselle’s signed Eulerian identities:∑
π∈Dn

(−1)exc(π) =

{
0 if n = 2m + 1,
(−1)mE2m if n = 2m,

where

exc(π) := |{i ∈ [n] : π(i) > i}|,
Dn := {π ∈ Sn : π(i) 6= i for all i ∈ [n]}.
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An action on matrices

Actions on all −1’s in P2n:

P−1
4 =


1 −1 1 0
−1 1 0 −1
1 0 −1 1
0 −1 1 −1

 , P−1
6 =



1 −1 1 −1 1 0
−1 1 −1 1 0 −1
1 −1 1 0 −1 1
−1 1 0 −1 1 −1
1 0 −1 1 −1 1
0 −1 1 −1 1 −1

 .

1st Way Consider an exc-variant denoted as excP , and show that both
exc and excP have the same sign-balance over derangements.

2nd Way Show that per(P2n) = per(P−1
2n ) via some elementary

operation on matrices.

Definition (An action on matrix)

Define φk,`(A) to be the matrix obtained from A by multiplying the
k-th row and the `-th column by −1. Then per(φk,`(A)) = per(A).
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per(A2n) = per(A−12n )

A4 =


1 −1 −1 0
−1 −1 0 1
−1 0 1 1
0 1 1 −1

 , A6 =



1 1 −1 −1 −1 0
1 −1 −1 −1 0 1
−1 −1 −1 0 1 1
−1 −1 0 1 1 1
−1 0 1 1 1 −1
0 1 1 1 −1 −1

 .

Actions on all −1’s of A2n:

A−1
4 =


1 −1 1 0
−1 −1 0 −1
1 0 1 1
0 −1 1 −1

 , A−1
6 =



1 1 −1 1 1 0
1 −1 −1 1 0 −1
−1 −1 −1 0 −1 −1
1 1 0 1 1 1
1 0 −1 1 1 −1
0 −1 −1 1 −1 −1

 .
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An intriguing bijection

A−1
6 =



1 1 −1 1 1 0
1 −1 −1 1 0 −1
−1 −1 −1 0 −1 −1
1 1 0 1 1 1
1 0 −1 1 1 −1
0 −1 −1 1 −1 −1

 ⇒ π = 315624, exph(π) = 3.

Theorem ∑
π∈S2n

texc(π)yfix(π) =
∑
π∈S2n

texph(π)yfix(π).

Replace each i with φ(i) in the two-line notation of π ∈ S2n, where

φ(i) =

{
n + k if i = 2k − 1 for some 1 ≤ k ≤ n,

k if i = 2k for some 1 ≤ k ≤ n.
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The group of the action φk ,l

Definition
For any S ⊆ [n]× [n], define the transformation matrix TS with
respect to S by ( ∏

(k,l)∈S

φk,l

)
(A) = A ◦ TS ,

where A is any n× n matrix over R and ◦ is the Hadamard product.

Let us consider the set of transformation matrices

Tn := {TS : S ⊆ [n]× [n]}.

For instance, T2 consists of four matrices[
1 1
1 1

]
,

[
1 −1
−1 1

]
,

[
−1 1
1 −1

]
,

[
−1 −1
−1 −1

]
.
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The group of the action φk ,l

Proposition
For any positive integer n, the transformation group Tn is
isomorphic to the group Z2n−2

2 , where Z2 = Z/2Z. Consequently,
|Tn| = 22n−2.

For any subset S ⊆ [n]× [n], we define φS :=
∏

(k,l)∈S φk,l , and
call S a kernel if φS is the identity action. If S is a kernel, then for
any (a, b) ∈ S we have φ(a,b) = φS\{(a,b)}.

Figure: Examples of generators for Tn when n = 7, 8
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Binomial transformation of Euler numbers

Part 2: Binomial transformation of Euler numbers
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Binomial transformation of Euler numbers

Conjecture (D. Chen, Question 404768 at MathOverflow)

Let Rn := [sgn(cosπ i+j
n+1)]1≤i ,j≤n. Then

per(Rn) =

{
−
∑m

k=0
(m
k

)
E2k+1 if n = 2m + 1,∑m

k=0
(m
k

)
E2k if n = 2m.

R4 =


1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 1

 ,R5 =


1 0 −1 −1 −1
0 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 −1 −1 −1 0
−1 −1 −1 0 1

 .
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Step 1: adjust Rn

R̃1 =
[
1
]
, R̃3 =

1 1 0
1 1 1
0 −1 −1

 , R̃5 =


1 1 1 1 0
1 1 1 0 −1
1 1 1 1 1
1 0 −1 −1 −1
0 −1 −1 −1 −1

 ,

R̃2 =

[
1 1
1 1

]
, R̃4 =


1 1 1 1
1 1 1 −1
1 1 1 1
1 −1 −1 −1

 , R̃6 =


1 1 1 1 1 1
1 1 1 1 1 −1
1 1 1 1 −1 −1
1 1 1 1 1 1
1 1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1

 .

Definition (A variant of excedances)

For π ∈ Sn, define

ẽxc(π) := |{i ∈ [n] : π(i) > i and π(i) 6= d(n + 1)/2e}|.

Note that exc(π)− ẽxc(π) equals 1 or 0 depending on whether d n+1
2 e is an

excedance top or not.
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Step 2: interprete permanent and explain cancellation

per(R̃2m) =
∑
π∈S2m

(−1)ẽxc(π) and per(R̃2m+1) =
∑

π∈D̃2m+1

(−1)ẽxc(π),

where D̃2m+1 = {π ∈ S2m+1 : Fix(π) ⊆ {m + 1}}.

Lemma

Via Foata’s first fundamental transformation and Foata–Strehl
action:∑

π∈S2m

(−1)ẽxc(π) =
∑
π∈S∗

2m

(−1)ẽxc(π) = (−1)m−1|S∗2m|,∑
π∈D̃2m+1

(−1)ẽxc(π) =
∑

π∈S∗
2m+1

(−1)ẽxc(π) = (−1)m|S∗2m+1|.
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Foata’s first fundamental transformation

Foata’s “transformation fondamentale” o : π 7→ o(π):
Write π−1 in standard cycle form:

1 each cycle has its largest letter in the leftmost position;
2 the cycles are listed from left to right in increasing order of

their largest letters.

The one-line notation of o(π) is obtained from the standard
cycle form of π−1 by erasing all the parentheses.

Lemma
Foata’s first fundamental transformation o : Sn → Sn satisfies
Exct(π) = Dest(o(π)) for each π ∈ Sn.

Exct(π) := {π(i) : i < π(i)}
Dest(π) = {π(i) : π(i) > π(i + 1)}
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Foata–Strehl action

+∞

7

3

5

4

1
2

6

9

8

+∞

Figure: The Foata–Strehl action ϕx on 735412698 with x = 4.

D. Foata and V. Strehl, Rearrangements of the symmetric
group and enumerative properties of the tangent and secant
numbers, Math. Z. 137 (1974), 257–264.
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Step 3: Poupard numbers via alternating permutations

Definition (Foata–Han 2013)

For any π ∈ Sn with π(i) = n, define

grn(π) := max{π(i − 1), π(i + 1)},

called the greater neighbour of n in π. Let An denote the set of
alternating (down-up) permutations and let

An,k := {π ∈ An : grn(π) = k}

Lemma
For each n ≥ 1, there exists a bijection f : S∗n → An+1,b n+1

2 c
.
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Foata–Han’s generating function formulae

Theorem (Foata–Han 2013)

Denote gn(k) := |A2n−1,k−1| and hn(k) := |A2n,k |. Then

1 +
∑
n≥1

∑
1≤k≤2n+1

gn+1(k)
x2n+1−k

(2n + 1− k)!

yk−1

(k − 1)!
= sec(x + y) cos(x − y),

1 +
∑
n≥1

∑
1≤k≤2n+1

hn+1(k)
x2n+1−k

(2n + 1− k)!

yk−1

(k − 1)!
= sec2(x + y) cos(x − y).

Lemma
Central Poupard numbers:

gn+1(n + 1) =
n∑

k=0

(
n

k

)
E2k and hn+1(n + 1) =

n∑
k=0

(
n

k

)
E2k+1.

Zhicong Lin Permanents and permutation statistics



Bala’s continued fraction conjecture

Conjecture (P. Bala, A005799 on OEIS)

The number 2−n
∑n

k=0
(n
k

)
E2k has the exponential generating

function formula∑
n≥0

2−n
∑n

k=0
(n
k

)
E2k

n!
zn =

2

2− 1− e−4z

2− 1− e−8z

2− 1− e−12z

· · ·

.
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Descent polynomials on the multiset {1, 1, . . . , n, n}

Theorem

Let S(2)
n be the set of multipermutations on {1, 1, . . . , n, n}. Then∑

π∈S2n

t ẽxc(π) = 2n
∑
π∈S(2)

n

tdes(π).

The polynomial
∑

π∈S(2)
n

tdes(π) that we denote A
(2)
n (t) is called the

nth 2-Eulerian polynomial. F. Ardila (2020) proved that 2-Eulerian
polynomials are the h-polynomials of the dual bipermutahedron.

Theorem ( MacMahon, Combinatory analysis)

MacMahon’s factorial generating function formula for A(2)
n (t)

A
(2)
n (t)

(1− t)2n+1 =
∑
k≥0

(
k + 2
2

)n

tk .
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Exponential generating function for A(2)
n (t)

Via Touchard’s continued fraction formula:∑
k≥0

q(k+1
2 )zk =

1

1− z +
(1− q)z

1− z +
(1− q2)z

1− z +
(1− q3)z

· · ·

.

Theorem (Setting t = −1 implies Bala’s conjecture)

The e.g.f. for A(2)
n (t) has continued fraction expansion

∑
n≥0

tA
(2)
n (t)

n!
zn = t−1+

1− t

1− t +
(1− e(1−t)

2z)t

1− t +
(1− e2(1−t)2z)t

1− t +
(1− e3(1−t)2z)t

· · ·

.
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q-Eulerian polynomials

Part 3: Combinatorics of the γ-positivity
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Palindromic and unimodal

A polynomial h(t) =
∑d

i=0 hi t
i ∈ R[t] is

palindromic if hi = hd−i for all i
unimodal if for some c

h0 ≤ h1 ≤ · · · ≤ hc ≥ · · · ≥ hd−1 ≥ hd

Example 1: h(t) = 1 + 20t + 48t2 + 20t3 + t4

Example 2: h(t) = (1 + t)n

The 1989 survey of Stanley:
Log-concave and unimodal sequences in algebra, combinatorics, and
geometry, in Graph Theory and Its Applications: East and West

The 2014 survey of Brändén:
Unimodality, log-concavity, real-rootedness and beyond, in
Handbook of Enumerative Combinatorics
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γ-positivity

Definition (γ-positive)

h(t) is palindromic ⇐⇒ it can be expanded as

h(t) =

bd/2c∑
k=0

γkt
k(1 + t)d−2k .

If γk ≥ 0 for all k , then h(t) is said to be γ-positive.

Example: h(t) = 1 + 20t + 48t2 + 20t3 + t4 is γ-positive, as

h(t) = 1(1 + t)4 + 16t + 42t2 + 16t3

= 1(1 + t)4 + 16t(1 + t)2 + 10t2

γ-positive =⇒ palindromic and unimodal (why?)

The 2018 survey of Athanasiadis
Gamma-positivity in combinatorics and geometry, SLC77
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The Eulerian polynomials are γ-positive

Double descent of π: πi−1 > πi > πi+1
NDDn: set of all permutations in Sn with no double descents

Theorem (Foata & Schützenberger 1970)

The Eulerian polynomials are γ-positive:

An(t) :=
∑
π∈Sn

tdes(π) =

b(n−1)/2c∑
k=0

γn,kt
k(1 + t)n−1−2k ,

where γn,k = #{π ∈ NDDn : des(π) = k , π1 < π2}.

Many proofs are known: recurrence, Foata–Strehl action, cd-index,
analysis (real-rootedness), continued fractions, symmetric functions,
poset topology (Rees products), . . .
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Multiset Eulerian polynomials

The 2-Eulerian polynomial:

A
(2)
n (t) =

∑
π

tdes(π)

summed over all permutations π of {12, 22, . . . , n2}.
Ardila (2022) Bn is bipermutohedron: hB∗n (t) = A

(2)
n (t)

Carlitz and Hoggatt (1978) proved that A(2)
n (t) is palindromic

Simion (1984) proved that A(2)
n (t) is real-rooted

Since a palindromic polynomial with only real roots is γ-positive, it
is natural to ask:

Problem

Is there any combinatorial interpretation for the γ-coefficients γ(2)n,k

of A(2)
n (t)?

Answer: weakly increasing trees & permanent of
[
sgn(cosπ i+j

n+1)
]
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Weakly increasing trees on a multiset

•

• • •

• •

•

•

• • •

••

0

1 1 2 3

1
1

3 2 4

2 2 4

Figure: A weakly increasing tree on M = {14, 24, 32, 42}.
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Weakly increasing trees on a multiset

0

1 1 2 2

0

1 1
2

2

0

1
1

2

2

0

11

22

0

11

22

0

11

22

0

1

1

2

2

0

1

1

2

2

0

1

1

2

2

0

1

1

2

2

0

1

1

2

2

0

1

1

2 2

0

1

1 2

2

0

11

2

2

0

11

2

2

0

1

1

22

0

1

1

22

1T 2T 3T 4T 5T 6T

7T 8T 9T 10T 11T 12T

13T 14T 15T 16T 17T 18T

0

1

1

2

2

Figure: All 18 weakly increasing trees on the multiset {12, 22}
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Alternating multipermutations and Weakly increasing trees

Gessel (1990) proved that the number of alternating
multipermutations π ∈ S

(2)
n :

π(1) ≤ π(2) > π(3) ≤ π(4) > π(5) ≤ · · · ,

is 2−n
∑n

k=0
(n
k

)
E2k .

Lin–Ma–Ma–Zhou (2021) interpreted the γ-coefficients γ(2)n,k in

A
(2)
n (t) =

n−1∑
k=0

γ
(2)
n,kt

k(1 + t)2(n−1)−2k

as some class of weakly increasing trees.

Corollary

The number of alternating multipermutations in S
(2)
n equals the

number of weakly increasing trees on {1, 1, . . . , n − 1, n − 1, n}
with n leaves and without young leaves.
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Combinatorics of the γ-positivity of Ã2m(t)

By Foata’s first fundamental transformation:

2nA(2)
n (t) = Ã2m(t) :=

∑
π∈S2m

t ẽxc(π) =
∑
π∈S2m

t d̃es(π),

where d̃es(π) := |Dest(π) \ {m + 1}|.

Theorem (Provides a new interpretation for γ(2)n,k)

Denote by Val(π) the set of valleys of π. Then Ã2m(t) has the
γ-positivity expansion

Ã2m(t) =
∑
π∈S2m

t d̃es(π) =
m−1∑
k=0

|D̃2m,k |tk(1 + t)2m−2−2k ,

where D̃2m,k is the set of π ∈ S2m with Ddes(π) \ {m + 1} = ∅,
m + 1 /∈ Val(π) and d̃es(π) = k .
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Step 1: an intriguing equidistribution

Lemma

There exists a bijection η preserving the number of descents
between

Pm := {π ∈ S2m : Ddes(π) = ∅,m + 1 is a peak}

and

Vm := {π ∈ S2m : Ddes(π) = ∅,m + 1 is a valley}.

Via the Françon–Viennot bijection that encodes permutations as
Laguerre histories and involution Θ below:

• •
• •

• •
•
•

0 1 0
0

1
2

1 −→Θ

•
•
• •

•
•
•
•

0
0

1
2

1 0 1
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Step 2: restricted Foata–Strehl action

For x ∈ [2m] and π ∈ S2m, introduce the restricted Foata–Strehl
action

ϕ̃x(π) =

{
ϕ′x(π), if x 6= m + 1;

π, if x = m + 1.

If we denote π̂ the unique permutation in Orb(π) with
Ddes(π̂) \ {m + 1} = ∅, then∑

σ∈Orb(π)

t d̃es(σ) = t d̃es(π̂)(1 + t)|Dasc(π̂)\{m+1}|.

If m + 1 is a double descent or a double ascent of π̂, then∑
σ∈Orb(π)

t d̃es(σ) = t d̃es(π̂)(1 + t)2m−2−2d̃es(π̂).

If m + 1 is a peak of π̂, then m + 1 is a valley of η(π̂) and∑
σ∈Orb(π)

⊎
Orb(η(π̂))

t d̃es(σ) = t d̃es(π̂)(1 + t)2m−2−2d̃es(π̂).
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Perfect matchings in bipartite graphs

Part 4: Perfect matchings in bipartite graphs
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证明思路 : ( 晏卫根&赵彤远合作)

; 籍⼀进景匹配积分公式 :

PGntc-IYPGD-irhnffpca.net#PerfectmatdginG
↓
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Thank you for your attention
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