Phase Transitions of Structured Codes of Graphs

Yuze Wu ${ }^{1}$
Joint work with Bo Bai^{2}, Yu Gao ${ }^{2}$ and Jie Ma^{1}
${ }^{1}$ University of Science and Technology of China
${ }^{2}$ Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.

Sep 27th, 2023

Overview

- What are Structured Codes of Graphs?
- Known Results
- An Interesting Phenomenon
- Our Results

What are Structured Codes of Graphs?

- This concept was recently investigated by Alon, Gujgiczer, Körner, Milojević and Simonyi in their paper titled "Structured Codes of Graphs".

What are Structured Codes of Graphs?

- This concept was recently investigated by Alon, Gujgiczer, Körner, Milojević and Simonyi in their paper titled "Structured Codes of Graphs".
- They explores a graph-theoretic variation of the following basic problem on code distance.

Problem

How many binary sequences of a given length can be found if any two of them differ in at least a given number of coordinates?

What are Structured Codes of Graphs?

- This concept was recently investigated by Alon, Gujgiczer, Körner, Milojević and Simonyi in their paper titled "Structured Codes of Graphs".
- They explores a graph-theoretic variation of the following basic problem on code distance.

Problem

How many binary sequences of a given length can be found if any two of them differ in at least a given number of coordinates?

- Instead of prescribing the minimum distance between codewords, the authors require the codewords differ in some specific structure.

What are Structured Codes of Graphs?

- Def: Let $[n]$ denote $\{1,2, \ldots, n\}$. A graph G on [n] can be viewed as a codeword (i.e. $\{0,1\}$-sequence) of length $\binom{n}{2}$ by using edges to represent 1 and non-edges to represent 0 . Then a family of graphs on $[n]$ can be viewed as a $\{0,1\}$-code.

What are Structured Codes of Graphs?

- Def: Let $[n]$ denote $\{1,2, \ldots, n\}$. A graph G on [n] can be viewed as a codeword (i.e. $\{0,1\}$-sequence) of length $\binom{n}{2}$ by using edges to represent 1 and non-edges to represent 0 . Then a family of graphs on $[n]$ can be viewed as a $\{0,1\}$-code.

This 4-vertex graph is a $\{0,1\}$ sequence of length 6, 110011.

Figure: An Example

What are Structured Codes of Graphs?

- Def: Let $[n]$ denote $\{1,2, \ldots, n\}$. A graph G on [n] can be viewed as a codeword (i.e. $\{0,1\}$-sequence) of length $\binom{n}{2}$ by using edges to represent 1 and non-edges to represent 0 . Then a family of graphs on $[n]$ can be viewed as a $\{0,1\}$-code.

This 4-vertex graph is a $\{0,1\}$ sequence of length 6, 110011.

Figure: An Example

- Def: The symmetric difference of two graphs G and H on [n], denoted by $G \oplus H$, is the graph on [n] whose edge set is just the symmetric difference of $E(G)$ and $E(H)$.

What are Structured Codes of Graphs?

- Def : Let \mathcal{F} be a fixed class of graphs. A family \mathcal{G} of graphs on [n] is called \mathcal{F}-good, if the symmetric difference of any two members in \mathcal{G} belongs to \mathcal{F}. This family \mathcal{G} is also called an \mathcal{F}-code.

What are Structured Codes of Graphs?

- Def: Let \mathcal{F} be a fixed class of graphs. A family \mathcal{G} of graphs on [n] is called \mathcal{F}-good, if the symmetric difference of any two members in \mathcal{G} belongs to \mathcal{F}. This family \mathcal{G} is also called an \mathcal{F}-code.
- Def : Let $M_{\mathcal{F}}(n)$ denote the maximum possible size of an \mathcal{F}-good family on [n].

What are Structured Codes of Graphs?

- Def: Let \mathcal{F} be a fixed class of graphs. A family \mathcal{G} of graphs on [n] is called \mathcal{F}-good, if the symmetric difference of any two members in \mathcal{G} belongs to \mathcal{F}. This family \mathcal{G} is also called an \mathcal{F}-code.
- Def: Let $M_{\mathcal{F}}(n)$ denote the maximum possible size of an \mathcal{F}-good family on [n].
- Def: If the graph class \mathcal{F} consists of all graphs containing a fixed graph L, then we use $M_{L}(n)$ and L-code instead of $M_{\mathcal{F}}(n)$ and \mathcal{F}-code. In another word, $M_{L}(n)$ denotes the maximum possible size of a family \mathcal{G} of graphs on $[n]$ such that the symmetric difference of any two members in \mathcal{G} contains L as a subgraph.

Overview

- What are Structured Codes of Graphs?
- Some Known Results
- An Interesting Phenomenon
- Our Results

Some Known Results

- Def : For a fixed class \mathcal{F} of graphs, let $D_{\mathcal{F}}(n)$ denote the maximum possible size of a graph family on [n] such that the symmetric difference of no two members of which belongs to \mathcal{F}.

Some Known Results

- Def: For a fixed class \mathcal{F} of graphs, let $D_{\mathcal{F}}(n)$ denote the maximum possible size of a graph family on [n] such that the symmetric difference of no two members of which belongs to \mathcal{F}.

Theorem (Alon et. al.(2023))
For any graph class \mathcal{F}, we have $M_{\mathcal{F}}(n) D_{\mathcal{F}}(n) \leq 2\binom{n}{2}$.

Some Known Results

- Def : For a fixed class \mathcal{F} of graphs, let $D_{\mathcal{F}}(n)$ denote the maximum possible size of a graph family on [n] such that the symmetric difference of no two members of which belongs to \mathcal{F}.

Theorem (Alon et. al.(2023))

For any graph class \mathcal{F}, we have $M_{\mathcal{F}}(n) D_{\mathcal{F}}(n) \leq 2\binom{n}{2}$.

- A Simple Proof: Let $G_{1}, G_{2}, \ldots, G_{s}$ forms an \mathcal{F}-good family and $H_{1}, H_{2}, \ldots, H_{t}$ forms a graph family such that the symmetric difference of any two members in it doesn't belongs to \mathcal{F}.

Some Known Results

- Def : For a fixed class \mathcal{F} of graphs, let $D_{\mathcal{F}}(n)$ denote the maximum possible size of a graph family on [n] such that the symmetric difference of no two members of which belongs to \mathcal{F}.

Theorem (Alon et. al.(2023))

For any graph class \mathcal{F}, we have $M_{\mathcal{F}}(n) D_{\mathcal{F}}(n) \leq 2\binom{n}{2}$.

- A Simple Proof: Let $G_{1}, G_{2}, \ldots, G_{s}$ forms an \mathcal{F}-good family and $H_{1}, H_{2}, \ldots, H_{t}$ forms a graph family such that the symmetric difference of any two members in it doesn't belongs to \mathcal{F}.
- Then $G_{i} \oplus H_{j}$ are pairwise different. Because

$$
\left(G_{i} \oplus H_{j}\right) \oplus\left(G_{p} \oplus H_{q}\right)=\left(G_{i} \oplus G_{p}\right) \oplus\left(H_{j} \oplus H_{q}\right)
$$

Some Known Results

- Def: Let \mathcal{F}_{c} denote the class of all connected graphs, $\mathcal{F}_{H_{p}}$ denote the class of graphs containing a Hamiltonian path and \mathcal{F}_{s} denote the class of graphs containing a spanning star.

Some Known Results

- Def : Let \mathcal{F}_{c} denote the class of all connected graphs, $\mathcal{F}_{H_{p}}$ denote the class of graphs containing a Hamiltonian path and \mathcal{F}_{s} denote the class of graphs containing a spanning star.

```
Theorem (Alon et. al.(2023))
\(M_{\mathcal{F}_{c}}(n)=2^{n-1}\) for all positive integer \(n\).
```


Some Known Results

- Def : Let \mathcal{F}_{c} denote the class of all connected graphs, $\mathcal{F}_{H_{p}}$ denote the class of graphs containing a Hamiltonian path and \mathcal{F}_{s} denote the class of graphs containing a spanning star.

Theorem (Alon et. al.(2023))

$M_{\mathcal{F}_{c}}(n)=2^{n-1}$ for all positive integer n.

Theorem (Alon et. al.(2023))

$M_{\mathcal{F}_{p}}(n)=2^{n-1}$ for infinitely many n.

Some Known Results

- Def : Let \mathcal{F}_{c} denote the class of all connected graphs, $\mathcal{F}_{H_{p}}$ denote the class of graphs containing a Hamiltonian path and \mathcal{F}_{s} denote the class of graphs containing a spanning star.

Theorem (Alon et. al.(2023))
$M_{\mathcal{F}_{c}}(n)=2^{n-1}$ for all positive integer n.

Theorem (Alon et. al.(2023))
$M_{\mathcal{F}_{H_{p}}}(n)=2^{n-1}$ for infinitely many n.

Theorem (Alon et. al.(2023))
$M_{\mathcal{F}_{s}}(n)=n+1$ for all odd n and $M_{\mathcal{F}_{s}}(n)=n$ for all even n.

Some Known Results

- Def : Let $\chi(G)$ denote the chromatic number of graph G.

Some Known Results

- Def: Let $\chi(G)$ denote the chromatic number of graph G.

Theorem (Alon et. al.(2023))

For any fixed graph L with at least one edge, we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{L}(n)}{\binom{n}{2}}=\frac{1}{\chi(L)-1}
$$

Overview

- What are Structured Codes of Graphs?
- Some Known Results
- An Interesting Phenomenon
- Our Results

An Interesting Phenomenon

Theorem (Alon et. al.(2023))

$M_{\mathcal{F}_{H_{p}}}(n)=2^{n-1}$ for infinitely many n.

Theorem (Alon et. al.(2023))
$M_{\mathcal{F}_{s}}(n)=n+1$ for all odd n and $M_{\mathcal{F}_{s}}(n)=n$ for all even n.

Theorem (Alon et. al.(2023))
For any fixed graph L with at least one edge, we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{L}(n)}{\binom{n}{2}}=\frac{1}{\chi(L)-1} .
$$

An Interesting Phenomenon

- Remark: When graph class \mathcal{F} changes, the value of $M_{\mathcal{F}}(n)$ can have a significant discrepancy, ranging from n to $2^{(1+o(1))\binom{n}{2} \text {. }}$

An Interesting Phenomenon

- Remark: When graph class \mathcal{F} changes, the value of $M_{\mathcal{F}}(n)$ can have a significant discrepancy, ranging from n to $2^{(1+o(1))\binom{n}{2} \text {. }}$
- Inspired by this intriguing phenomenon, we investigate phase transition problems on $M_{\mathcal{F}}(n)$ in general settings.

An Interesting Phenomenon

- Remark: When graph class \mathcal{F} changes, the value of $M_{\mathcal{F}}(n)$ can have a significant discrepancy, ranging from n to $2^{(1+o(1))\binom{n}{2} \text {. }}$
- Inspired by this intriguing phenomenon, we investigate phase transition problems on $M_{\mathcal{F}}(n)$ in general settings.
- Observe the first two theorems are about two extreme cases of spanning trees. Alon et. al. raised the following problem.

An Interesting Phenomenon

- Remark: When graph class \mathcal{F} changes, the value of $M_{\mathcal{F}}(n)$ can have a significant discrepancy, ranging from n to $2^{(1+o(1))\binom{n}{2} \text {. }}$
- Inspired by this intriguing phenomenon, we investigate phase transition problems on $M_{\mathcal{F}}(n)$ in general settings.
- Observe the first two theorems are about two extreme cases of spanning trees. Alon et. al. raised the following problem.

Problem 1

For what "natural" sequences $\left\{T_{i}\right\}_{i \geq 1}$ of trees (with T_{i} having exactly i vertices for every i) will the value of $M_{T_{n}}(n)$ grow only linearly in n ? A similar question is valid if T_{i} is replaced by \mathcal{T}_{i}, some "natural" family of i-vertex trees.

Overview

- What are Structured Codes of Graphs?
- Some Known Results
- An Interesting Phenomenon
- Our Results

Our Results

- Def : Let \mathcal{F}_{ℓ} denote the family of graphs containing a spanning tree that has exactly ℓ leaves.

Our Results

- Def : Let \mathcal{F}_{ℓ} denote the family of graphs containing a spanning tree that has exactly ℓ leaves.

Theorem (Theorem I)

For infinitely many n and all integers $3 \leq \ell \leq \frac{n-1}{12 \log n}+2$, we have $M_{\mathcal{F}_{\ell}}(n) \geq 2^{n-2}$. In particular, this holds whenever $n \geq 64$ and $n=p$ or $n=2 p-1$ for odd primes p.

Our Results

- Def : Let \mathcal{F}_{ℓ} denote the family of graphs containing a spanning tree that has exactly ℓ leaves.

Theorem (Theorem I)

For infinitely many n and all integers $3 \leq \ell \leq \frac{n-1}{12 \log n}+2$, we have $M_{\mathcal{F}_{\ell}}(n) \geq 2^{n-2}$. In particular, this holds whenever $n \geq 64$ and $n=p$ or $n=2 p-1$ for odd primes p.

- Remark: Since any graph containing a spanning tree must be connected, this theorem is tight up to a factor of 2 .

Our Results

- Def : Let \mathcal{F}_{ℓ} denote the family of graphs containing a spanning tree that has exactly ℓ leaves.

Theorem (Theorem I)

For infinitely many n and all integers $3 \leq \ell \leq \frac{n-1}{12 \log n}+2$, we have $M_{\mathcal{F}_{\ell}}(n) \geq 2^{n-2}$. In particular, this holds whenever $n \geq 64$ and $n=p$ or $n=2 p-1$ for odd primes p.

- Remark: Since any graph containing a spanning tree must be connected, this theorem is tight up to a factor of 2 .
- Remark: This theorem shows that the family \mathcal{T}_{ℓ} consisting of all spanning trees with ℓ leaves for any $2 \leq \ell \leq \frac{n-1}{12 \log n}+2$ can not provide a positive answer to Problem 1.

Proof of Theorem I

- The proof of Theorem I is closely related to the following famous conjecture of Kotzig.

Proof of Theorem I

- The proof of Theorem I is closely related to the following famous conjecture of Kotzig.

Perfect 1-factorization Conjecture, Kotzig(1964)

For any even $n>2$, the edge set of the complete graph K_{n} can be partitioned into perfect matchings such that the union of any two of them forms a Hamiltonian cycle.

Proof of Theorem I

- The proof of Theorem I is closely related to the following famous conjecture of Kotzig.

Perfect 1-factorization Conjecture, Kotzig(1964)

For any even $n>2$, the edge set of the complete graph K_{n} can be partitioned into perfect matchings such that the union of any two of them forms a Hamiltonian cycle.

- This conjecture is still open in general, but it is known to hold in several special cases. For example, whenever $n=p+1$ (Kotzig(1964)) or $n=2 p$ for some odd prime p (Anderson(1973) and Nakamura(1975)).

Proof of Theorem I

- The proof consists of two parts :
- Construct a graph family \mathcal{G} of size 2^{n-2} such that the symmetric difference of any two members in \mathcal{G} contains a Hamiltonian path and at least $3 \ell-5$ disjoint additional edges.
- Find a spanning tree with exactly ℓ leaves in the union graph H, which consists of a Hamiltonian path and $3 \ell-5$ disjoint additional edges.

Proof of Theorem I

- The proof consists of two parts :
- Construct a graph family \mathcal{G} of size 2^{n-2} such that the symmetric difference of any two members in \mathcal{G} contains a Hamiltonian path and at least $3 \ell-5$ disjoint additional edges.
- Find a spanning tree with exactly ℓ leaves in the union graph H, which consists of a Hamiltonian path and $3 \ell-5$ disjoint additional edges.
- For the first part, let $n \geq 65$ be an odd integer such that the perfect 1 -factorization conjecture holds for $n+1$, then we can partition the edge set of K_{n+1} into n perfect matchings $M_{1}, M_{2}, \ldots, M_{n}$ such that the union of any two of them forms a Hamiltonian cycle in K_{n+1}.

Proof of Theorem I

- The proof consists of two parts :
- Construct a graph family \mathcal{G} of size 2^{n-2} such that the symmetric difference of any two members in \mathcal{G} contains a Hamiltonian path and at least $3 \ell-5$ disjoint additional edges.
- Find a spanning tree with exactly ℓ leaves in the union graph H, which consists of a Hamiltonian path and $3 \ell-5$ disjoint additional edges.
- For the first part, let $n \geq 65$ be an odd integer such that the perfect 1-factorization conjecture holds for $n+1$, then we can partition the edge set of K_{n+1} into n perfect matchings $M_{1}, M_{2}, \ldots, M_{n}$ such that the union of any two of them forms a Hamiltonian cycle in K_{n+1}.
- For each $1 \leq i \leq n$, we delete the edge adjacent to $n+1$ in M_{i}, then for any $i \neq j \in[n], M_{i} \cup M_{j}$ forms a Hamiltonian path in K_{n}.

Proof of Theorem I

- Let \mathcal{G}^{\prime} be the graph family consists of the unions of even number of matchings in $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{n-1}\right\}$, then $\left|\mathcal{G}^{\prime}\right|=2^{n-2}$.

Proof of Theorem I

- Let \mathcal{G}^{\prime} be the graph family consists of the unions of even number of matchings in $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{n-1}\right\}$, then $\left|\mathcal{G}^{\prime}\right|=2^{n-2}$.
- We partition \mathcal{G}^{\prime} into $s=\binom{n-1}{2}+1$ parts, $\mathcal{G}_{1}^{\prime}, \ldots, \mathcal{G}_{s}^{\prime}$, with the property that the symmetric difference of any two graphs in the same part is the union of at least 4 matchings in \mathcal{M}.

Proof of Theorem I

- Let \mathcal{G}^{\prime} be the graph family consists of the unions of even number of matchings in $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{n-1}\right\}$, then $\left|\mathcal{G}^{\prime}\right|=2^{n-2}$.
- We partition \mathcal{G}^{\prime} into $s=\binom{n-1}{2}+1$ parts, $\mathcal{G}_{1}^{\prime}, \ldots, \mathcal{G}_{s}^{\prime}$, with the property that the symmetric difference of any two graphs in the same part is the union of at least 4 matchings in \mathcal{M}.
- Then we find s different subgraphs $H_{1}, H_{2}, \ldots, H_{s}$ of M_{n} such that the symmetric difference of any two of them contains at least $3 \ell-5$ different edges.

Proof of Theorem I

- Let \mathcal{G}^{\prime} be the graph family consists of the unions of even number of matchings in $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{n-1}\right\}$, then $\left|\mathcal{G}^{\prime}\right|=2^{n-2}$.
- We partition \mathcal{G}^{\prime} into $s=\binom{n-1}{2}+1$ parts, $\mathcal{G}_{1}^{\prime}, \ldots, \mathcal{G}_{s}^{\prime}$, with the property that the symmetric difference of any two graphs in the same part is the union of at least 4 matchings in \mathcal{M}.
- Then we find s different subgraphs $H_{1}, H_{2}, \ldots, H_{s}$ of M_{n} such that the symmetric difference of any two of them contains at least $3 \ell-5$ different edges.
- Let $\mathcal{G}_{i}=\left\{G \cup H_{i} \mid G \in \mathcal{G}_{i}^{\prime}\right\}$ for all $1 \leq i \leq s$ and $\mathcal{G}=\bigcup_{i=1}^{s} \mathcal{G}_{i}$. Then we get our desired \mathcal{G}.

Proof of Theorem I

- For the second part. Let $T=v_{1} v_{2} \ldots v_{n}$ be the Hamiltonian path consists of 2 matchings in \mathcal{M} and let E_{A} be the set of $3 \ell-5$ additional edges. We first remove the edge adjacent to v_{n} from E_{A} if there exists such an edge in E_{A} and then do the following operation:

Proof of Theorem I

- For the second part. Let $T=v_{1} v_{2} \ldots v_{n}$ be the Hamiltonian path consists of 2 matchings in \mathcal{M} and let E_{A} be the set of $3 \ell-5$ additional edges. We first remove the edge adjacent to v_{n} from E_{A} if there exists such an edge in E_{A} and then do the following operation:
- Take an edge $\left\{v_{i}, v_{j}\right\}$ in E_{A}, where $i<j$ and i is as small as possible, add this edge to T and remove it from E_{A}. Delete the edge $\left\{v_{i}, v_{i+1}\right\}$ from the T and remove any edges that are adjacent to v_{i+1} or v_{j-1} from E_{A}.

Proof of Theorem I

- For the second part. Let $T=v_{1} v_{2} \ldots v_{n}$ be the Hamiltonian path consists of 2 matchings in \mathcal{M} and let E_{A} be the set of $3 \ell-5$ additional edges. We first remove the edge adjacent to v_{n} from E_{A} if there exists such an edge in E_{A} and then do the following operation:
- Take an edge $\left\{v_{i}, v_{j}\right\}$ in E_{A}, where $i<j$ and i is as small as possible, add this edge to T and remove it from E_{A}. Delete the edge $\left\{v_{i}, v_{i+1}\right\}$ from the T and remove any edges that are adjacent to v_{i+1} or v_{j-1} from E_{A}.
- Note that after this operation, the number of leaves in the spanning tree T increases exactly one, and we remove at most 3 edges from E_{A}.

Proof of Theorem I

- For the second part. Let $T=v_{1} v_{2} \ldots v_{n}$ be the Hamiltonian path consists of 2 matchings in \mathcal{M} and let E_{A} be the set of $3 \ell-5$ additional edges. We first remove the edge adjacent to v_{n} from E_{A} if there exists such an edge in E_{A} and then do the following operation:
- Take an edge $\left\{v_{i}, v_{j}\right\}$ in E_{A}, where $i<j$ and i is as small as possible, add this edge to T and remove it from E_{A}. Delete the edge $\left\{v_{i}, v_{i+1}\right\}$ from the T and remove any edges that are adjacent to v_{i+1} or v_{j-1} from E_{A}.
- Note that after this operation, the number of leaves in the spanning tree T increases exactly one, and we remove at most 3 edges from E_{A}.
- So we can repeat this operation $\ell-2$ times and then T becomes a spanning tree with exactly ℓ leaves.

Proof of Theorem I

(a) Before the operation

(b) After the operation

Our Results

- Def : For a given graph L, let $M_{L}(n, k)$ denote the largest cardinality of a family \mathcal{G} of graphs on [n], such that the symmetric difference of any two members of \mathcal{G} contains at least k copies of L. Let $v(L)$ and $e(L)$ denote the number of vertices and edges in L, respectively.

Our Results

- Def : For a given graph L, let $M_{L}(n, k)$ denote the largest cardinality of a family \mathcal{G} of graphs on [n], such that the symmetric difference of any two members of \mathcal{G} contains at least k copies of L. Let $v(L)$ and $e(L)$ denote the number of vertices and edges in L, respectively.

Theorem (Theorem II)

Let L be any graph with at least one edge. If $k=o\left(n^{v(L)}\right)$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{L}(n, k)}{\binom{n}{2}}=\frac{1}{\chi(L)-1}
$$

If $k=c n^{v(L)}$ for some constant $c>0$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{L}(n, k)}{\binom{n}{2}} \leq \frac{1}{\chi(L)-1}-\frac{2 c}{e(L)}
$$

Proof of Theorem II

- Def: Fix a graph L. A graph G is called L-free if G does not contain L as a subgraph. Let the Turán number of L, denoted by ex (n, L), be the maximum number of edges in an n-vertex L-free graph.

Proof of Theorem II

- Def: Fix a graph L. A graph G is called L-free if G does not contain L as a subgraph. Let the Turán number of L, denoted by ex (n, L), be the maximum number of edges in an n-vertex L-free graph.
- Def: Let $F_{n}(L)$ denote the number of L-free graphs on $[n]$.

Proof of Theorem II

- Def: Fix a graph L. A graph G is called L-free if G does not contain L as a subgraph. Let the Turán number of L, denoted by ex (n, L), be the maximum number of edges in an n-vertex L-free graph.
- Def: Let $F_{n}(L)$ denote the number of L-free graphs on $[n]$.
- Our proof uses the following famous results in extremal graph theory.

Proof of Theorem II

- Def: Fix a graph L. A graph G is called L-free if G does not contain L as a subgraph. Let the Turán number of L, denoted by ex (n, L), be the maximum number of edges in an n-vertex L-free graph.
- Def: Let $F_{n}(L)$ denote the number of L-free graphs on $[n]$.
- Our proof uses the following famous results in extremal graph theory.

Theorem (Erdös-Stone(1946))

For any graph L with at least one edge, we have

$$
e x(n, L)=\left(1-\frac{1}{\chi(L)-1}+o(1)\right)\binom{n}{2} .
$$

Proof of Theorem II

Theorem (Erdös-Frankl-Rödl(1986))

For any fixed graph L, if $\chi(L)=r \geq 3$, then
$F_{n}(L)=2^{e x\left(n, K_{r}\right)(1+o(1))}=2^{\binom{n}{2}\left(1-\frac{1}{\chi(L)-1}+o(1)\right)}$.

Proof of Theorem II

Theorem (Erdös-Frankl-Rödl(1986))

For any fixed graph L, if $\chi(L)=r \geq 3$, then $F_{n}(L)=2^{e x\left(n, K_{r}\right)(1+o(1))}=2^{\binom{n}{2}\left(1-\frac{1}{\chi(L)-1}+o(1)\right)}$.

Theorem (Graph Removal Lemma(1986))

For any fixed graph L and any $\varepsilon>0$, there exists $\delta>0$, such that if an n-vertex graph G contains at most $\delta n^{v(L)}$ copies of L, then we can remove at most εn^{2} edges of G to get an L-free graph.

Proof of Theorem II

Theorem (Erdös-Frankl-Rödl(1986))

For any fixed graph L, if $\chi(L)=r \geq 3$, then
$F_{n}(L)=2^{e x\left(n, K_{r}\right)(1+o(1))}=2^{\binom{n}{2}\left(1-\frac{1}{\chi(L)-1}+o(1)\right)}$.

Theorem (Graph Removal Lemma(1986))

For any fixed graph L and any $\varepsilon>0$, there exists $\delta>0$, such that if an n-vertex graph G contains at most $\delta n^{v(L)}$ copies of L, then we can remove at most εn^{2} edges of G to get an L-free graph.

- Let $F_{n}(L, k)$ denote the number of graphs on [n] containing at most $k-1$ copies of L. By the Graph Removal Lemma, we have

$$
F_{n}(L, k) \leq F_{n}(L)\binom{\left(\begin{array}{l}
n \\
2
\end{array}\right.}{o\left(n^{2}\right)}=2^{\binom{n}{2}\left(1-\frac{1}{\chi(L)-1}+o(1)\right)}
$$

Proof of Theorem II

- Since $F_{n}(L, k) \geq F_{n}(L), F_{n}(L, k)=2^{\binom{n}{2}\left(1-\frac{1}{\chi(L)-1}+o(1)\right)}$.

Proof of Theorem II

- Since $F_{n}(L, k) \geq F_{n}(L), F_{n}(L, k)=2^{\binom{n}{2}\left(1-\frac{1}{\chi(L)-1}+o(1)\right)}$.
- Let G_{L} denotes the graph whose vertices are all possible graphs on [n] and two graphs are connected if and only if their symmetric difference contains at most $k-1$ copies of L. Then G_{L} is an $F_{n}(L, k)$-regular graph and $\alpha\left(G_{L}\right)=M_{L}(n, k)$.

Proof of Theorem II

- Since $F_{n}(L, k) \geq F_{n}(L), F_{n}(L, k)=2^{\binom{n}{2}\left(1-\frac{1}{\chi(L)-1}+o(1)\right)}$.
- Let G_{L} denotes the graph whose vertices are all possible graphs on [n] and two graphs are connected if and only if their symmetric difference contains at most $k-1$ copies of L. Then G_{L} is an $F_{n}(L, k)$-regular graph and $\alpha\left(G_{L}\right)=M_{L}(n, k)$.
- $\alpha\left(G_{L}\right) \geq\left|V\left(G_{L}\right)\right| /\left(\Delta\left(G_{L}\right)+1\right)=2^{\binom{n}{2}\left(\frac{1}{\chi(L)-1}+o(1)\right)}$.

Proof of Theorem II

- For the case $k=c n^{v(L)}$, we construct a graph which contains at most $k-1$ copies of L by adding edges to an extremal L-free graph.

Proof of Theorem II

- For the case $k=c n^{v(L)}$, we construct a graph which contains at most $k-1$ copies of L by adding edges to an extremal L-free graph.
- When we add an edge to an arbitrary graph, the number of copies of L in it increase at most $e(L) n^{v(L)-2}$.

Proof of Theorem II

- For the case $k=c n^{v(L)}$, we construct a graph which contains at most $k-1$ copies of L by adding edges to an extremal L-free graph.
- When we add an edge to an arbitrary graph, the number of copies of L in it increase at most $e(L) n^{v(L)-2}$.
- So we can get a graph H with $\operatorname{ex}(n, L)+\frac{c}{e(L)} n^{2}-1$ edges which contains at most $k-1$ copies of L.

Proof of Theorem II

- For the case $k=c n^{v(L)}$, we construct a graph which contains at most $k-1$ copies of L by adding edges to an extremal L-free graph.
- When we add an edge to an arbitrary graph, the number of copies of L in it increase at most $e(L) n^{v(L)-2}$.
- So we can get a graph H with $e x(n, L)+\frac{c}{e(L)} n^{2}-1$ edges which contains at most $k-1$ copies of L.
- Thus, we can obtain a lower bound of the corresponding dual concept $D_{L}(n, k)$ by constructing a family consisting of all subgraphs of H.

Proof of Theorem II

- For the case $k=c n^{v(L)}$, we construct a graph which contains at most $k-1$ copies of L by adding edges to an extremal L-free graph.
- When we add an edge to an arbitrary graph, the number of copies of L in it increase at most $e(L) n^{v(L)-2}$.
- So we can get a graph H with $\operatorname{ex}(n, L)+\frac{c}{e(L)} n^{2}-1$ edges which contains at most $k-1$ copies of L.
- Thus, we can obtain a lower bound of the corresponding dual concept $D_{L}(n, k)$ by constructing a family consisting of all subgraphs of H.
- Recall that $M_{L}(n, k) D_{L}(n, k) \leq 2\binom{n}{2}$. Therefore,

$$
M_{L}(n, k) \leq 2^{\left(\frac{1}{\chi(L)-1}-\frac{2 c}{e(L)}+o(1)\right)\binom{n}{2}}
$$

for $k=c n^{v(L)}$.

Our Results

- Def: For any fixed graph L, let $M_{k \cdot L}(n)$ denote the largest size of a graph family \mathcal{G} on [n], such that the symmetric difference of any two members of \mathcal{G} contains at least k vertex-disjoint copies of L.

Our Results

- Def : For any fixed graph L, let $M_{k \cdot L}(n)$ denote the largest size of a graph family \mathcal{G} on $[n]$, such that the symmetric difference of any two members of \mathcal{G} contains at least k vertex-disjoint copies of L.

Theorem (Theorem III)

Let L be any graph with at least one edge. If $k=o(n)$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{k \cdot L}(n)}{\binom{n}{2}}=\frac{1}{\chi(L)-1}
$$

If $k=c n$ for some constant $c>0$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{k \cdot L}(n)}{\binom{n}{2}} \leq \frac{(1-c)^{2}}{\chi(L)-1}
$$

Proof of Theorem III

- For the case $k=o(n)$, we only need to prove the lower bound of $M_{k \cdot L}(n)$.

Proof of Theorem III

- For the case $k=o(n)$, we only need to prove the lower bound of $M_{k \cdot L}(n)$.
- Since in an arbitrary graph, a fixed copy of L intersects at most $v(L) n^{v(L)-1}$ different copies of L. A graph, which contains at most $k-1$ vertex-disjoint copies of L, contains at most $(k-1)\left(v(L) n^{v(L)-1}+1\right)=o\left(n^{v(L)}\right)$ different copies of L.

Proof of Theorem III

- For the case $k=o(n)$, we only need to prove the lower bound of $M_{k \cdot L}(n)$.
- Since in an arbitrary graph, a fixed copy of L intersects at most $v(L) n^{v(L)-1}$ different copies of L. A graph, which contains at most $k-1$ vertex-disjoint copies of L, contains at most $(k-1)\left(v(L) n^{v(L)-1}+1\right)=o\left(n^{v(L)}\right)$ different copies of L.
- Because we already know that the number of graphs which contains at most $o\left(n^{v(L)}\right)$ copies of L is $2^{\left(1-\frac{1}{\chi(L)-1}+o(1)\right)\binom{n}{2}}$, the number of graphs which contains at most $k-1$ vertex-disjoint copies of L is also $2^{\left(1-\frac{1}{\chi(L)-1}+o(1)\right)\binom{n}{2}}$.

Proof of Theorem III

- For the case $k=o(n)$, we only need to prove the lower bound of $M_{k \cdot L}(n)$.
- Since in an arbitrary graph, a fixed copy of L intersects at most $v(L) n^{v(L)-1}$ different copies of L. A graph, which contains at most $k-1$ vertex-disjoint copies of L, contains at most $(k-1)\left(v(L) n^{v(L)-1}+1\right)=o\left(n^{v(L)}\right)$ different copies of L.
- Because we already know that the number of graphs which contains at most $o\left(n^{v(L)}\right)$ copies of L is $2^{\left(1-\frac{1}{\chi(L)-1}+o(1)\right)\binom{n}{2}}$, the number of graphs which contains at most $k-1$ vertex-disjoint copies of L is also $2^{\left(1-\frac{1}{\chi(L)-1}+o(1)\right)\binom{n}{2}}$.
- By the same argument in the previous proof, we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{k \cdot L}(n)}{\binom{n}{2}}=\frac{1}{\chi(L)-1}
$$

for $k=o(n)$.

Proof of Theorem III

- For the case $k=c n$ for some constant $c>0$, we only need to check the upper bound of $M_{k \cdot L}(n)$.

Proof of Theorem III

- For the case $k=c n$ for some constant $c>0$, we only need to check the upper bound of $M_{k \cdot L}(n)$.
- Let G be a graph on n vertices and S be a subset of $V(G)$ of size $c n-1$. Suppose that $G[V(G) \backslash S]$ is an extremal L-free graph on $(1-c) n+1$ vertices, $G[S]$ is a complete graph and G contains all possible edges between S and $V(G) \backslash S$.

Proof of Theorem III

- For the case $k=c n$ for some constant $c>0$, we only need to check the upper bound of $M_{k \cdot L}(n)$.
- Let G be a graph on n vertices and S be a subset of $V(G)$ of size $c n-1$. Suppose that $G[V(G) \backslash S]$ is an extremal L-free graph on $(1-c) n+1$ vertices, $G[S]$ is a complete graph and G contains all possible edges between S and $V(G) \backslash S$.
- Then G contains at most $k-1$ vertex-disjoint copies of L and $e(G)=\left(1-\frac{(1-c)^{2}}{\chi(L)-1}\right)\binom{n}{2}+o\left(n^{2}\right)$. Thus we can obtain a lower bound of the corresponding dual concept $D_{k \cdot L}(n)$ by constructing a family consisting of all subgraphs of G.

Proof of Theorem III

- For the case $k=c n$ for some constant $c>0$, we only need to check the upper bound of $M_{k \cdot L}(n)$.
- Let G be a graph on n vertices and S be a subset of $V(G)$ of size $c n-1$. Suppose that $G[V(G) \backslash S]$ is an extremal L-free graph on $(1-c) n+1$ vertices, $G[S]$ is a complete graph and G contains all possible edges between S and $V(G) \backslash S$.
- Then G contains at most $k-1$ vertex-disjoint copies of L and $e(G)=\left(1-\frac{(1-c)^{2}}{\chi(L)-1}\right)\binom{n}{2}+o\left(n^{2}\right)$. Thus we can obtain a lower bound of the corresponding dual concept $D_{k \cdot L}(n)$ by constructing a family consisting of all subgraphs of G.
- Therefore, $M_{k \cdot L}(n) \leq 2^{\left(\frac{(1-c)^{2}}{\chi(L)-1}+o(1)\right)\binom{n}{2}}$ for $k=c n$.

Our Results

Theorem (Theorem IV)

If $t=o(\log n)$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{K_{t, t}}(n)}{\binom{n}{2}}=1
$$

If $t=c \log n$ for some constant $c>0$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{K_{t, t}}(n)}{\binom{n}{2}} \leq 1-2^{-\frac{2}{c}}
$$

Proof of Theorem IV

- This proof uses the following theorem in extremal graph theory.

Proof of Theorem IV

- This proof uses the following theorem in extremal graph theory.

Theorem (Kövari-Sós-Turán(1954))

For any integer $t \geq s \geq 2$, we have

$$
e x\left(n, K_{s, t}\right) \leq \frac{1}{2}(t-1)^{1 / s} n^{2-1 / s}+\frac{1}{2}(s-1) n .
$$

Proof of Theorem IV

- This proof uses the following theorem in extremal graph theory.

Theorem (Kövari-Sós-Turán(1954))

For any integer $t \geq s \geq 2$, we have

$$
e x\left(n, K_{s, t}\right) \leq \frac{1}{2}(t-1)^{1 / s} n^{2-1 / s}+\frac{1}{2}(s-1) n .
$$

- For the case $t=o(\log n)$, by the above theorem, we have

$$
e x\left(n, K_{t, t}\right) \leq \frac{1}{2}(t-1)^{\frac{1}{t}} n^{2-\frac{1}{t}}+\frac{1}{2}(t-1) n=o\left(n^{2}\right)
$$

Proof of Theorem IV

- This proof uses the following theorem in extremal graph theory.

Theorem (Kövari-Sós-Turán(1954))

For any integer $t \geq s \geq 2$, we have

$$
e x\left(n, K_{s, t}\right) \leq \frac{1}{2}(t-1)^{1 / s} n^{2-1 / s}+\frac{1}{2}(s-1) n
$$

- For the case $t=o(\log n)$, by the above theorem, we have

$$
e x\left(n, K_{t, t}\right) \leq \frac{1}{2}(t-1)^{\frac{1}{t}} n^{2-\frac{1}{t}}+\frac{1}{2}(t-1) n=o\left(n^{2}\right)
$$

Proof of Theorem IV

- This proof uses the following theorem in extremal graph theory.

Theorem (Kövari-Sós-Turán(1954))

For any integer $t \geq s \geq 2$, we have

$$
e x\left(n, K_{s, t}\right) \leq \frac{1}{2}(t-1)^{1 / s} n^{2-1 / s}+\frac{1}{2}(s-1) n
$$

- For the case $t=o(\log n)$, by the above theorem, we have

$$
e x\left(n, K_{t, t}\right) \leq \frac{1}{2}(t-1)^{\frac{1}{t}} n^{2-\frac{1}{t}}+\frac{1}{2}(t-1) n=o\left(n^{2}\right)
$$

- So we have $2^{\operatorname{ex}\left(n, K_{t, t}\right)} \leq F_{n}\left(K_{t, t}\right) \leq\left(\begin{array}{c}n \\ 2 \\ 0\left(n^{2}\right)\end{array}\right)$. Thus, $F_{n}\left(K_{t, t}\right)=2^{o(1)\binom{n}{2} \text {. }}$
- By the same argument in the proof of Theorem II and Theorem III, we have $M_{K_{t, t}}(n)=2^{\left(\frac{1}{\chi(L)-1}+o(1)\right)\binom{n}{2}}$ for $k=o(\log n)$.

Proof of Theorem IV

- It remains to consider the case when $t=c \log n$ for some constant $c>0$. And in this case, we only need to construct an n-vertex $K_{t, t}-$ free graph G with at least $2^{-\frac{2}{c}}\binom{n}{2}$ edges.

Proof of Theorem IV

- It remains to consider the case when $t=c \log n$ for some constant $c>0$. And in this case, we only need to construct an n-vertex $K_{t, t}-$ free graph G with at least $2^{-\frac{2}{c}}\binom{n}{2}$ edges.
- Let $\delta=2^{-\frac{2}{c}}$ and consider the Erdös-Rényi random graph $G(n, \delta)$ (i.e. an n-vertex graph in which each possible edge is present independently with probability δ).

Proof of Theorem IV

- It remains to consider the case when $t=c \log n$ for some constant $c>0$. And in this case, we only need to construct an n-vertex $K_{t, t}-$ free graph G with at least $2^{-\frac{2}{c}}\binom{n}{2}$ edges.
- Let $\delta=2^{-\frac{2}{c}}$ and consider the Erdös-Rényi random graph $G(n, \delta)$ (i.e. an n -vertex graph in which each possible edge is present independently with probability δ).
- Let X be the number of $K_{t, t}$ in $G(n, \delta)$, we have

$$
\mathbb{E}[X]=\frac{1}{2}\binom{n}{2 t}\binom{2 t}{t} \delta^{t^{2}}<n^{2 t} \delta^{t^{2}}=\left(n^{2} \delta^{t}\right)^{t}
$$

Proof of Theorem IV

- It remains to consider the case when $t=c \log n$ for some constant $c>0$. And in this case, we only need to construct an n-vertex $K_{t, t}-$ free graph G with at least $2^{-\frac{2}{c}}\binom{n}{2}$ edges.
- Let $\delta=2^{-\frac{2}{c}}$ and consider the Erdös-Rényi random graph $G(n, \delta)$ (i.e. an n -vertex graph in which each possible edge is present independently with probability δ).
- Let X be the number of $K_{t, t}$ in $G(n, \delta)$, we have

$$
\mathbb{E}[X]=\frac{1}{2}\binom{n}{2 t}\binom{2 t}{t} \delta^{t^{2}}<n^{2 t} \delta^{t^{2}}=\left(n^{2} \delta^{t}\right)^{t}
$$

- Since $\delta^{t}=2^{-\frac{2}{c} c \log n}=n^{-2}$, we have $\mathbb{E}[X]<1$.

Proof of Theorem IV

- By average, there exists a graph G^{\prime} such that $e\left(G^{\prime}\right)-X \geq \mathbb{E}[e(G(n, \delta))-X]>\delta\binom{n}{2}-1$.

Proof of Theorem IV

- By average, there exists a graph G^{\prime} such that $e\left(G^{\prime}\right)-X \geq \mathbb{E}[e(G(n, \delta))-X]>\delta\binom{n}{2}-1$.
- Let G be obtained from G^{\prime} by deleting one edge for each copy of $K_{t, t}$ in G^{\prime}, then G is an n-vertex $K_{t, t}-$ free graph with at least $2^{-\frac{2}{c}}\binom{n}{2}$ edges.

Our Results

Theorem (Theorem V)

Let $L(r, m)=(A \cup B, E)$ be a connected bipartite graph on m vertices such that any vertex in A has at most r neighbors in B. If $m=O\left(n^{1-\varepsilon}\right)$ for some constant $\varepsilon>0$, then for any constant integer r, we have

$$
\lim _{n \rightarrow \infty} \frac{\log M_{L(r, m)}(n)}{\binom{n}{2}}=1
$$

Proof of Theorem V

- This proof uses the following theorem in extremal graph theory.

Proof of Theorem V

- This proof uses the following theorem in extremal graph theory.

Theorem (Dependent Random Choice(2015))

Let $\alpha \in(0,1), t, r, m, u, n$ be integers such that $\alpha^{t} n-\binom{n}{r}\left(\begin{array}{l}\frac{m}{n}\end{array}\right)^{t} \geq u$. Then for any n-vertex graph G with at least $\frac{\alpha}{2} n^{2}$ edges, there exists $U \subseteq V(G)$ with $|U| \geq u$ such that any r-set $S \subseteq U$ has at least m common neighbors in G.

Proof of Theorem V

- This proof uses the following theorem in extremal graph theory.

Theorem (Dependent Random Choice(2015))

Let $\alpha \in(0,1), t, r, m, u, n$ be integers such that $\alpha^{t} n-\binom{n}{r}\binom{m}{n}^{t} \geq u$. Then for any n-vertex graph G with at least $\frac{\alpha}{2} n^{2}$ edges, there exists $U \subseteq V(G)$ with $|U| \geq u$ such that any r-set $S \subseteq U$ has at least m common neighbors in G.

- Firstly, we claim that ex $(n, L(r, m))=o\left(n^{2}\right)$.

Proof of Theorem V

- This proof uses the following theorem in extremal graph theory.

Theorem (Dependent Random Choice(2015))

Let $\alpha \in(0,1), t, r, m, u, n$ be integers such that $\alpha^{t} n-\binom{n}{r}\binom{m}{n}^{t} \geq u$. Then for any n-vertex graph G with at least $\frac{\alpha}{2} n^{2}$ edges, there exists $U \subseteq V(G)$ with $|U| \geq u$ such that any r-set $S \subseteq U$ has at least m common neighbors in G.

- Firstly, we claim that ex $(n, L(r, m))=o\left(n^{2}\right)$.
- Let $\alpha=n^{-\frac{\varepsilon^{2}}{2 r}}, t=\frac{r}{\varepsilon}$ and $u=m$. Then for sufficiently large n, we have $\alpha^{t} n-\binom{n}{r}\left(\frac{m}{n}\right)^{t} \geq u$.

Proof of Theorem V

- So, for sufficiently large n and any n-vertex graph G with at least $\frac{1}{2} n^{2-\frac{\varepsilon^{2}}{r}}$ edges, there exists $U \subseteq V(G)$ with $|U| \geq u$ such that any r-set $S \subseteq U$ has at least m common neighbors.

Proof of Theorem V

- So, for sufficiently large n and any n-vertex graph G with at least $\frac{1}{2} n^{2-\frac{\varepsilon^{2}}{r}}$ edges, there exists $U \subseteq V(G)$ with $|U| \geq u$ such that any r-set $S \subseteq U$ has at least m common neighbors.
- Now we are going to find an $L(r, m)=(A \cup B, E)$ in such G.

Proof of Theorem V

- So, for sufficiently large n and any n-vertex graph G with at least $\frac{1}{2} n^{2-\frac{\varepsilon^{2}}{r}}$ edges, there exists $U \subseteq V(G)$ with $|U| \geq u$ such that any r-set $S \subseteq U$ has at least m common neighbors.
- Now we are going to find an $L(r, m)=(A \cup B, E)$ in such G.
- Let ϕ be any injection from B to U, we only need to extend it to an injection from $A \cup B$ to $V(G)$ such that for any edge $a b$ in $L(r, m)$, $\phi(a) \phi(b)$ is an edge in G.

Proof of Theorem V

- So, for sufficiently large n and any n-vertex graph G with at least $\frac{1}{2} n^{2-\frac{\varepsilon^{2}}{r}}$ edges, there exists $U \subseteq V(G)$ with $|U| \geq u$ such that any r-set $S \subseteq U$ has at least m common neighbors.
- Now we are going to find an $L(r, m)=(A \cup B, E)$ in such G.
- Let ϕ be any injection from B to U, we only need to extend it to an injection from $A \cup B$ to $V(G)$ such that for any edge $a b$ in $L(r, m)$, $\phi(a) \phi(b)$ is an edge in G.
- Let A^{\prime} be a subset of A and assume that we have already extend ϕ to an injection from $A^{\prime} \cup B$ to $V(G)$. Take an vertex $v \in A \backslash A^{\prime}$, then $\phi\left(N_{L(r, m)}(v)\right)$ is a subset of U with cardinality at most r.

Proof of Theorem V

- Take an r-set $S \subseteq U$ with $S^{\prime} \subseteq S$ and let T denote the set of common neighbors of S in G. Then $|T| \geq m=|V(L(r, m))|$.

Proof of Theorem V

- Take an r-set $S \subseteq U$ with $S^{\prime} \subseteq S$ and let T denote the set of common neighbors of S in G. Then $|T| \geq m=|V(L(r, m))|$.
- Therefore $T \backslash \phi\left(A^{\prime} \cup B\right)$ is not empty. We can choose an vertex x in $T \backslash \phi\left(A^{\prime} \cup B\right)$ and let $\phi(v)=x$.

Proof of Theorem V

- Take an r-set $S \subseteq U$ with $S^{\prime} \subseteq S$ and let T denote the set of common neighbors of S in G. Then $|T| \geq m=|V(L(r, m))|$.
- Therefore $T \backslash \phi\left(A^{\prime} \cup B\right)$ is not empty. We can choose an vertex x in $T \backslash \phi\left(A^{\prime} \cup B\right)$ and let $\phi(v)=x$.
- Then we can check that ϕ is an injection from $A^{\prime} \cup\{v\} \cup B$ to $V(G)$ with the property that for any edge $a b$ between $A^{\prime} \cup\{v\}$ and B, $\phi(a) \phi(b)$ is an edge in G. By induction, we get a desired ϕ.

Proof of Theorem V

- Take an r-set $S \subseteq U$ with $S^{\prime} \subseteq S$ and let T denote the set of common neighbors of S in G. Then $|T| \geq m=|V(L(r, m))|$.
- Therefore $T \backslash \phi\left(A^{\prime} \cup B\right)$ is not empty. We can choose an vertex x in $T \backslash \phi\left(A^{\prime} \cup B\right)$ and let $\phi(v)=x$.
- Then we can check that ϕ is an injection from $A^{\prime} \cup\{v\} \cup B$ to $V(G)$ with the property that for any edge $a b$ between $A^{\prime} \cup\{v\}$ and B, $\phi(a) \phi(b)$ is an edge in G. By induction, we get a desired ϕ.
- Since for sufficiently large n, any n-vertex graph G with at least $\frac{1}{2} n^{2-\frac{\varepsilon^{2}}{r}}$ edges contains a copy of $L(r, m)$, we know that $e x(n, L(r, m))=O\left(n^{2-\frac{\varepsilon^{2}}{r}}\right)=o\left(n^{2}\right)$. Then by the same argument in Theorem II, we have $\lim _{n \rightarrow \infty} \frac{\log M_{L(r, m)}(n)}{\binom{n}{2}}=1$.

Our Results

- Since any graph on vertex set [n] can be viewed as a spanning subgraph of K_{n}, what if we replace K_{n} with some alternative graphs on [n]?

Our Results

- Since any graph on vertex set [n] can be viewed as a spanning subgraph of K_{n}, what if we replace K_{n} with some alternative graphs on [n]?
- This raises the question of determining the maximum number of spanning subgraphs of a fixed graph G, with the restriction that the symmetric difference of any two of them belongs to a fixed graph class \mathcal{F}.

Our Results

- Since any graph on vertex set [n] can be viewed as a spanning subgraph of K_{n}, what if we replace K_{n} with some alternative graphs on [n]?
- This raises the question of determining the maximum number of spanning subgraphs of a fixed graph G, with the restriction that the symmetric difference of any two of them belongs to a fixed graph class \mathcal{F}.
- The most natural instance of this problem that comes to mind is when \mathcal{F} denotes the family of all connected graphs and G denotes an $m \times n$ grid.

Our Results

- Since any graph on vertex set [n] can be viewed as a spanning subgraph of K_{n}, what if we replace K_{n} with some alternative graphs on [n]?
- This raises the question of determining the maximum number of spanning subgraphs of a fixed graph G, with the restriction that the symmetric difference of any two of them belongs to a fixed graph class \mathcal{F}.
- The most natural instance of this problem that comes to mind is when \mathcal{F} denotes the family of all connected graphs and G denotes an $m \times n$ grid.
- Def : An $m \times n$ grid, denoted by $G_{m, n}$, is the graph with vertex set $[m] \times[n]$ and with edges between (u, v) and (i, j) if and only if $u=i$ and $v \equiv j \pm 1(\bmod n)$ or $v=j$ and $u \equiv i \pm 1(\bmod m)$.

Our Results

Proposition VI

For any integers $m, n \geq 3$, let $M_{\mathcal{F}_{c}}\left(G_{m, n}\right)$ denote the maximum possible size of a family \mathcal{G} of spanning subgraphs of $G_{m, n}$ such that the symmetric difference of any two members in \mathcal{G} is connected, then we have $M_{\mathcal{F}_{c}}\left(G_{m, n}\right) \leq 16$. Especially, we also have $M_{\mathcal{F}_{c}}\left(G_{m, n}\right)=16$ for $m, n \leq 4$.

Our Results

Proposition VI

For any integers $m, n \geq 3$, let $M_{\mathcal{F}_{c}}\left(G_{m, n}\right)$ denote the maximum possible size of a family \mathcal{G} of spanning subgraphs of $G_{m, n}$ such that the symmetric difference of any two members in \mathcal{G} is connected, then we have $M_{\mathcal{F}_{c}}\left(G_{m, n}\right) \leq 16$. Especially, we also have $M_{\mathcal{F}_{c}}\left(G_{m, n}\right)=16$ for $m, n \leq 4$.

- Remark: It is natural to ask whether the upper bound is also sharp for all $m, n \geq 4$. We are seeking a general construction of it.

Figure: 3×3 grid

Construction for $m=n=3$

(a) G_{1}

(b) G_{2}
(f) G_{6}

(c) G_{3}

(d) G_{4}

(g) G_{7}

(h) G_{8}

Construction for $m=n=3$

(i) G_{9}

(j) G_{10}

(n) G_{14}

(k) G_{11}

(o) G_{15}

(I) G_{12}

(m) G_{13}

(p) G_{16}

Thanks!

Thank you for your attention!

