On the polynomial reconstruction of digraphs and graphs

Jingyuan Zhang
School of Mathematical Science, Xiamen University doriazhang@outlook.com

This is joint work with Xian'an Jin, Weigen Yan and Qinghai Liu

$$
2023.10 .13
$$

Contents

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Vertex Reconstruction Conjecture of Graphs

- The famous Ulam's conjecture states that each simple graph $G=$ (V, E) with $n \geq 3$ vertices be uniquely reconstructed from its deck $\{G-v \mid v \in V(G)\}$. Each $G-v$ is called a card of G.

Obviously, $G \Rightarrow\{G-v \mid v \in V\}$.

$$
\text { Ulam's Conjecture : }\{G-v \mid v \in V\} \Rightarrow \text { unique } G \text { if } \mathrm{n} \geq 3 \text { ? }
$$

- According to reliable sources (Kelly's doctoral thesis appeared in 1942), it was discovered in Wisconsin in 1941 by Kelly and Ulam .

R S. M. Ulam, A Collection of Mathematical Problems, Wiley (Interscience), New York, 1960, p29.
嗇 J. A. Bondy, R. L. Hemminger, Graph Reconstruction—Survey, Journal of Graph Theory, 1(1977), 227-268.

Vertex Reconstruction Conjecture of Graphs

- The trees are reconstructible (Manvel, Canad. J. Math., 1970)).
- The maximal outerplanar graphs are reconstructible (Manvel, DM, 1972).
- Regular graphs are reconstructible (The proof is easy).
- The unicyclic graphs are reconstructible (Arjomandi, Corneil, Canad. J. Math., 1974).
- The disconnected graphs are reconstructible (Manvel, JCTB, 1976).

Vertex Reconstruction Conjecture of Graphs

- McKay verified by computer that the conjecture holds for $3 \leq V(G) \leq$ 10. (McKay, JGT, 1977).
- Godsil and McKay (JCTB, 1981) proved that a graph is reconstructible if all but at most one of its eigenvalues are simple and have eigenvectors not orthogonal to the vector j with all entries equal to one.
- Hong (JCTB, 1982) proved that if there exists a card $G-v$ of G none of whose eigenvectors is orthogonal the vector j with all entries equal to one, then G is reconstructible from its deck.
- Bollobás (JGT, 1990) showed that almost every graph has reconstruction number three, a conjecture by Harary and Plantholt (JGT, 1985).
- Kostochka, Nahvi, West and Zirlin (Eur. J Combin., 2021) proved that 3-regular graphs are 2-reconstructible.

Vertex Reconstruction Conjecture of Graphs

- Wang obtained the following interesting result: Suppose that A and B are two integral symmetric matrices such that $\operatorname{det}(x I-A)=\operatorname{det}(x I-B)$ and $\operatorname{det}\left(x I-A_{i}\right)=\operatorname{det}\left(x I-B_{i}\right)$ for each i. If $\operatorname{det}(x I-A)$ is irreducible over $\mathcal{Q}[x]$, then there exists a diagonal matrix D with each diagonal entry being ± 1 such that $B=D^{T} A D$.
- Although some reconstructible graphs are obtained, the Ulam's conjecture is still open.

Wei Wang, A uniqueness theorem on matrices and reconstruction, Journal of Combinatorial Theory, Ser. B, 99 (2009), 261-265.

List of some recent references on the graph reconstruction

国 S．K．Gupta，P．Mangal，V．Paliwal，Some work towards the proof of the reconstruction conjecture，Discrete Mathematics，272（2003），291－296．

囯 R．Forman，Finite－type invariants for graphs and graph reconstructions， Advances in Mathematics， 186 （2004），181－228．

目 Wei Wang，A uniqueness theorem on matrices and reconstruction，Jour－ nal of Combinatorial Theory，Ser．B， 99 （2009），261－265．

目 A．V．Kostochka，M．Nahvi，D．B．West and D．Zirlin，3－regular graphs are 2－reconstructible，European Journal of Combinatorics，91（2021）， 103216.

國 T．Hosaka，The reconstruction conjecture for finite simple graphs and associated directed graphs，Discrete Mathematics， 345 （2022）， 112893.

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Edge Reconstruction Conjecture of Graphs

- Harary posed a similar conjecture (i.e., the edge reconstruction conjecture), which states that every simple graph G with edge set $E(G)$ can be reconstructed from its edge deck $\{G-e \mid e \in E(G)\}$ for $|E(G)| \geq 4$.

$$
\text { Harary's Conjecture : }\{G-e \mid e \in E(G)\} \Rightarrow G \text { if }|E(G)| \geq 4 \text { ? }
$$

- Lovász (JCTB, 1972) proved that the edge reconstruction conjecture holds for simple graphs with n vertices and at least $\frac{n(n-1)}{4}$ edges.

$$
\text { If }|E(G)| \geq n(n-1) / 4 \text {, then }\{G-e \mid e \in E(G)\} \Rightarrow G
$$

F. Harary, On the reconstruction of a graph from a collection of subgraphs, Theory of Graphs and Its Applications (M. Fiedler, ed.), Czechoslovak Academy of Sciences, Prague/Academic Press, New York, 1965, 47-52.

Edge Reconstruction Conjecture of Graphs

- Müller (JCTB, 1977) improved the Lovász's result and proved that the edge reconstruction conjecture holds for simple graphs with n vertices and more than $n \cdot \log _{2} n$ edges.

$$
\text { If }|E(G)| \geq n \log _{2} n \text {, then }\{G-e \mid e \in E(G)\} \Rightarrow G
$$

- Godsil, Krasikov and Roditty (JCTB, 1987) proved that if $2^{m-k}>n$! or if $2 m>\binom{n}{2}+k$, then G is reconstructible from its collection of k-edge deleted subgraphs, where $m=|E(G)|$.
- Although Müller's result implies that the edge reconstruction conjecture holds for almost all simple graphs, the Harary's conjecture is still open.
- If G is reconstructible and has no isolated vertices, then G is edge reconstructible, i.e.,

$$
\text { Ulam's Conj. holds } \Rightarrow \text { Harary's Conj. holds. }
$$

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Reconstruction of Characteristic Polynomials

- Tutte proved that the characteristic polynomial $f(G ; x)$ of a graph G can be reconstructed from the deck $\{G-v \mid v \in V\}$.

$$
\{G-v \mid v \in V\} \Rightarrow f(G ; x)
$$

- Tutte proved that if the characteristic polynomial $f(G ; x)$ of a graph G is irreducible over the rationals, then G is reconstructible.

$$
\{G-v \mid v \in V\} \Rightarrow G \text { if } f(G ; x) \text { is irreducible over } \mathcal{Q}
$$

围 W. T. Tutte, All the king's horses, in: Graph Theory and Related Topics, edited by J. A. Bondy and U. S. R. Murty (Academic Press, New York), 1979, 15-33.

Reconstruction of Characteristic Polynomials

- Cvetković, at the XVIII International Scientific Colloquium in Ilmenau in 1973, posed a related problem as follows: Can the characteristic polynomial $f(G ; x)$ of a simple graph G with vertex set $V(G)$ be reconstructed from $\{f(G-v ; x) \mid v \in V(G)\}$ for $|V(G)| \geq 3$?

$$
\{f(G-v ; x) \mid v \in V(G)\} \Rightarrow f(G ; x) \text { if }|V(G)| \geq 3 ?
$$

- The same problem was independently posed by Schwenk. Gutman and Cvetković obtained some results related to this problem.

嗇 A. J. Schwenk, Spectral reconstruction problems, Ann. New York Acad. Sci., 328 (1979), 183-189.
(1. Gutman, D. Cvetković, The reconstruction problem for characteristic polynomials of graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 498 (451) (1975), 45-48.

Reconstruction of Characteristic Polynomials

- Hagos proved that $f(G ; x)$ is reconstructible from $\{f(G-v ; x) \mid v \in$

$$
\begin{aligned}
& V(G)\} \cup\left\{f\left((G-v)^{c} ; x\right) \mid v \in V(G)\right\} . \\
& \{f(G-v ; x) \mid v \in V(G)\} \cup\left\{f\left((G-v)^{c} ; x\right) \mid v \in V(G)\right\} \Rightarrow f(G ; x)
\end{aligned}
$$

- Note that $f^{\prime}(G ; x)=\sum_{v \in V(G)} f(G-v ; x)$. Hence the coefficients of $f(G ; x)$ except for the constant term can be reconstructed from $\{f(G-$ $v ; x) \mid v \in V(G)\}$.
- No examples of non-unique reconstruction of the characteristic polynomial of graphs are known.

居 E. M. Hagos, The characteristic polynomial of a graph is reconstructible from the characteristic polynomials of its vertex-deleted subgraphs and their complements, the electronic journal of combinatorics, 7 (2000), \#R12

Reconstruction of Characteristic Polynomials

- Under the assumption that the reconstruction of the characteristic polynomial is not unique, Cvetković described some properties of graphs G such that the constant term of $f(G ; x)$ can not be reconstructed from $\{f(G-v ; x) \mid v \in V(G)\}$.
- Sciriha and Stanić survey classical and some more recent results concerning the reconstruction problem of the characteristic polynomial of graphs.
D. Cvetković, On the reconstruction of the characteristic polynomial of a graph, Discrete Mathematics, 212 (2000), 45-52.
國 I. Sciriha and Z. Stanić, The polynomial reconstruction problem: The first 50 years, Discrete Mathematics, 346 (2023), 113349.

Reconstruction of Characteristic Polynomials

- A natural problem is: Can the characteristic polynomial $f(G ; x)$ (resp. permanental polynomial $g(G ; x)$) of a graph or digraph be reconstructed from $\{f(G-e ; x) \mid e \in E(G)\}$ (resp. $\{g(G-e ; x) \mid e \in E(G)\})$?

$$
\begin{aligned}
& \{f(G-e ; x) \mid e \in E(G)\} \Rightarrow f(G ; x) \text { if }|E(G)| \geq 4 ? \\
& \{g(G-e ; x) \mid e \in E(G)\} \Rightarrow g(G ; x) \text { if }|E(G)| \geq 4 ?
\end{aligned}
$$

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Two Equalities on Determinants and Permanents

- Let $X=\left(x_{s t}\right)_{n \times n}$ be a matrix of order n over the complex field. For any $1 \leq i, j \leq n$, define a matrix $X_{i j}=\left(x_{s t}^{i j}\right)_{n \times n}$, where

$$
x_{s t}^{i j}= \begin{cases}x_{s t} & \text { if }(s, t) \neq(i, j) \\ 0 & \text { if }(s, t)=(i, j)\end{cases}
$$

That is, $X_{i j}$ is the matrix obtained from matrix X by replacing the (i, j)-entry $x_{i j}$ with 0 . For example, if

$$
X=\left(\begin{array}{lll}
a & b & c \\
e & f & g \\
r & s & t
\end{array}\right)
$$

then

$$
X_{12}=\left(\begin{array}{lll}
a & 0 & c \\
e & f & g \\
r & s & t
\end{array}\right), X_{33}=\left(\begin{array}{lll}
a & b & c \\
e & f & g \\
r & s & 0
\end{array}\right)
$$

Obviously, if $x_{i j}=0$, then $X=X_{i j}$.

Two Equalities on Determinants and Permanents

- Let $\varphi: S_{n} \rightarrow \mathbb{R}$ be an function, where S_{n} is the symmetric group of order n.
- The φ-immanant of X is defined as

$$
\operatorname{Imm}_{\varphi}(X)=\sum_{\alpha \in S_{n}} \varphi(\alpha) x_{1 \alpha(1)} x_{2 \alpha(2)} \ldots x_{n \alpha(n)}
$$

where the sum ranges over all elements α of S_{n}.

- Obviously, $\operatorname{Imm}_{\varphi}(X)=\operatorname{det}(X)$ if $\varphi(\alpha)=\operatorname{sgn}(\alpha)$ for any $\alpha \in S_{n}$ and $\operatorname{Imm}_{\varphi}(X)=\operatorname{per}(X)$ if $\varphi(\beta)=1$ for any $\beta \in S_{n}$.

Two Equalities on Determinants and Permanents

Theorem 1 (Zhang, Jin, Yan, 2023)
Let $X=\left(x_{s t}\right)_{n \times n}$ be a matrix of order n over the complex field and let $X_{i j}$ be defined as above. Then for any function $\varphi: S_{n} \rightarrow \mathbb{R}$, the φ-immanant of X satisfies:

$$
\begin{equation*}
\left(n^{2}-n\right) \operatorname{Imm}_{\varphi}(X)=\sum_{1 \leq i, j \leq n} \operatorname{Imm}_{\varphi}\left(X_{i j}\right) . \tag{1}
\end{equation*}
$$

Two Equalities on Determinants and Permanents

The following theorem is immediate from Theorem 1.
Theorem 2 (Zhang, Jin, Yan, 2023)
Let $X=\left(x_{s t}\right)_{n \times n}$ be a matrix of order n over the complex field and let $X_{i j}$ be defined as above. Then the determinant of X satisfies:

$$
\begin{equation*}
\left(n^{2}-n\right) \operatorname{det}(X)=\sum_{1 \leq i, j \leq n} \operatorname{det}\left(X_{i j}\right) \tag{2}
\end{equation*}
$$

Theorem 3 (Zhang, Jin, Yan, 2023)
Let $X=\left(x_{s t}\right)_{n \times n}$ be a matrix of order n over the complex field and let m be the number of non-zero entries of X. Then

$$
\begin{equation*}
(m-n) \operatorname{det}(X)=\sum_{(i, j) \in I} \operatorname{det}\left(X_{i j}\right), \tag{3}
\end{equation*}
$$

where $I=\left\{(i, j) \mid x_{i j} \neq 0,1 \leq i, j \leq n\right\}$.

Two Equalities on Determinants and Permanents

- By the definition of the determinant and permanent,

$$
\begin{gathered}
\operatorname{det}(X)=\sum_{\alpha \in S_{n}} \operatorname{sgn}(\alpha) x_{1, \alpha(1)} x_{2, \alpha(2)} \ldots x_{n, \alpha(n)} \\
\operatorname{per}(X)=\sum_{\alpha \in S_{n}} x_{1, \alpha(1)} x_{2, \alpha(2)} \ldots x_{n, \alpha(n)} .
\end{gathered}
$$

Theorem 4 (Zhang, Jin, Yan, 2023)

Let $X=\left(x_{s t}\right)_{n \times n}$ be a matrix of order n over the complex field and let m be the number of non-zero entries of X. Then the permanent $\operatorname{per}(X)$ of X satisfies:

$$
\begin{equation*}
(m-n) \operatorname{per}(X)=\sum_{(i, j) \in I} \operatorname{per}\left(X_{i j}\right) \tag{4}
\end{equation*}
$$

where $I=\left\{(i, j) \mid x_{i j} \neq 0,1 \leq i, j \leq n\right\}$.

Proof of Theorem 1

- For convenience, we assume that $\left\{x_{11}, x_{12}, \ldots, x_{n n}\right\}$ is a set of n^{2} independent commuting variables over the complex field.
- There exist n ! terms in the expansion of the φ-immanant $\operatorname{Imm}_{\varphi}(X)$ of X, denoted by $\mathcal{T}_{\alpha_{1}}, \mathcal{T}_{\alpha_{2}}, \ldots, \mathcal{T}_{\alpha_{n!}}$, where $S_{n}=\left\{\alpha_{i} \mid 1 \leq i \leq n\right\}$ is the symmetric group of order n and

$$
\mathcal{T}_{\alpha_{i}}=\varphi\left(\alpha_{i}\right) x_{1 \alpha_{i}(1)} x_{2 \alpha_{i}(2)} \ldots x_{n \alpha_{i}(n)}
$$

- Hence

$$
\operatorname{Imm}_{\varphi}(X)=\sum_{i=1}^{n!} \mathcal{T}_{\alpha_{i}}
$$

- Define an $n!\times n^{2}$ matrix $T=\left(t_{\alpha_{i} x_{s t}}\right)_{n!\times n^{2}}$ as

$$
t_{\alpha_{i} x_{s t}}= \begin{cases}\mathcal{T}_{\alpha_{i}}, & \text { if }(s, t) \notin\left\{\left(k, \alpha_{i}(k)\right) \mid 1 \leq k \leq n\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Proof of Theorem 1

- Hence each row of T has $n^{2}-n$ entries each of which equals $\mathcal{T}_{\alpha_{i}}$ and n entries each of which equals zero.
- For example, if $n=3$, then $U=S_{3}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$ and $V=\left\{x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33}\right\}$, where

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \alpha_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \alpha_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \\
& \alpha_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \alpha_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \alpha_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
\end{aligned}
$$

Proof of Theorem 1

$$
\begin{gathered}
\mathcal{T}_{\alpha_{1}}=\varphi\left(\alpha_{1}\right) x_{11} x_{22} x_{33}, \mathcal{T}_{\alpha_{2}}=\varphi\left(\alpha_{2}\right) x_{11} x_{23} x_{32}, \\
\mathcal{T}_{\alpha_{3}}=\varphi\left(\alpha_{3}\right) x_{13} x_{22} x_{31}, \mathcal{T}_{\alpha_{4}}=\varphi\left(\alpha_{4}\right) x_{12} x_{21} x_{33}, \\
\mathcal{T}_{\alpha_{5}}=\varphi\left(\alpha_{5}\right) x_{12} x_{23} x_{31}, \mathcal{T}_{\alpha_{6}}=\varphi\left(\alpha_{6}\right) x_{13} x_{21} x_{32} . \\
\alpha_{1} . \\
\alpha_{2}\left(\begin{array}{ccccccccc}
x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & x_{31} & x_{32} & x_{33} \\
\alpha_{3} & \mathcal{T}_{\alpha_{1}} & \mathcal{T}_{\alpha_{1}} & \mathcal{T}_{\alpha_{1}} & 0 & \mathcal{T}_{\alpha_{1}} & \mathcal{T}_{\alpha_{1}} & \mathcal{T}_{\alpha_{1}} & 0 \\
0 & \mathcal{T}_{\alpha_{2}} & \mathcal{T}_{\alpha_{2}} & \mathcal{T}_{\alpha_{2}} & \mathcal{T}_{\alpha_{2}} & 0 & \mathcal{T}_{\alpha_{2}} & 0 & \mathcal{T}_{\alpha_{2}} \\
\alpha_{3} \\
\alpha_{4} \\
\alpha_{5} & \mathcal{T}_{\alpha_{3}} & 0 & \mathcal{T}_{\alpha_{3}} & 0 & \mathcal{T}_{\alpha_{3}} & 0 & \mathcal{T}_{\alpha_{3}} & \mathcal{T}_{\alpha_{3}} \\
\alpha_{6} & 0 & \mathcal{T}_{\alpha_{4}} & 0 & \mathcal{T}_{\alpha_{4}} & \mathcal{T}_{\alpha_{4}} & \mathcal{T}_{\alpha_{4}} & \mathcal{T}_{\alpha_{4}} & 0 \\
\mathcal{T}_{\alpha_{5}} & 0 & \mathcal{T}_{\alpha_{5}} & \mathcal{T}_{\alpha_{5}} & \mathcal{T}_{\alpha_{5}} & 0 & 0 & \mathcal{T}_{\alpha_{6}} & 0 \\
\mathcal{T}_{\alpha_{6}} & 0 & \mathcal{T}_{\alpha_{6}} & \mathcal{T}_{\alpha_{6}} & \mathcal{T}_{\alpha_{6}} & 0 & \mathcal{T}_{\alpha_{6}}
\end{array}\right) .
\end{gathered}
$$

Proof of Theorem 1

- Note that the i-th row in matrix T has exactly $n^{2}-n$ non-zero entries each of which equals $\mathcal{T}_{\alpha_{i}}$. Hence the sum of entries of i-th row in T equals $\left(n^{2}-n\right) \mathcal{T}_{\alpha_{i}}$. So the sum of all entries in T equals $\left(n^{2}-\right.$ $n) \operatorname{Imm}_{\varphi}(X)$. That is,

$$
\begin{equation*}
\sum_{i=1}^{n!} \sum_{1 \leq s, t \leq n} t_{\alpha_{i} x_{s t}}=\left(n^{2}-n\right) \operatorname{Imm}_{\varphi}(X) \tag{5}
\end{equation*}
$$

Proof of Theorem 1

- On the other hand, by the definition of $X_{s t}$, the sum of entries of $x_{s t}$-th column of T equals exactly the determinant of $X_{s t}$. Hence

$$
\begin{equation*}
\sum_{1 \leq s, t \leq n} \sum_{i=1}^{n!} t_{\alpha_{i} x_{s t}}=\sum_{1 \leq s, t \leq n} \operatorname{Imm}_{\varphi}\left(X_{s t}\right) \tag{6}
\end{equation*}
$$

- Hence, by Eqs. (5) and (6), the theorem holds.

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Six Digraph Polynomials

- Let $G=(V(G), E(G))$ be a digraph having no loops and no multiple arcs, with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$.
- Denote the adjacency matrix and the vertex in-degree diagonal matrix of G by $A=\left(a_{i j}\right)_{n \times n}$ and $D=\operatorname{diag}\left(d^{+}\left(v_{1}\right), d^{+}\left(v_{2}\right), \cdots, d^{+}\left(v_{n}\right)\right)$, where $a_{i j}=1$ if $\left(v_{i}, v_{j}\right) \in E(G)$ and $a_{i j}=0$ otherwise, and $d^{+}(v)$ is the number of arcs with head v_{i}.
- Then $D-A$ and $D+A$ are the Laplacian and signless Laplacian matrices of G.

Six Digraph Polynomials

- Set

$$
\begin{aligned}
& f_{1}(G ; x)=\operatorname{det}(x I-A), \\
& f_{2}(G ; x)=\operatorname{det}(x I-D+A), \\
& f_{3}(G ; x)=\operatorname{det}(x I-D-A), \\
& f_{4}(G ; x)=\operatorname{per}(x I-A), \\
& f_{5}(G ; x)=\operatorname{per}(x I-D+A), \\
& f_{6}(G ; x)=\operatorname{per}(x I-D-A),
\end{aligned}
$$

where $\operatorname{det}(X)$ and $\operatorname{per}(X)$ denote the determinant and permanent of a square matrix X.

- Then $f_{1}(G ; x), f_{2}(G ; x), f_{3}(G ; x), f_{4}(G ; x), f_{5}(G ; x)$, and $f_{6}(G ; x)$ are the characteristic polynomial, Laplacian characteristic polynomial, signless Laplacian characteristic polynomial, permanental polynomial, Laplacian permanental polynomial, signless Laplacian permanental polynomial of digraph G, respectively.

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Main Results

- Suppose that both β and γ are real numbers satisfying $\gamma \neq 0$. Let G be a digraph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, which has no loops or multiple arcs. Set

$$
\begin{aligned}
& g_{1}(G ; x)=\operatorname{det}\left(x I_{n}-\beta D-\gamma A\right) \\
& g_{2}(G ; x)=\operatorname{per}\left(x I_{n}-\beta D-\gamma A\right)
\end{aligned}
$$

Theorem 5 (Zhang, Jin, Yan, 2023)

Both $g_{1}(G ; x)$ and $g_{2}(G ; x)$ defined as above satisfy:

$$
\begin{align*}
& (m-n) g_{1}(G ; x)+x g_{1}^{\prime}(G ; x)=\sum_{e \in E(G)} g_{1}(G-e ; x) \tag{7}\\
& (m-n) g_{2}(G ; x)+x g_{2}^{\prime}(G ; x)=\sum_{e \in E(G)} g_{2}(G-e ; x) \tag{8}
\end{align*}
$$

Main Results

Theorem 6 (Zhang, Jin, Yan, 2023)

Let G be a digraph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, which has no loops or multiple arcs. Then, for any $i=1,2,3,4,5,6$,

$$
\begin{equation*}
(m-n) f_{i}(G ; x)+x f_{i}^{\prime}(G ; x)=\sum_{e \in E(G)} f_{i}(G-e ; x) . \tag{9}
\end{equation*}
$$

Theorem 7 (Zhang, Jin, Yan, 2023)

Let G be a digraph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, which has no loops or multiple arcs. If $m \neq n$, then $f_{i}(G ; x)$ can be reconstructed from $\left\{f_{i}(G-e ; x) \mid e \in E(G)\right\}$ for $1 \leq$ $i \leq 6$.

$$
\left\{f_{i}(G-e ; x) \mid e \in E(G)\right\} \Rightarrow f_{i}(G ; x) \text { for } 1 \leq i \leq 6 \text { if } m \neq n
$$

Main Results

- Let $G_{1}=C_{n}$ be a directed cycle with vertex set $V\left(G_{1}\right)=\left\{v_{i} \mid 1 \leq i \leq\right.$ $n\}$ and arc set $E\left(G_{1}\right)=\left\{\left(v_{i}, v_{i+1}\right) \mid 1 \leq i \leq n-1\right\} \cup\left\{\left(v_{n}, v_{1}\right)\right\}$.
- Let G_{2} be the digraph obtained from G_{1} by replacing $\operatorname{arc}\left(v_{n}, v_{1}\right)$ with $\left(v_{1}, v_{n}\right)$.

$$
\begin{gathered}
\left\{f_{i}\left(G_{1}-e ; x\right) \mid e \in E\left(G_{1}\right)\right\}=\left\{f_{i}\left(G_{2}-e\right) \mid e \in E\left(G_{2}\right)\right\} \\
\text { but } f_{i}\left(G_{1} ; x\right) \neq f_{i}\left(G_{2} ; x\right) \text { for } i=1,4
\end{gathered}
$$

Theorem 8 (Zhang, Jin, Yan, 2023)

If $m=n$, the characteristic polynomial $f_{1}(G ; x)$ and permanental polynomial $f_{4}(G ; x)$ of a digraph G with n vertices and n arcs can not be determined uniquely by $\left\{f_{1}(G-e ; x) \mid e \in E\left(G_{1}\right)\right\}$ and $\left\{f_{4}(G-e ; x) \mid e \in E\left(G_{1}\right)\right\}$, respectively. That is, $\left\{f_{i}(G-e ; x) \mid e \in E(G)\right\} \nRightarrow f_{i}(G ; x)$ for $i=1,4$, if $m=n$.

Main Results

- Note that, $f_{2}(G ; x)=\operatorname{det}(x I-D+A)$. Hence $f_{2}(G ; 0)=\operatorname{det}(A-D)=$ 0 . If $m=n$, then

$$
x f_{2}^{\prime}(G ; x)=\sum_{e \in E(G)} f_{2}(G-e ; x)
$$

Given the initial condition $f_{2}(G ; 0)=0$, the differential equation above has a unique solution.

Theorem 9 (Zhang, Jin, Yan, 2023)

The Laplacian characteristic polynomial $f_{2}(G ; x)=\operatorname{det}(x I-D+A)$ of a digraph G with arc set $E(G)$ can be reconstructed from $\left\{f_{2}(G-e ; x) \mid e \in\right.$ $E(G)\}$. That is, $\left\{f_{2}(G-e ; x) \mid e \in E\right\} \Rightarrow f_{2}(G ; x)$.

Outline

(1) Introduction

- Vertex Reconstruction Conjecture of Graphs
- Edge Reconstruction Conjecture of Graphs
- Reconstruction of Characteristic Polynomials
(2) Edge Reconstruction of Digraph Polynomials
- Two Equalities on Determinants and Permanents
- Six Digraph Polynomials
- Main Results
(3) Discussion

Discussion

- For a digraph $G=(V(G), E(G))$,

$$
\begin{aligned}
& \left\{f_{i}(G-e ; x) \mid e \in E(G)\right\} \Rightarrow f_{i}(G ; x) \text { for } 1 \leq i \leq 6, \text { if } m \neq n \\
& \left\{f_{i}(G-e ; x) \mid e \in E(G)\right\} \nRightarrow f_{i}(G ; x) \text { for } i=1,4, \text { if } m=n \\
& \qquad\left\{f_{2}(G-e ; x) \mid e \in E(G)\right\} \Rightarrow f_{2}(G ; x) \text {, if } m=n \\
& \left\{f_{i}(G-e ; x) \mid e \in E(G)\right\} \Rightarrow f_{i}(G ; x) \text { for } i=3,5,6, \text { if } m=n ?
\end{aligned}
$$

Discussion

- A natural problem is: Do the above results hold for simple graphs?
- Let G be a simple graph with adjacency matrix A and vertex degree diagonal matrix D. Set

$$
\begin{aligned}
& h_{1}(G ; x)=\operatorname{det}(x I-A), \\
& h_{2}(G ; x)=\operatorname{det}(x I-D+A), \\
& h_{3}(G ; x)=\operatorname{det}(x I-D-A), \\
& h_{4}(G ; x)=\operatorname{per}(x I-A), \\
& h_{5}(G ; x)=\operatorname{per}(x I-D+A), \\
& h_{6}(G ; x)=\operatorname{per}(x I-D-A) .
\end{aligned}
$$

Discussion

Theorem 10 (Zhang, Jin, Yan, Liu, 2023)

$$
\begin{equation*}
(m-n) h_{1}(G ; x)+x h_{1}^{\prime}(G ; x)=\sum_{u v \in E(G)}\left[h_{1}(G-u v ; x)+h_{1}(G-u-v ; x)\right] \tag{10}
\end{equation*}
$$

$(m-n) h_{4}(G ; x)+x h_{4}^{\prime}(G ; x)=\sum_{u v \in E(G)}\left[h_{4}(G-u v ; x)-h_{4}(G-u-v ; x)\right]$
and for $j=2,3$,

$$
\begin{equation*}
(m-n) h_{j}(G ; x)+x h_{j}^{\prime}(G ; x)=\sum_{u v \in E(G)} h_{j}(G-u v ; x) \tag{12}
\end{equation*}
$$

Discussion

- For a graph $G=(V, E)$, if $m \neq n$, then

$$
\left\{h_{i}(G-e ; x) \mid e \in E\right\} \cup\left\{h_{i}(G-u-v ; x) \mid u v \in E\right\} \Rightarrow h_{i}(G ; x) \text { if } i=1,4
$$

$$
\left\{h_{i}(G-e ; x) \mid e \in E\right\} \Rightarrow h_{i}(G ; x) \text { for } i=2,3
$$

Thank you for your attention!

