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What are Structured Codes of Graphs?

This concept was recently investigated by Alon, Gujgiczer, Körner,
Milojević and Simonyi in their paper titled ”Structured Codes of
Graphs”.

They explores a graph-theoretic variation of the following basic
problem on code distance.

Problem
How many binary sequences of a given length can be found if any two of
them differ in at least a given number of coordinates?

Instead of prescribing the minimum distance between codewords, the
authors require the codewords differ in some specific structure.
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What are Structured Codes of Graphs?

Def : Let [n] denote {1, 2, . . . , n}. A graph G on [n] can be viewed as
a codeword (i.e. {0, 1}-sequence) of length

(n
2
)

by using edges to
represent 1 and non-edges to represent 0. Then a family of graphs on
[n] can be viewed as a {0, 1}-code.

1 2

34

Figure: An Example

This 4-vertex graph is a {0, 1}-
sequence of length 6, 110011.

Def : The symmetric difference of two graphs G and H on [n],
denoted by G ⊕ H, is the graph on [n] whose edge set is just the
symmetric difference of E(G) and E(H).
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What are Structured Codes of Graphs?

Def : Let F be a fixed class of graphs. A family G of graphs on [n] is
called F-good, if the symmetric difference of any two members in G
belongs to F . This family G is also called an F-code.

Def : Let MF (n) denote the maximum possible size of an F-good
family on [n].

Def : If the graph class F consists of all graphs containing a fixed
graph L, then we use ML(n) and L-code instead of MF (n) and
F-code. In another word, ML(n) denotes the maximum possible size
of a family G of graphs on [n] such that the symmetric difference of
any two members in G contains L as a subgraph.
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Some Known Results
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Some Known Results

Def : For a fixed class F of graphs, let DF (n) denote the maximum
possible size of a graph family on [n] such that the symmetric
difference of no two members of which belongs to F .

Theorem (Alon et. al.(2023))

For any graph class F , we have MF (n)DF (n) ≤ 2(n
2).

A Simple Proof : Let G1,G2, . . . ,Gs forms an F-good family and
H1,H2, . . . ,Ht forms a graph family such that the symmetric
difference of any two members in it doesn’t belongs to F .

Then Gi ⊕ Hj are pairwise different. Because
(Gi ⊕ Hj)⊕ (Gp ⊕ Hq) = (Gi ⊕ Gp)⊕ (Hj ⊕ Hq).
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Some Known Results

Def : Let Fc denote the class of all connected graphs, FHp denote the
class of graphs containing a Hamiltonian path and Fs denote the
class of graphs containing a spanning star.

Theorem (Alon et. al.(2023))
MFc(n) = 2n−1 for all positive integer n.

Theorem (Alon et. al.(2023))
MFHp (n) = 2n−1 for infinitely many n.

Theorem (Alon et. al.(2023))
MFs(n) = n + 1 for all odd n and MFs(n) = n for all even n.

Yuze Wu Joint work with Bo Bai, Yu Gao and Jie Ma (University of Science and Technology of China Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.)Phase Transitions of Structured Codes of Graphs Sep 27th, 2023 8 / 40



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some Known Results

Def : Let Fc denote the class of all connected graphs, FHp denote the
class of graphs containing a Hamiltonian path and Fs denote the
class of graphs containing a spanning star.

Theorem (Alon et. al.(2023))
MFc(n) = 2n−1 for all positive integer n.

Theorem (Alon et. al.(2023))
MFHp (n) = 2n−1 for infinitely many n.

Theorem (Alon et. al.(2023))
MFs(n) = n + 1 for all odd n and MFs(n) = n for all even n.

Yuze Wu Joint work with Bo Bai, Yu Gao and Jie Ma (University of Science and Technology of China Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.)Phase Transitions of Structured Codes of Graphs Sep 27th, 2023 8 / 40



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some Known Results

Def : Let Fc denote the class of all connected graphs, FHp denote the
class of graphs containing a Hamiltonian path and Fs denote the
class of graphs containing a spanning star.

Theorem (Alon et. al.(2023))
MFc(n) = 2n−1 for all positive integer n.

Theorem (Alon et. al.(2023))
MFHp (n) = 2n−1 for infinitely many n.

Theorem (Alon et. al.(2023))
MFs(n) = n + 1 for all odd n and MFs(n) = n for all even n.

Yuze Wu Joint work with Bo Bai, Yu Gao and Jie Ma (University of Science and Technology of China Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.)Phase Transitions of Structured Codes of Graphs Sep 27th, 2023 8 / 40



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some Known Results

Def : Let Fc denote the class of all connected graphs, FHp denote the
class of graphs containing a Hamiltonian path and Fs denote the
class of graphs containing a spanning star.

Theorem (Alon et. al.(2023))
MFc(n) = 2n−1 for all positive integer n.

Theorem (Alon et. al.(2023))
MFHp (n) = 2n−1 for infinitely many n.

Theorem (Alon et. al.(2023))
MFs(n) = n + 1 for all odd n and MFs(n) = n for all even n.

Yuze Wu Joint work with Bo Bai, Yu Gao and Jie Ma (University of Science and Technology of China Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.)Phase Transitions of Structured Codes of Graphs Sep 27th, 2023 8 / 40



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Some Known Results

Def : Let χ(G) denote the chromatic number of graph G.

Theorem (Alon et. al.(2023))
For any fixed graph L with at least one edge, we have

lim
n→∞

logML(n)(n
2
) =

1
χ(L)− 1 .
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An Interesting Phenomenon
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An Interesting Phenomenon

Remark: When graph class F changes, the value of MF (n) can have
a significant discrepancy, ranging from n to 2(1+o(1))(n

2).

Inspired by this intriguing phenomenon, we investigate phase
transition problems on MF (n) in general settings.

Observe the first two theorems are about two extreme cases of
spanning trees. Alon et. al. raised the following problem.

Problem 1
For what “natural” sequences {Ti}i≥1 of trees (with Ti having exactly i
vertices for every i) will the value of MTn(n) grow only linearly in n? A
similar question is valid if Ti is replaced by Ti, some “natural” family of
i-vertex trees.

Yuze Wu Joint work with Bo Bai, Yu Gao and Jie Ma (University of Science and Technology of China Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.)Phase Transitions of Structured Codes of Graphs Sep 27th, 2023 12 / 40



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An Interesting Phenomenon

Remark: When graph class F changes, the value of MF (n) can have
a significant discrepancy, ranging from n to 2(1+o(1))(n

2).

Inspired by this intriguing phenomenon, we investigate phase
transition problems on MF (n) in general settings.

Observe the first two theorems are about two extreme cases of
spanning trees. Alon et. al. raised the following problem.

Problem 1
For what “natural” sequences {Ti}i≥1 of trees (with Ti having exactly i
vertices for every i) will the value of MTn(n) grow only linearly in n? A
similar question is valid if Ti is replaced by Ti, some “natural” family of
i-vertex trees.

Yuze Wu Joint work with Bo Bai, Yu Gao and Jie Ma (University of Science and Technology of China Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.)Phase Transitions of Structured Codes of Graphs Sep 27th, 2023 12 / 40



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An Interesting Phenomenon
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2).
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Our Results

Def : Let Fℓ denote the family of graphs containing a spanning tree
that has exactly ℓ leaves.

Theorem (Theorem I)
For infinitely many n and all integers 3 ≤ ℓ ≤ n−1

12 log n + 2, we have
MFℓ

(n) ≥ 2n−2. In particular, this holds whenever n ≥ 64 and n = p or
n = 2p − 1 for odd primes p.

Remark : Since any graph containing a spanning tree must be
connected, this theorem is tight up to a factor of 2.

Remark : This theorem shows that the family Tℓ consisting of all
spanning trees with ℓ leaves for any 2 ≤ ℓ ≤ n−1

12 log n + 2 can not
provide a positive answer to Problem 1.
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Proof of Theorem I

The proof of Theorem I is closely related to the following famous
conjecture of Kotzig.

Perfect 1-factorization Conjecture, Kotzig(1964)
For any even n > 2, the edge set of the complete graph Kn can be
partitioned into perfect matchings such that the union of any two of them
forms a Hamiltonian cycle.

This conjecture is still open in general, but it is known to hold in
several special cases. For example, whenever n = p + 1
(Kotzig(1964)) or n = 2p for some odd prime p (Anderson(1973) and
Nakamura(1975)).
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Proof of Theorem I

The proof consists of two parts :
Construct a graph family G of size 2n−2 such that the symmetric
difference of any two members in G contains a Hamiltonian path and
at least 3ℓ− 5 disjoint additional edges.
Find a spanning tree with exactly ℓ leaves in the union graph H, which
consists of a Hamiltonian path and 3ℓ− 5 disjoint additional edges.

For the first part, let n ≥ 65 be an odd integer such that the perfect
1-factorization conjecture holds for n + 1, then we can partition the
edge set of Kn+1 into n perfect matchings M1,M2, . . . ,Mn such that
the union of any two of them forms a Hamiltonian cycle in Kn+1.

For each 1 ≤ i ≤ n, we delete the edge adjacent to n + 1 in Mi, then
for any i ̸= j ∈ [n], Mi ∪ Mj forms a Hamiltonian path in Kn.
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Proof of Theorem I

Let G′ be the graph family consists of the unions of even number of
matchings in M = {M1,M2, . . . ,Mn−1}, then |G′| = 2n−2.

We partition G′ into s =
(n−1

2
)
+ 1 parts, G′

1, . . . ,G′
s,with the property

that the symmetric difference of any two graphs in the same part is
the union of at least 4 matchings in M.

Then we find s different subgraphs H1,H2, . . . ,Hs of Mn such that
the symmetric difference of any two of them contains at least 3ℓ− 5
different edges.

Let Gi = {G ∪ Hi|G ∈ G′
i} for all 1 ≤ i ≤ s and G =

∪s
i=1 Gi. Then we

get our desired G.
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Proof of Theorem I

For the second part. Let T = v1v2 . . . vn be the Hamiltonian path
consists of 2 matchings in M and let EA be the set of 3ℓ− 5
additional edges. We first remove the edge adjacent to vn from EA if
there exists such an edge in EA and then do the following operation:

Take an edge {vi, vj} in EA, where i < j and i is as small as possible,
add this edge to T and remove it from EA. Delete the edge {vi, vi+1}
from the T and remove any edges that are adjacent to vi+1 or vj−1
from EA.

Note that after this operation, the number of leaves in the spanning
tree T increases exactly one, and we remove at most 3 edges from EA.

So we can repeat this operation ℓ− 2 times and then T becomes a
spanning tree with exactly ℓ leaves.
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Proof of Theorem I

1 2 i i+ 1

j − 1

j

j + 1kpn

(a) Before the operation

1 2 i i+ 1

j − 1

j

j + 1kpn

(b) After the operation
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Our Results

Def : For a given graph L, let ML(n, k) denote the largest cardinality
of a family G of graphs on [n], such that the symmetric difference of
any two members of G contains at least k copies of L. Let v(L) and
e(L) denote the number of vertices and edges in L, respectively.

Theorem (Theorem II)
Let L be any graph with at least one edge. If k = o(nv(L)), then we have

lim
n→∞

logML(n, k)(n
2
) =

1
χ(L)− 1 .

If k = cnv(L) for some constant c > 0, then we have

lim
n→∞

logML(n, k)(n
2
) ≤ 1

χ(L)− 1 − 2c
e(L) .
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Proof of Theorem II

Def : Fix a graph L. A graph G is called L-free if G does not contain
L as a subgraph. Let the Turán number of L, denoted by ex(n, L), be
the maximum number of edges in an n-vertex L-free graph.

Def : Let Fn(L) denote the number of L-free graphs on [n].

Our proof uses the following famous results in extremal graph theory.

Theorem (Erdös-Stone(1946))
For any graph L with at least one edge, we have

ex(n, L) = (1 − 1
χ(L)− 1 + o(1))

(
n
2

)
.
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Proof of Theorem II

Theorem (Erdös-Frankl-Rödl(1986))
For any fixed graph L, if χ(L) = r ≥ 3, then
Fn(L) = 2ex(n,Kr)(1+o(1)) = 2(

n
2)(1−

1
χ(L)−1+o(1)).

Theorem (Graph Removal Lemma(1986))
For any fixed graph L and any ε > 0, there exists δ > 0, such that if an
n-vertex graph G contains at most δnv(L) copies of L, then we can remove
at most εn2 edges of G to get an L-free graph.

Let Fn(L, k) denote the number of graphs on [n] containing at most
k − 1 copies of L. By the Graph Removal Lemma, we have
Fn(L, k) ≤ Fn(L)

( (n
2)

o(n2)

)
= 2(

n
2)(1−

1
χ(L)−1+o(1)).
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Proof of Theorem II

Since Fn(L, k) ≥ Fn(L), Fn(L, k) = 2(
n
2)(1−

1
χ(L)−1+o(1)).

Let GL denotes the graph whose vertices are all possible graphs on [n]
and two graphs are connected if and only if their symmetric difference
contains at most k − 1 copies of L. Then GL is an Fn(L, k)-regular
graph and α(GL) = ML(n, k).

α(GL) ≥ |V(GL)|/(∆(GL) + 1) = 2(
n
2)(

1
χ(L)−1+o(1)).
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Proof of Theorem II

For the case k = cnv(L), we construct a graph which contains at most
k − 1 copies of L by adding edges to an extremal L-free graph.

When we add an edge to an arbitrary graph, the number of copies of
L in it increase at most e(L)nv(L)−2.

So we can get a graph H with ex(n, L) + c
e(L)n2 − 1 edges which

contains at most k − 1 copies of L.

Thus, we can obtain a lower bound of the corresponding dual concept
DL(n, k) by constructing a family consisting of all subgraphs of H.

Recall that ML(n, k)DL(n, k) ≤ 2(n
2). Therefore,

ML(n, k) ≤ 2(
1

χ(L)−1−
2c

e(L)+o(1))(n
2)

for k = cnv(L).
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Our Results

Def : For any fixed graph L, let Mk·L(n) denote the largest size of a
graph family G on [n], such that the symmetric difference of any two
members of G contains at least k vertex-disjoint copies of L.

Theorem (Theorem III)
Let L be any graph with at least one edge. If k = o(n), then we have

lim
n→∞

logMk·L(n)(n
2
) =

1
χ(L)− 1 .

If k = cn for some constant c > 0, then we have

lim
n→∞

logMk·L(n)(n
2
) ≤ (1 − c)2

χ(L)− 1 .
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Proof of Theorem III
For the case k = o(n), we only need to prove the lower bound of
Mk·L(n).

Since in an arbitrary graph, a fixed copy of L intersects at most
v(L)nv(L)−1 different copies of L. A graph, which contains at most
k − 1 vertex-disjoint copies of L, contains at most
(k − 1)(v(L)nv(L)−1 + 1) = o(nv(L)) different copies of L.
Because we already know that the number of graphs which contains
at most o(nv(L)) copies of L is 2(1−

1
χ(L)−1+o(1))(n

2), the number of
graphs which contains at most k − 1 vertex-disjoint copies of L is also
2(1−

1
χ(L)−1+o(1))(n

2).
By the same argument in the previous proof, we have

lim
n→∞

logMk·L(n)(n
2
) =

1
χ(L)− 1

for k = o(n).
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Proof of Theorem III
For the case k = o(n), we only need to prove the lower bound of
Mk·L(n).
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2).
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2
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χ(L)− 1

for k = o(n).
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Proof of Theorem III

For the case k = cn for some constant c > 0, we only need to check
the upper bound of Mk·L(n).

Let G be a graph on n vertices and S be a subset of V(G) of size
cn − 1. Suppose that G[V(G) \ S] is an extremal L-free graph on
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2
)
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the corresponding dual concept Dk·L(n) by constructing a family
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Our Results

Theorem (Theorem IV)
If t = o(log n), then we have

lim
n→∞

logMKt,t(n)(n
2
) = 1.

If t = c log n for some constant c > 0, then we have

lim
n→∞

logMKt,t(n)(n
2
) ≤ 1 − 2− 2

c .
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Proof of Theorem IV
This proof uses the following theorem in extremal graph theory.

Theorem (Kövari-Sós-Turán(1954))
For any integer t ≥ s ≥ 2, we have

ex(n,Ks,t) ≤
1
2(t − 1)1/sn2−1/s +

1
2(s − 1)n.

For the case t = o(log n), by the above theorem, we have

ex(n,Kt,t) ≤
1
2(t − 1) 1

t n2− 1
t +

1
2(t − 1)n = o(n2).

So we have 2ex(n,Kt,t) ≤ Fn(Kt,t) ≤
( (n

2)
o(n2)

)
. Thus, Fn(Kt,t) = 2o(1)(n

2).

By the same argument in the proof of Theorem II and Theorem III,
we have MKt,t(n) = 2(

1
χ(L)−1+o(1))(n

2) for k = o(log n).
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Proof of Theorem IV

It remains to consider the case when t = c log n for some constant
c > 0. And in this case, we only need to construct an n-vertex
Kt,t-free graph G with at least 2− 2

c
(n

2
)

edges.

Let δ = 2− 2
c and consider the Erdös-Rényi random graph G(n, δ) (i.e.

an n-vertex graph in which each possible edge is present
independently with probability δ).

Let X be the number of Kt,t in G(n, δ), we have

E[X] = 1
2

(
n
2t

)(
2t
t

)
δt2

< n2tδt2
= (n2δt)t.

Since δt = 2− 2
c c log n = n−2, we have E[X] < 1.
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Proof of Theorem IV

By average, there exists a graph G′ such that
e(G′)− X ≥ E[e(G(n, δ))− X] > δ

(n
2
)
− 1.

Let G be obtained from G′ by deleting one edge for each copy of Kt,t
in G′, then G is an n-vertex Kt,t-free graph with at least 2− 2

c
(n

2
)

edges.
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Our Results

Theorem (Theorem V)
Let L(r,m) = (A∪ B,E) be a connected bipartite graph on m vertices such
that any vertex in A has at most r neighbors in B. If m = O(n1−ε) for
some constant ε > 0, then for any constant integer r, we have

lim
n→∞

logML(r,m)(n)(n
2
) = 1.
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Proof of Theorem V

This proof uses the following theorem in extremal graph theory.

Theorem (Dependent Random Choice(2015))
Let α ∈ (0, 1), t, r,m, u, n be integers such that αtn −

(n
r
)
(m

n )
t ≥ u. Then

for any n-vertex graph G with at least α
2 n2 edges, there exists U ⊆ V(G)

with |U| ≥ u such that any r-set S ⊆ U has at least m common neighbors
in G.

Firstly, we claim that ex(n, L(r,m)) = o(n2).

Let α = n− ε2
2r , t = r

ε and u = m. Then for sufficiently large n, we
have αtn −

(n
r
)
(m

n )
t ≥ u.
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Let α = n− ε2
2r , t = r

ε and u = m. Then for sufficiently large n, we
have αtn −

(n
r
)
(m

n )
t ≥ u.
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Proof of Theorem V

So, for sufficiently large n and any n-vertex graph G with at least
1
2n2− ε2

r edges, there exists U ⊆ V(G) with |U| ≥ u such that any r-set
S ⊆ U has at least m common neighbors.

Now we are going to find an L(r,m) = (A ∪ B,E) in such G.

Let ϕ be any injection from B to U, we only need to extend it to an
injection from A ∪ B to V(G) such that for any edge ab in L(r,m),
ϕ(a)ϕ(b) is an edge in G.

Let A′ be a subset of A and assume that we have already extend ϕ to
an injection from A′ ∪ B to V(G). Take an vertex v ∈ A \ A′, then
ϕ(NL(r,m)(v)) is a subset of U with cardinality at most r.
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Proof of Theorem V

Take an r-set S ⊆ U with S′ ⊆ S and let T denote the set of common
neighbors of S in G. Then |T| ≥ m = |V(L(r,m))|.

Therefore T \ ϕ(A′ ∪ B) is not empty. We can choose an vertex x in
T \ ϕ(A′ ∪ B) and let ϕ(v) = x.

Then we can check that ϕ is an injection from A′ ∪ {v} ∪ B to V(G)
with the property that for any edge ab between A′ ∪ {v} and B,
ϕ(a)ϕ(b) is an edge in G. By induction, we get a desired ϕ.

Since for sufficiently large n, any n-vertex graph G with at least
1
2n2− ε2

r edges contains a copy of L(r,m), we know that
ex(n, L(r,m)) = O(n2− ε2

r ) = o(n2). Then by the same argument in
Theorem II, we have limn→∞

logML(r,m)(n)
(n

2)
= 1.
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Our Results

Since any graph on vertex set [n] can be viewed as a spanning
subgraph of Kn, what if we replace Kn with some alternative graphs
on [n]?

This raises the question of determining the maximum number of
spanning subgraphs of a fixed graph G, with the restriction that the
symmetric difference of any two of them belongs to a fixed graph
class F .

The most natural instance of this problem that comes to mind is
when F denotes the family of all connected graphs and G denotes an
m × n grid.

Def : An m × n grid, denoted by Gm,n, is the graph with vertex set
[m]× [n] and with edges between (u, v) and (i, j) if and only if u = i
and v ≡ j ± 1(mod n) or v = j and u ≡ i ± 1(mod m).
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Our Results

Proposition VI
For any integers m, n ≥ 3, let MFc(Gm,n) denote the maximum possible
size of a family G of spanning subgraphs of Gm,n such that the symmetric
difference of any two members in G is connected, then we have
MFc(Gm,n) ≤ 16. Especially, we also have MFc(Gm,n) = 16 for m, n ≤ 4.

1 2 3

4 5 6

7 8 9

Figure: 3 × 3 grid

Remark : It is natural to ask
whether the upper bound is also
sharp for all m, n ≥ 4. We are
seeking a general construction of it.
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Construction for m = n = 3

1 2 3

4 5 6

7 8 9

(a) G1

1 2 3

4 5 6

7 8 9

(b) G2

1 2 3

4 5 6

7 8 9

(c) G3

1 2 3

4 5 6

7 8 9

(d) G4

1 2 3

4 5 6

7 8 9

(e) G5

1 2 3

4 5 6

7 8 9

(f) G6

1 2 3

4 5 6

7 8 9

(g) G7

1 2 3

4 5 6

7 8 9

(h) G8
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Construction for m = n = 3
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(i) G9
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(j) G10
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(k) G11
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(l) G12

1 2 3

4 5 6

7 8 9

(m) G13
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7 8 9

(n) G14
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(o) G15

1 2 3

4 5 6

7 8 9

(p) G16
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Thanks!

Thank you for your attention!
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