Anti-ramsey number of matchings in 3-graphs

Mingyang Guo Joint work with Hongliang Lu and Xing Peng Xi'an Jiaotong University

Oct. 27, 2023

Mingyang Guo Anti-ramsey number of matchings in 3-graphs

Outline

Notations and Terminologies

- 2 Erdős Matching Conjecture and Stability
- 3 Our Results
- 4 The Future Work

Notations and Terminologies

- Let $[n] := \{1, 2, \cdots, n\}$ and $\binom{[n]}{k} := \{T \subseteq [n] : |T| = k\}.$
- A *n*-vertex *k*-uniform hypergraph *H* is a pair H = (V, E), where V := [n] and $E \subseteq {[n] \choose k}$. A *k*-uniform hypergraph is also called a *k*-graph for short.
- A matching is a set of pairwise disjoint edges. The size of the largest matching in H is denoted by $\nu(H)$. A matching is perfect if it covers all vertices of H.

- An edge-coloring of a hypergraph H is a mapping $\phi : E(H) \rightarrow \{1, 2, \dots, c\}$
- An edge-colored hypergraph *H* is called rainbow if every edge of *H* receives a different color.
- The anti-Ramsey number ar(n, k, H) is the smallest integer c such that each edge-coloring of the *n*-vertex *k*-uniform complete hypergraph with exactly c colors contains a rainbow copy of H.

- The Turán number ex(n, k, H) is the maximum possible number of edges in an *n*-vertex *k*-graph which does not contain *H* as a subgraph.
- For a set of graphs *H*, the Turán number ex(n, k, *H*) is the maximum possible number of edges in an *n*-vertex k-graph which does not contain any H ∈ *H* as a subgraph.

Proposition 1.

$$2 + ex(n,k,G) \leq ar(n,k,G) \leq 1 + ex(n,k,G),$$

where $\mathcal{G} = \{G - e : e \in E(G)\}.$

Proposition 2.

$$2+ex(n,k,M_{s-1})\leq ar(n,k,M_s)\leq 1+ex(n,k,M_s).$$

Theorem [Erdős, Simonovits, Sós, 1973]

For sufficiently large n, $ar(n, 2, k_p) = ex(n, 2, k_{p-1}) + 2$.

Theorem [Montellano-Ballesteros and Neumann-Lara, 2002]

For all $n \ge p \ge 4$, $ar(n, 2, k_p) = ex(n, 2, k_{p-1}) + 2$.

- P. Erdős, M. Simonovits, V.T. Sós, Anti-Ramsey theorems, in: Infinite and Finite sets, Vol. II, in: Colloq. Math. Soc. János Bolyai, vol. 10, 1975, pp. 633-643. Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday.
- J. Montellano-Ballesteros and V. Neumann-Lara, An anti-Ramsey theorem, *Combinatorica*, **22** (2002), 445–449.

- Schiermeyer proved that $ar(n, 2, M_s) = ex(n, 2, M_{s-1}) + 2$ for $s \ge 2$ and $n \ge 3s + 3$.
- Fujita, Kaneko, Schiermeyer and Suzuki established the same result for s ≥ 2 and n ≥ 2s + 1.
- Chen, Li and Tu determined the exact value of $ar(n, 2, M_s)$ for all $s \ge 2$ and $n \ge 2s$.
- I. Schiermeyer, Rainbow numbers for matchings and complete graphs, *Discrete Math.*, **286** (2004), 157–162.
- S. Fujita, A. Kaneko, I. Schiermeyer and K. Suzuki, A rainbow *k*-matching in the complete graph with *r* colors, *Electron. J. Combin.*, **16** (2009), R51.
- H. Chen, X. Li and J. Tu, Complete solution for the rainbow numbers of matchings, *Discrete Math.*, **309** (2009), 3370-3380.

S. Fujita, C. Magnant, and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, *Graphs Combin.*, **26**(1) (2010), 1-30.

Gu, Li, Shi determined the anti-Ramsey number of Loose paths/cycles and linear paths/cycles in *k*-graph for sufficiently large *n*, and bounds of anti-Ramsey number for Berge paths/cycles.

R. Gu, J. Li, and Y. Shi, Anti-Ramsey numbers of paths and cycles in hypergraphs, *SIAM J. Discrete Math.*, **34**(1) (2020), 271-307.

- Let P_k denote the linear path of length k, and C_k denote the linear cycle of length k.
- Let \mathcal{P}_k denote the family of loose paths of length k, and \mathcal{C}_k denote the family of loose cycles of length k.

Theorem (Gu, Li, Shi 2020)

For any integer k, if $k = 2t \ge 4$ and $s \ge 3$, then for sufficiently large n,

$$\operatorname{ar}(n,s,\mathbb{P}_k)=\binom{n}{s}-\binom{n-t+1}{s}+2;$$

if k = 2t + 1 > 5 and $s \ge 4$, then for sufficiently large n,

$$ar(n,s,\mathbb{P}_k) = \binom{n}{s} - \binom{n-t+1}{s} + \binom{n-t-1}{s-2} + 2.$$

Theorem (Gu, Li, Shi 2020)

 $ar(n, s, \mathbb{C}_k) = ar(n, s, \mathbb{P}_k)$ for $k = 2t \ge 8$, $s \ge 4$ and sufficiently large n; $ar(n, s, \mathbb{C}_k) = ar(n, s, \mathbb{P}_k)$ for $k = 2t + 1 \ge 11$, $s \ge k + 3$ and sufficiently large n;

Theorem (Gu, Li, Shi 2020)

For any integer k, if $k = 2t \ge 4$ and $s \ge 3$, then for sufficiently large n,

$$\operatorname{ar}(n,s,\mathcal{P}_k) = inom{n}{s} - inom{n-t+1}{s} + 2;$$

if $k = 2t + 1 \ge 5$ and $s \ge 3$, then for sufficiently large n,

$$ar(n,s,\mathcal{P}_k) = \binom{n}{s} - \binom{n-t+1}{s} + 3.$$

Theorem (Gu, Li, Shi 2020)

 $ar(n, s, C_k) = ar(n, s, P_k)$ for $k = 2t \ge 8$, $s \ge 4$ and sufficiently large n; $ar(n, s, C_k) = ar(n, s, P_k)$ for $k = 2t + 1 \ge 11$, $s \ge k + 3$ and sufficiently large n;

Tang, Li, Yan determined $ar(n, r, \mathbb{P}_k)$ and $ar(n, r, \mathbb{C}_k)$ for all $k \ge 3$ and $r \ge 3$ except $ar(n, s, \mathbb{C}_3)$.

Y. Tang, T. Li, and G. Yan, Anti-Ramsey numbers of expansions of paths and cycles in uniform hypergraphs, *J. Graph Theory*, **101**(4) (2022), 668-685.

Definition

- Given a 2-graph G, the expansion of G is an r-graph on |V(G)| + (r-2)|E(G)| vertices obtained from G by adding r-2 vertices to each edge in G.
- Denote the expansion of $K_{\ell+1}$ by $H_{\ell+1}^r$.

- Liu and Song determined the anti-Ramsey number of $H^r_{\ell+1}$.
- Liu and Song determined the anti-Ramsey number of F^3 . F^3 is the expansion of F, where F is obtained from a tree T of a certain class of trees by adding a new edge.
- X. Liu and J. Song, Hypergraph anti-Ramsey theorems, arXiv:2310.01186.
- X. Liu and J. Song, Exact results for some extremal problems on expansions I, arXiv:2310.01736.

Conjecture (Özkahya and Young 2013)

Let $k \geq 3$, $s \geq 3$. If n > ks, then

$$ar(n,k,M_s) = ex(n,k,M_{s-1}) + 2.$$

In addition, if n = ks, then

$$ar(n,k,M_s) = egin{cases} ex(n,k,M_{s-1})+2, & ext{if } s < c_k \ ex(n,k,M_{s-1})+k+1, & ext{if } s \geq c_k \end{cases}$$

where c_k is a constant dependent on k.

L. Özkahya and M. Young, Anti-Ramsey number of matchings in hypergraphs, *Discrete Math.*, **313** (2013), 2359–2364.

- Jin determined the exact value of the anti-Ramsey number of a *k*-matching in a 3-partite 3-uniform complete hypergraph for $n_3 \ge n_2 \ge n_1 \ge 3k 2$.
- Xue, Shan, Kang proved a multi-partite version of Özkahya and Young's conjecture.
- Z. Jin, Anti-Ramsey number of matchings in a hypergraph, *Discrete Math.*, **344** (2021), 112594.
- Y. Xue, E. Shan and L. Kang, Anti-Ramsey number of matchings in *r*-partite *r*-uniform hypergraphs, *Discrete Math.*, **345** (2022), 112782.

Frankl and Kupavskii proved Özkahya and Young's conjecture for all $n \ge sk + (s-1)(k-1)$ and $k \ge 3$.

Theorem (Frankl and Kupavskii 2019)

 $ar(n, k, M_s) = ex(n, k, M_{s-1}) + 2$ for $n \ge sk + (s-1)(k-1)$ and $k \ge 3$.

P. Frankl and A. Kupavskii, Two problems on matchings in set families in the footsteps of Erdős and Kleitman, J. Combin. Theory ser. B, 138 (2019), 286–313.

Erdős Matching Conjecture and Stability

Erdős matching conjecture (1965)

For $n \ge k(s+1) - 1$ we have

$$ex(n,k,M_{s+1}) = \max\left\{|H_{n,s}^k|,|D_{n,s}^k|
ight\}.$$

Erdős matching conjecture (1965)

For $n \ge k(s+1) - 1$ we have

$$ex(n,k,M_{s+1}) = \max\left\{|H_{n,s}^k|,|D_{n,s}^k|
ight\}.$$

- $n \ge 2k^3s$
- $n \ge 3k^2s$
- B. Bollobás, D. E. Daykin, and P. Erdős, Sets of independent edges of a hypergraph, *Quart. J. Math. Oxford Ser.*, **27** (1976), 25–32.
- H. Huang, P. Loh and B. Sudakov, The size of a hypergraph and its matching number, *Combin. Probab. Comput.*, **21** (2012), 442–450.

- $n \ge (2s+1)k s$ • $n \ge \frac{5}{3}sk - \frac{2}{3}s$.
- P. Frankl, Improved bounds for Erdős Matching Conjecture, J. Combin. Theory Ser. A, **120** (2013), 1068–1072.
- P. Frankl and A. Kupavskii, The Erdős matching conjecture and concentration inequalities, J. Combin. Theory Ser. B, 157 (2022), 366–400.

•
$$k(s+1) \le n \le (k+\varepsilon)(s+1)$$

P. Frankl, Proof of the Erdős matching conjecture in a new range, *Israel J. Math.*, **222** (2017), 421-430.

• *k* = 3

- T. Łuczak, and K. Mieczkowska, On Erdős extremal problem on matchings in hypergraphs, *J. Combin. Theory Ser. A*, **124** (2014), 178–194.
- P. Frankl, On maximum number of edges in a hypergraph with given matching number, *Discrete Appl. Math.*, **216** (2017), 562-581.

Theorem [Frankl and Kupavskii 2019]

Suppose that $k \ge 3$ and either $n \ge (s + \max\{25, 2s + 2\})k$ or $n \ge (2 + o(1))sk$, where o(1) is with respect to $s \to \infty$. Then for any k-graph H with $\nu(H) \le s$, if

$$|H| > \binom{n}{k} - \binom{n-s}{k} - \binom{n-s-k}{k-1} + 1,$$

then H is a subgraph of $H_{n,s}^k$.

Definition

Given two k-graphs H_1 , H_2 and a real number $\varepsilon > 0$, we say that H_2 is ε -contains to H_1 if $V(H_1) = V(H_2)$ and $|E(H_1) \setminus E(H_2)| \le \varepsilon |V(H_1)|^k$.

Stability Lemma [Guo, Lu and Mao 2022]

Let ε, ρ be two reals such that $0 < \rho \ll \varepsilon < 1$. Let n, s be two integers such that n is sufficiently large and $n/54 + 1 \le s \le 13n/45 + 1$. Let H be a 3-graph on vertex set [n]. If $e(H) > ex(n, 3, M_s) - \rho n^3$ and $\nu(H) \le s - 1$, then $H \varepsilon$ -contains $H^3_{n,s-1}$ or $D^3_{n,s-1}$.

M. Guo, H. Lu, and D. Mao, A stability result on matchings in 3-uniform hypergraphs, *SIAM J. Discrete Math.*, **36** (2022), 2339-2351.

Our Results

Theorem 1.

For sufficiently large n, the following holds

$$ar(n,3,M_s) = \begin{cases} ex(n,3,M_{s-1}) + 2, & \text{if } 3s < n < 5s - 2; \\ ex(n,3,M_{s-1}) + 5, & \text{if } n = 3s. \end{cases}$$

Lower bound

$$ar(n,3,M_s) \ge \begin{cases} ex(n,3,M_{s-1})+2, & \text{if } 3s < n < 5s - 2; \\ ex(n,3,M_{s-1})+5, & \text{if } n = 3s. \end{cases}$$

Lower bound

● *n* > 3*s*

Lower bound

● *n* > 3*s*

Let $U \subseteq V(K_n^3)$ be a set of size (3s - 4)

Lower bound

• *n* > 3*s*

Let $U \subseteq V(K_n^3)$ be a set of size (3s - 4)and let $f : E(K_n^3[U]) \to [\binom{|U|}{3}]$ be a bijective coloring.

Lower bound

• *n* > 3*s*

Let
$$U \subseteq V(K_n^3)$$
 be a set of size $(3s - 4)$
and let $f : E(K_n^3[U]) \rightarrow [\binom{|U|}{3}]$ be a bijective coloring.
Let

$$\phi(e) = \left\{egin{array}{cc} f(e), & e \in E(K_n^3[U]); \ 0, & ext{otherwise}. \end{array}
ight.$$

Lower bound

• *n* > 3*s*

Let
$$U \subseteq V(K_n^3)$$
 be a set of size $(3s - 4)$
and let $f : E(K_n^3[U]) \rightarrow [\binom{|U|}{3}]$ be a bijective coloring.
Let

$$\phi(e) = \begin{cases} f(e), & e \in E(K_n^3[U]); \\ 0, & \text{otherwise.} \end{cases}$$

$$|\phi(e)| = |D_{n,s-1}^3| + 1 \ge ex(n,3,M_{s-1}) + 1$$

Lower bound

Let $S \subseteq V(K_n^3)$ be a set of size (s-2) and $P := \{e \in E(K_n^3) : e \cap S \neq \emptyset\}.$

Lower bound

Let
$$S \subseteq V(K_n^3)$$
 be a set of size $(s-2)$ and $P := \{e \in E(K_n^3) : e \cap S \neq \emptyset\}.$

Let $f': P \rightarrow [|P|]$ be a bijective coloring.

Lower bound

Let
$$S \subseteq V(K_n^3)$$
 be a set of size $(s-2)$ and $P := \{e \in E(K_n^3) : e \cap S \neq \emptyset\}.$

Let $f': P \rightarrow [|P|]$ be a bijective coloring.

Let

$$\phi(e) = \left\{ egin{array}{cc} f'(e), & e \in P; \\ 0, & ext{otherwise.} \end{array}
ight.$$

Lower bound

Let
$$S \subseteq V(K_n^3)$$
 be a set of size $(s-2)$ and $P := \{e \in E(K_n^3) : e \cap S \neq \emptyset\}.$

Let $f': P \rightarrow [|P|]$ be a bijective coloring.

Let

$$\phi(e) = \left\{ egin{array}{cc} f'(e), & e \in P; \\ 0, & ext{otherwise.} \end{array}
ight.$$

$$|\phi(e)| = |H_{n,s-1}^3| + 1 \ge ex(n,3,M_{s-1}) + 1$$

Lower bound

• *n* = 3*s*

Let $U \subseteq V(K_n^3)$ be a set of size (3s - 4) and let $f : E(K_n^3[U]) \to [\binom{|U|}{3}]$ be a bijective coloring.

Lower bound

• *n* = 3*s*

Let $U \subseteq V(K_n^3)$ be a set of size (3s - 4) and let $f : E(K_n^3[U]) \to [\binom{|U|}{3}]$ be a bijective coloring.

Let
$$W = \{1, 2, 3, 4\} = V(K_n^3) \setminus U$$
. Let $A_1 = \{\{1, 2\}, \{3, 4\}\}$
 $A_2 = \{\{1, 3\}, \{2, 4\}\}, A_3 = \{\{1, 4\}, \{2, 3\}\}.$

Lower bound

Let $U \subseteq V(K_n^3)$ be a set of size (3s - 4) and let $f : E(K_n^3[U]) \to [\binom{|U|}{3}]$ be a bijective coloring.

Let
$$W = \{1, 2, 3, 4\} = V(K_n^3) \setminus U$$
. Let $A_1 = \{\{1, 2\}, \{3, 4\}\}$
 $A_2 = \{\{1, 3\}, \{2, 4\}\}, A_3 = \{\{1, 4\}, \{2, 3\}\}.$

Let

$$\phi(e) = \begin{cases} f(e), & e \in E(K_n^k[U]); \\ \binom{|U|}{3} + i, & e \cap W \subseteq A_i; \\ 0, & \text{otherwise.} \end{cases}$$

Lower bound

Let $U \subseteq V(K_n^3)$ be a set of size (3s - 4) and let $f : E(K_n^3[U]) \to [\binom{|U|}{3}]$ be a bijective coloring.

Let
$$W = \{1, 2, 3, 4\} = V(K_n^3) \setminus U$$
. Let $A_1 = \{\{1, 2\}, \{3, 4\}\}$
 $A_2 = \{\{1, 3\}, \{2, 4\}\}, A_3 = \{\{1, 4\}, \{2, 3\}\}.$

Let

$$\phi(e) = \begin{cases} f(e), & e \in E(K_n^k[U]); \\ \binom{|U|}{3} + i, & e \cap W \subseteq A_i; \\ 0, & \text{otherwise.} \end{cases}$$

 $ar(n,3,M_s) \ge |\phi(e)| + 1 = ex(n,3,M_{s-1}) + 5.$

Upper bound

Lemma 2.

For a given real $0 < c_0 \ll 1$, there exists an integer $n_0 = n_0(c_0)$ such that $ar(n, 3, M_s) \le ex(n, 3, M_{s-1}) + 2$ for $n/6 \le s \le (1 - c_0)n/3$ and $n > n_0$.

$$ex(n,3,M_{s-1}) = \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\}.$$

$$ex(n,3, M_{s-1}) = \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\}.$$

Let $c(n,s) := \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\} + 2$.

$$ex(n, 3, M_{s-1}) = \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\}.$$

Let $c(n, s) := \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\} + 2.$
Let $f_{n,s} : E(K_n^3) \to [c(n, s)]$ be a surjective coloring.

Sketch of proof of Lemma 2

$$ex(n,3, M_{s-1}) = \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\}.$$

Let $c(n,s) := \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\} + 2.$
Let $f_{n,s} : E(K_n^3) \to [c(n,s)]$ be a surjective coloring.

Let G be a subgraph of H with c(n, s) edges such that each color appears on exactly one edge of G.

Sketch of proof of Lemma 2

$$ex(n,3, M_{s-1}) = \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\}.$$

Let $c(n,s) := \max\{\binom{n}{3} - \binom{n-s+2}{3}, \binom{3s-4}{3}\} + 2.$

Let $f_{n,s}: E(K_n^3) \to [c(n,s)]$ be a surjective coloring.

Let G be a subgraph of H with c(n, s) edges such that each color appears on exactly one edge of G.

By stability lemma, $G \in \text{-contains } H^3_{n,s-1}$ or $D^3_{n,s-1}$ for $n/6 \le s \le 13n/45 + 1$.

Sketch of proof of Lemma 2

By stability lemma, $G \in \text{-contains } H^3_{n,s-1}$ or $D^3_{n,s-1}$ for $n/6 \le s \le 13n/45 + 1$.

Case 1. $n/6 \le s \le 13n/45 + 1$ and $G \in$ -contains $H^3_{n,s-1}$.

Sketch of proof of Lemma 2

By stability lemma, $G \in \text{-contains } H^3_{n,s-1}$ or $D^3_{n,s-1}$ for $n/6 \le s \le 13n/45 + 1$.

Case 1. $n/6 \le s \le 13n/45 + 1$ and $G \in \text{-contains } H^3_{n,s-1}$.

Case 2. $n/6 \le s \le 5n/18$ and G ε -contains $D^3_{n,s-1}$.

Sketch of proof of Lemma 2

By stability lemma, $G \in \text{-contains } H^3_{n,s-1}$ or $D^3_{n,s-1}$ for $n/6 \le s \le 13n/45 + 1$.

Case 1. $n/6 \le s \le 13n/45 + 1$ and $G \in \text{-contains } H^3_{n,s-1}$.

Case 2. $n/6 \le s \le 5n/18$ and $G \in \text{-contains } D^3_{n,s-1}$.

Case 3. $5n/18 + 1 \le s \le 13n/45 + 1$ and G ε -contains $D^3_{n,s-1}$ or $13n/45 + 2 \le s \le (1 - c_0)n/3$.

Sketch of proof of Lemma 2

Key Lemma

Given reals $0 < \varepsilon \ll c_0 \ll 1$, there exists an integer n_0 such that the following holds. Let H be a 3-graph with $n > n_0$ vertices. Let s be an integer. If $\nu(H) \leq s$ and

$$e(H) > {3s+1 \choose 3} + 3s(n-3s-1),$$
 (3.1)

then the following holds.

- For $5n/18 1 \le s \le 13n/45$, if $H \varepsilon$ -contains $D_{n,s}^3$, then H is a subgraph of $D_{n,s}^3$.
- 2 For $13n/45 \le s \le (1-c_0)n/3$, H is a subgraph of $D_{n,s}^3$.

Lemma 3.

For a given real $0 < c_0 \ll 1$, there exists an integer $n_0 = n_0(c_0)$ such that for $n > n_0$,

$$ar(n,3,M_s) \leq \left\{ egin{array}{cc} {3s-4 \choose 3} + 2, & ext{if } (1-c_0)n/3 \leq s < n/3 \ {3s-4 \choose 3} + 5, & ext{if } s = n/3. \end{array}
ight.$$

Sketch of proof of Lemma 3

Let $f_{n,s}: E(K_n^3) \to [c(n,s)]$ be a surjective coloring.

Sketch of proof of Lemma 3

Let $f_{n,s}: E(K_n^3) \to [c(n,s)]$ be a surjective coloring.

Denote the edge-colored K_n^3 by H.

Sketch of proof of Lemma 3

Let
$$f_{n,s}: E(K_n^3) \to [c(n,s)]$$
 be a surjective coloring.

Denote the edge-colored K_n^3 by H.

Let G be a subgraph of H with c(n, s) edges such that each color appears on exactly one edge of G.

Sketch of proof of Lemma 3

Let V(H) = [n] such that $d_G(1) \ge d_G(2) \ge \cdots \ge d_G(n)$.

Let
$$V(H) = [n]$$
 such that $d_G(1) \ge d_G(2) \ge \cdots \ge d_G(n)$

• Step 1: Let
$$U := [3s - 4]$$
 and
 $R := \{x \in U : d_{G[U]}(x) < n^2/15\}$, then $r < 2c_0 n$.

Sketch of proof of Lemma 3

Let
$$V(H) = [n]$$
 such that $d_G(1) \geq d_G(2) \geq \cdots \geq d_G(n)$

• Step 1: Let
$$U := [3s - 4]$$
 and $R := \{x \in U : d_{G[U]}(x) < n^2/15\}$, then $r < 2c_0 n$.

Let $H' := H - E(H[U \setminus R]).$

Sketch of proof of Lemma 3

 Step 2: If H' has a rainbow matching M such that
 |V(M) ∩ (W ∪ R)| ≥ r + 4, then G has a rainbow matching of
 size s, where W = [n] \ U.

Sketch of proof of Lemma 3

• Step 3: H' has a rainbow matching M such that $|V(M) \cap (W \cup R)| \ge r + 4$

The Future Work

- The case n = ks.
- The anti-Ramsey number of expansion of some graph.

Let U be a subset of $V(K_n^k)$ such that |U| = n - k - 1 and let $W := V(K_n^k) \setminus U$. Thus |W| = k + 1. Let $f : E(K_n^k[U]) \to [\binom{|U|}{k}]$ be a bijective coloring.

Let U be a subset of $V(K_n^k)$ such that |U| = n - k - 1 and let $W := V(K_n^k) \setminus U$. Thus |W| = k + 1. Let $f : E(K_n^k[U]) \to [\binom{|U|}{k}]$ be a bijective coloring.

For an odd integer k, there are $\frac{1}{2} \binom{k+1}{\frac{k+1}{2}}$ distinct subsets $A_1, \ldots, A_{\frac{1}{2} \binom{k+1}{\frac{k+1}{2}}}$ of W such that $|A_i| = (k+1)/2$ for $1 \le i \le \frac{1}{2} \binom{k+1}{\frac{k+1}{2}}$ and $A_i \cap A_j \ne \emptyset$ for $1 \le i < j \le \frac{1}{2} \binom{k+1}{\frac{k+1}{2}}$. Let $A_i := \{e \in E(K_n^k) : e \cap W = A_i \text{ or } e \cap W = W \setminus A_i\}$ and let \mathcal{H}_1 be the complete k-graph K_n^k with edge coloring $f_{\mathcal{H}_1}$, where

$$f_{\mathcal{H}_1}(e) = \begin{cases} f(e), & e \in E(\mathcal{K}_n^k[U]); \\ \binom{|U|}{k} + i, & e \in \mathcal{A}_i \text{ for } 1 \le i \le \frac{1}{2} \binom{k+1}{\frac{k+1}{2}}; \\ 0, & \text{otherwise.} \end{cases}$$

For an even integer
$$k$$
, let $x \in W$. There are $\binom{k}{2}-1$ distinct subsets $B_1, \ldots, B_{\binom{k}{2}-1}$ of $W \setminus \{x\}$ such that $|B_i| = k/2 - 1$ for $1 \leq i \leq \binom{k}{2}-1$. Let $\mathcal{B}_i := \{e \in E(\mathcal{K}_n^k) : x \in e \text{ and } e \cap W = B_i\} \cup \{e \in E(\mathcal{K}_n^k) : e \cap W = W \setminus (B_i \cup \{x\})\}$ and let \mathcal{H}_2 be the *n*-vertex complete *k*-graph \mathcal{K}_n^k with edge coloring $f_{\mathcal{H}_2}$, where

$$f_{\mathcal{H}_2}(e) = \begin{cases} f(e), & e \in E(\mathcal{H}_2[U]); \\ \binom{|U|}{k} + i, & e \in \mathcal{B}_i \text{ for } 1 \leq i \leq \binom{k}{\frac{k}{2}-1}; \\ 0, & \text{otherwise.} \end{cases}$$

$$ar(n,k,s) \ge \begin{cases} \binom{n-k-1}{k} + \frac{1}{2}\binom{k+1}{\frac{k+1}{2}} + 2, & k \text{ is odd;} \\ \binom{n-k-1}{k} + \binom{k}{\frac{k}{2}-1} + 2, & k \text{ is even.} \end{cases}$$

Thank you!

Mingyang Guo Anti-ramsey number of matchings in 3-graphs