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Notations and Terminologies

Let [n] := {1, 2, · · · , n} and
([n]
k

)
:= {T ⊆ [n] : |T | = k}.

A n-vertex k-uniform hypergraph H is a pair H = (V ,E ),
where V := [n] and E ⊆

([n]
k

)
. A k-uniform hypergraph is also

called a k-graph for short.
A matching is a set of pairwise disjoint edges. The size of the
largest matching in H is denoted by ν(H). A matching is
perfect if it covers all vertices of H.
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An edge-coloring of a hypergraph H is a mapping
ϕ : E (H) → {1, 2, . . . , c}
An edge-colored hypergraph H is called rainbow if every edge
of H receives a different color.
The anti-Ramsey number ar(n, k ,H) is the smallest integer c
such that each edge-coloring of the n-vertex k-uniform
complete hypergraph with exactly c colors contains a rainbow
copy of H.
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The Turán number ex(n, k ,H) is the maximum possible
number of edges in an n-vertex k-graph which does not
contain H as a subgraph.
For a set of graphs H, the Turán number ex(n, k,H) is the
maximum possible number of edges in an n-vertex k-graph
which does not contain any H ∈ H as a subgraph.
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Proposition 1.

2 + ex(n, k ,G) ≤ ar(n, k,G ) ≤ 1 + ex(n, k,G ),

where G = {G − e : e ∈ E (G )}.

Proposition 2.

2 + ex(n, k ,Ms−1) ≤ ar(n, k ,Ms) ≤ 1 + ex(n, k ,Ms).
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Theorem [Erdős, Simonovits, Sós, 1973]

For sufficiently large n, ar(n, 2, kp) = ex(n, 2, kp−1) + 2.

Theorem [ Montellano-Ballesteros and Neumann-Lara, 2002]

For all n ≥ p ≥ 4, ar(n, 2, kp) = ex(n, 2, kp−1) + 2.

P. Erdős, M. Simonovits, V.T. Sós, Anti-Ramsey theorems, in: Infinite
and Finite sets, Vol. II, in: Colloq. Math. Soc. János Bolyai, vol. 10, 1975,
pp. 633-643. Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th
birthday.

J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey
theorem, Combinatorica, 22 (2002), 445–449.
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Schiermeyer proved that ar(n, 2,Ms) = ex(n, 2,Ms−1) + 2 for
s ≥ 2 and n ≥ 3s + 3.
Fujita, Kaneko, Schiermeyer and Suzuki established the same
result for s ≥ 2 and n ≥ 2s + 1.
Chen, Li and Tu determined the exact value of ar(n, 2,Ms) for
all s ≥ 2 and n ≥ 2s.

I. Schiermeyer, Rainbow numbers for matchings and complete graphs,
Discrete Math., 286 (2004), 157–162.

S. Fujita, A. Kaneko, I. Schiermeyer and K. Suzuki, A rainbow k-matching
in the complete graph with r colors, Electron. J. Combin., 16 (2009), R51.

H. Chen, X. Li and J. Tu, Complete solution for the rainbow numbers of
matchings, Discrete Math., 309 (2009), 3370-3380.
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S. Fujita, C. Magnant, and K. Ozeki, Rainbow generalizations of Ramsey
theory: a survey, Graphs Combin., 26(1) (2010), 1-30.
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Gu, Li, Shi determined the anti-Ramsey number of Loose
paths/cycles and linear paths/cycles in k-graph for sufficiently large
n, and bounds of anti-Ramsey number for Berge paths/cycles.

R. Gu, J. Li, and Y. Shi, Anti-Ramsey numbers of paths and cycles in
hypergraphs, SIAM J. Discrete Math., 34(1) (2020), 271-307.
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Let Pk denote the linear path of length k , and Ck denote the
linear cycle of length k .
Let Pk denote the family of loose paths of length k , and Ck
denote the family of loose cycles of length k .
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Theorem (Gu, Li, Shi 2020)

For any integer k , if k = 2t ≥ 4 and s ≥ 3, then for sufficiently
large n,

ar(n, s,Pk) =

(
n

s

)
−
(
n − t + 1

s

)
+ 2;

if k = 2t + 1 > 5 and s ≥ 4, then for sufficiently large n,

ar(n, s,Pk) =

(
n

s

)
−
(
n − t + 1

s

)
+

(
n − t − 1
s − 2

)
+ 2.

Theorem (Gu, Li, Shi 2020)

ar(n, s,Ck) = ar(n, s,Pk) for k = 2t ≥ 8, s ≥ 4 and sufficiently
large n; ar(n, s,Ck) = ar(n, s,Pk) for k = 2t + 1 ≥ 11, s ≥ k + 3
and sufficiently large n;
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Theorem (Gu, Li, Shi 2020)

For any integer k , if k = 2t ≥ 4 and s ≥ 3, then for sufficiently
large n,

ar(n, s,Pk) =

(
n

s

)
−
(
n − t + 1

s

)
+ 2;

if k = 2t + 1 ≥ 5 and s ≥ 3, then for sufficiently large n,

ar(n, s,Pk) =

(
n

s

)
−
(
n − t + 1

s

)
+ 3.

Theorem (Gu, Li, Shi 2020)

ar(n, s, Ck) = ar(n, s,Pk) for k = 2t ≥ 8, s ≥ 4 and sufficiently
large n; ar(n, s, Ck) = ar(n, s,Pk) for k = 2t + 1 ≥ 11, s ≥ k + 3
and sufficiently large n;
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Tang, Li, Yan determined ar(n, r ,Pk) and ar(n, r ,Ck) for all k ≥ 3
and r ≥ 3 except ar(n, s,C3).

Y. Tang, T. Li, and G. Yan, Anti-Ramsey numbers of expansions of paths
and cycles in uniform hypergraphs, J. Graph Theory, 101(4) (2022),
668-685.
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Definition
Given a 2-graph G , the expansion of G is an r -graph on
|V (G )|+ (r − 2)|E (G )| vertices obtained from G by adding
r − 2 vertices to each edge in G .
Denote the expansion of Kℓ+1 by H r

ℓ+1.
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Liu and Song determined the anti-Ramsey number of H r
ℓ+1.

Liu and Song determined the anti-Ramsey number of F 3. F 3

is the expansion of F , where F is obtained from a tree T of a
certain class of trees by adding a new edge.

X. Liu and J. Song, Hypergraph anti-Ramsey theorems, arXiv:2310.01186.

X. Liu and J. Song, Exact results for some extremal problems on
expansions I, arXiv:2310.01736.
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Conjecture (Özkahya and Young 2013)

Let k ≥ 3, s ≥ 3. If n > ks, then

ar(n, k ,Ms) = ex(n, k,Ms−1) + 2.

In addition, if n = ks, then

ar(n, k ,Ms) =

{
ex(n, k ,Ms−1) + 2, if s < ck

ex(n, k ,Ms−1) + k + 1, if s ≥ ck

where ck is a constant dependent on k .

L. Özkahya and M. Young, Anti-Ramsey number of matchings in
hypergraphs, Discrete Math., 313 (2013), 2359–2364.
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Jin determined the exact value of the anti-Ramsey number of
a k-matching in a 3-partite 3-uniform complete hypergraph for
n3 ≥ n2 ≥ n1 ≥ 3k − 2.
Xue, Shan, Kang proved a multi-partite version of Özkahya
and Young’s conjecture.

Z. Jin, Anti-Ramsey number of matchings in a hypergraph, Discrete
Math., 344 (2021), 112594.

Y. Xue, E. Shan and L. Kang, Anti-Ramsey number of matchings in
r -partite r -uniform hypergraphs, Discrete Math., 345 (2022), 112782.
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Frankl and Kupavskii proved Özkahya and Young’s conjecture for
all n ≥ sk + (s − 1)(k − 1) and k ≥ 3.

Theorem (Frankl and Kupavskii 2019)

ar(n, k ,Ms) = ex(n, k ,Ms−1) + 2 for n ≥ sk + (s − 1)(k − 1) and
k ≥ 3.

P. Frankl and A. Kupavskii, Two problems on matchings in set families -
in the footsteps of Erdős and Kleitman, J. Combin. Theory ser. B, 138
(2019), 286–313.
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Erdős Matching Conjecture and Stability

Erdős matching conjecture (1965)

For n ≥ k(s + 1)− 1 we have

ex(n, k ,Ms+1) = max
{
|Hk

n,s |, |Dk
n,s |

}
.

Mingyang Guo Anti-ramsey number of matchings in 3-graphs



Notations and Terminologies
Erdős Matching Conjecture and Stability

Our Results
The Future Work

Erdős matching conjecture (1965)

For n ≥ k(s + 1)− 1 we have

ex(n, k ,Ms+1) = max
{
|Hk

n,s |, |Dk
n,s |

}
.

n ≥ 2k3s

n ≥ 3k2s

B. Bollobás, D. E. Daykin, and P. Erdős, Sets of independent edges of a
hypergraph, Quart. J. Math. Oxford Ser., 27 (1976), 25–32.

H. Huang, P. Loh and B. Sudakov, The size of a hypergraph and its
matching number, Combin. Probab. Comput., 21 (2012), 442–450.
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n ≥ (2s + 1)k − s

n ≥ 5
3sk − 2

3s.

P. Frankl, Improved bounds for Erdős Matching Conjecture, J. Combin.
Theory Ser. A, 120 (2013), 1068–1072.

P. Frankl and A. Kupavskii, The Erdős matching conjecture and
concentration inequalities, J. Combin. Theory Ser. B, 157 (2022),
366–400.
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k(s + 1) ≤ n ≤ (k + ε)(s + 1)

P. Frankl, Proof of the Erdős matching conjecture in a new range, Israel J.
Math., 222 (2017), 421-430.
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k = 3

T. Łuczak, and K. Mieczkowska, On Erdős extremal problem on matchings
in hypergraphs, J. Combin. Theory Ser. A, 124 (2014), 178–194.

P. Frankl, On maximum number of edges in a hypergraph with given
matching number, Discrete Appl. Math., 216 (2017), 562-581.
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Theorem [Frankl and Kupavskii 2019]

Suppose that k ≥ 3 and either n ≥ (s +max{25, 2s + 2})k or
n ≥ (2 + o(1))sk , where o(1) is with respect to s → ∞. Then for
any k-graph H with ν(H) ≤ s, if

|H| >
(
n

k

)
−
(
n − s

k

)
−
(
n − s − k

k − 1

)
+ 1,

then H is a subgraph of Hk
n,s .
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Definition
Given two k-graphs H1,H2 and a real number ε > 0, we say that
H2 is ε-contains to H1 if V (H1) = V (H2) and
|E (H1)\E (H2)| ≤ ε|V (H1)|k .

Stability Lemma [Guo, Lu and Mao 2022]

Let ε, ρ be two reals such that 0 < ρ ≪ ε < 1. Let n, s be two
integers such that n is sufficiently large and
n/54 + 1 ≤ s ≤ 13n/45 + 1. Let H be a 3-graph on vertex set [n].
If e(H) > ex(n, 3,Ms)− ρn3 and ν(H) ≤ s − 1, then H ε-contains
H3
n,s−1 or D3

n,s−1.

M. Guo, H. Lu, and D. Mao, A stability result on matchings in 3-uniform
hypergraphs, SIAM J. Discrete Math., 36 (2022), 2339-2351.
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Our Results

Theorem 1.
For sufficiently large n, the following holds

ar(n, 3,Ms) =

{
ex(n, 3,Ms−1) + 2, if 3s < n < 5s − 2;
ex(n, 3,Ms−1) + 5, if n = 3s.
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Lower bound

ar(n, 3,Ms) ≥

{
ex(n, 3,Ms−1) + 2, if 3s < n < 5s − 2;
ex(n, 3,Ms−1) + 5, if n = 3s.
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Lower bound

n > 3s

Let U ⊆ V (K 3
n ) be a set of size (3s − 4)

and let f : E (K 3
n [U]) → [

(|U|
3

)
] be a bijective coloring.

Let

ϕ(e) =

{
f (e), e ∈ E (K 3

n [U]);
0, otherwise.

|ϕ(e)| = |D3
n,s−1|+ 1 ≥ ex(n, 3,Ms−1) + 1
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Lower bound

Let S ⊆ V (K 3
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Lower bound

n = 3s
Let U ⊆ V (K 3

n ) be a set of size (3s − 4) and let
f : E (K 3

n [U]) → [
(|U|

3

)
] be a bijective coloring.

Let W = {1, 2, 3, 4} = V (K 3
n ) \ U. Let A1 = {{1, 2}, {3, 4}}

A2 = {{1, 3}, {2, 4}}, A3 = {{1, 4}, {2, 3}}.

Let

ϕ(e) =


f (e), e ∈ E (K k

n [U]);(|U|
3

)
+ i , e ∩W ⊆ Ai ;

0, otherwise.

ar(n, 3,Ms) ≥ |ϕ(e)|+ 1 = ex(n, 3,Ms−1) + 5.
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Upper bound

Lemma 2.
For a given real 0 < c0 ≪ 1, there exists an integer n0 = n0(c0)
such that ar(n, 3,Ms) ≤ ex(n, 3,Ms−1) + 2 for
n/6 ≤ s ≤ (1 − c0)n/3 and n > n0.
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Sketch of proof of Lemma 2

ex(n, 3,Ms−1) = max{
(n
3

)
−

(n−s+2
3

)
,
(3s−4

3

)
}.

Let c(n, s) := max{
(n
3

)
−
(n−s+2

3

)
,
(3s−4

3

)
}+ 2.

Let fn,s : E (K 3
n ) → [c(n, s)] be a surjective coloring.

Let G be a subgraph of H with c(n, s) edges such that each color
appears on exactly one edge of G .

By stability lemma, G ε-contains H3
n,s−1 or D3

n,s−1 for
n/6 ≤ s ≤ 13n/45 + 1.
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Sketch of proof of Lemma 2

By stability lemma, G ε-contains H3
n,s−1 or D3

n,s−1 for
n/6 ≤ s ≤ 13n/45 + 1.

Case 1. n/6 ≤ s ≤ 13n/45 + 1 and G ε-contains H3
n,s−1.

Case 2. n/6 ≤ s ≤ 5n/18 and G ε-contains D3
n,s−1.

Case 3. 5n/18 + 1 ≤ s ≤ 13n/45 + 1 and G ε-contains D3
n,s−1 or

13n/45 + 2 ≤ s ≤ (1 − c0)n/3.
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Sketch of proof of Lemma 2

Key Lemma
Given reals 0 < ε ≪ c0 ≪ 1, there exists an integer n0 such that
the following holds. Let H be a 3-graph with n > n0 vertices. Let s
be an integer. If ν(H) ≤ s and

e(H) >

(
3s + 1

3

)
+ 3s(n − 3s − 1), (3.1)

then the following holds.
1 For 5n/18− 1 ≤ s ≤ 13n/45, if H ε-contains D3

n,s , then H is a
subgraph of D3

n,s .
2 For 13n/45 ≤ s ≤ (1 − c0)n/3, H is a subgraph of D3

n,s .
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Lemma 3.
For a given real 0 < c0 ≪ 1, there exists an integer n0 = n0(c0)
such that for n > n0,

ar(n, 3,Ms) ≤
{ (3s−4

3

)
+ 2, if (1 − c0)n/3 ≤ s < n/3 ;(3s−4

3

)
+ 5, if s = n/3.
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Sketch of proof of Lemma 3

Let fn,s : E (K 3
n ) → [c(n, s)] be a surjective coloring.

Denote the edge-colored K 3
n by H.

Let G be a subgraph of H with c(n, s) edges such that each color
appears on exactly one edge of G .
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Sketch of proof of Lemma 3

Let V (H) = [n] such that dG (1) ≥ dG (2) ≥ · · · ≥ dG (n).

Step 1: Let U := [3s − 4] and
R := {x ∈ U : dG [U](x) < n2/15}, then r < 2c0n.

Let H ′ := H − E (H[U \ R]).
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Sketch of proof of Lemma 3

Step 2: If H ′ has a rainbow matching M such that
|V (M)∩ (W ∪R)| ≥ r + 4, then G has a rainbow matching of
size s, where W = [n] \ U.
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Step 3: H ′ has a rainbow matching M such that
|V (M) ∩ (W ∪ R)| ≥ r + 4
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The Future Work

The case n = ks.
The anti-Ramsey number of expansion of some graph.
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Let U be a subset of V (K k
n ) such that |U| = n − k − 1 and let

W := V (K k
n ) \ U. Thus |W | = k + 1. Let f : E (K k

n [U]) → [
(|U|

k

)
]

be a bijective coloring.

For an odd integer k , there are 1
2

(k+1
k+1
2

)
distinct subsets

A1, . . . ,A 1
2(

k+1
k+1
2
)

of W such that |Ai | = (k + 1)/2 for

1 ≤ i ≤ 1
2

(k+1
k+1
2

)
and Ai ∩ Aj ̸= ∅ for 1 ≤ i < j ≤ 1

2

(k+1
k+1
2

)
. Let

Ai := {e ∈ E (K k
n ) : e ∩W = Ai or e ∩W = W \ Ai} and let H1

be the complete k-graph K k
n with edge coloring fH1 , where

fH1(e) =


f (e), e ∈ E (K k

n [U]);(|U|
k

)
+ i , e ∈ Ai for 1 ≤ i ≤ 1

2

(k+1
k+1
2

)
;

0, otherwise.
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For an even integer k , let x ∈ W . There are
( k

k
2−1

)
distinct subsets

B1, . . . ,B( k
k
2−1)

of W \ {x} such that |Bi | = k/2 − 1 for

1 ≤ i ≤
( k

k
2−1

)
. Let Bi := {e ∈ E (K k

n ) : x ∈ e and e ∩W =

Bi} ∪ {e ∈ E (K k
n ) : e ∩W = W \ (Bi ∪ {x})} and let H2 be the

n-vertex complete k-graph K k
n with edge coloring fH2 , where

fH2(e) =


f (e), e ∈ E (H2[U]);(|U|

k

)
+ i , e ∈ Bi for 1 ≤ i ≤

( k
k
2−1

)
;

0, otherwise.
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ar(n, k , s) ≥


(n−k−1

k

)
+ 1

2

(k+1
k+1
2

)
+ 2, k is odd;(n−k−1

k

)
+
( k

k
2−1

)
+ 2, k is even.
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Thank you!
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