Some Problems in Extremal Set Theory

Chong Shangguan

数学与交叉科学研究中心

Research Center for Mathematics and Interdisciplinary Sciences

31 March 2023

Outline

- Cover-free hypergraphs
- Union-free hypergraphs
- Cancellative hypergraphs

Notations

•
$$[n] = \{1, \ldots, n\}$$

$$\bullet \binom{[n]}{r} = \{A \subseteq [n] : |A| = r\}$$

ullet r-uniform hypergraph (or r-graph) $\mathcal{H}\subseteq {[n]\choose r}$

Definitions

$\mathcal{H}\subseteq \binom{[n]}{r}$ is called

• (Kautz-Singleton'64; Erdős-Frankl-Füredi'85) t-cover-free if for any t+1 distinct edges $A_1, \ldots, A_t, B \in \mathcal{H}$,

$$B \nsubseteq \cup_{i=1}^t A_i$$
;

• (Kautz-Singleton'64; Erdős-Moser'70) t-union-free if for any two distinct subfamilies $\mathcal{A}, \mathcal{B} \subseteq \mathcal{H}$, with $1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t$,

$$\cup_{A\in\mathcal{A}}A\neq\cup_{B\in\mathcal{B}}B;$$

• (Erdős-Katona'74; Füredi'12) t-cancellative if for any t+2 distinct edges $A_1, \ldots, A_t, B, C \in \mathcal{H}$,

$$(\cup_{i=1}^t A_i) \cup B \neq (\cup_{i=1}^t A_i) \cup C.$$

Applications beyond combinatorics

- testing blood samples, chemical leak, electric shorting, Denial-of-Service attack, etc
- multi-access channel communication
- DNA screening
- pattern finding
- digital and multimedia fingerprinting
- . . .
- In information/coding theory, cover-free hypergraph is equivalent to
 - non-adaptive group testing
 - disjunct matrix
 - superimposed code

Goal of this talk

- Let $F_t(n, r)$, $U_t(n, r)$, and $C_t(n, r)$ denote the maximum size of t-cover-free, t-union-free, and t-cancellative r-graphs on n vertices, respectively.
- Study the asymptotic behaviour of these functions for fixed r,t, and $n \to \infty$. ¹
- Focus on the Turán exponents, is there $\alpha \in [0, r]$ s.t. $g_t(n, r) = \Theta(n^{\alpha})$, where $g \in \{F, U, C\}$?

¹One can also study the problem for fixed t and $r, n \to \infty$, very different

Cover-free r-graphs

• $\mathcal{H} \subseteq \binom{[n]}{r}$ is *t*-cover-free if for any t+1 distinct edges $A_1, \ldots, A_t, B \in \mathcal{H}$, $B \nsubseteq \cup_{i=1}^t A_i$.

- "Trivial" example: r = 1, singletons
- "Non-trivial" example: (n, r, k)-packings, an n-vertex r-graph whose every two edges have < k intersections
- $(n, r, \lceil \frac{r}{t} \rceil)$ -packings are automatically *t*-cover-free
- (Rödl'85) \exists (n, r, k)-packings with size $\geq (1 o(1)) \left(\binom{n}{k} / \binom{r}{k}\right)$

Cover-free *r*-graphs - upper and lower bounds

- $(n, r, \lceil \frac{r}{t} \rceil)$ -packings: $F_t(n, r) \ge (1 o(1)) \left(\binom{n}{\lceil \frac{r}{t} \rceil} / \binom{r}{\lceil \frac{r}{t} \rceil} \right)$
- (Erdős-Frankl-Füredi'85) $\lim_{n\to\infty} \frac{F_t(n,r)}{n^{\lceil \frac{r}{t} \rceil}}$ exists (and determined it for some parameters).
- (Frankl-Füredi'87) $\lim_{n\to\infty} \frac{F_t(n,r)}{\binom{n}{\lceil \frac{r}{t} \rceil}} = \frac{1}{\binom{r}{\lceil \frac{r}{t} \rceil} m(r,\lceil \frac{r}{t} \rceil,\ell)}$, where
 - **1** $0 \le \ell < t$ is the unique integer s.t. $r = t(\lceil \frac{r}{t} \rceil 1) + \ell + 1$,
 - ② $m(r,k,\ell)$ is Erdős hypergraph matching function, which is the maximum number of edges of an r-vertex k-graph containing no $\ell+1$ pairwise disjoint edges.

Conjecture of Erdős-Frankl-Füredi'85

- ullet Consider not necessarily uniform t-cover-free families $\mathcal{H}\subseteq 2^{[\eta]}$
- Let $N(t) = \min\{n : \exists t \text{-} CFF \text{ with } \geq n+1 \text{ edges}\}$
- ullet "Trivial" example: singletons form a t-cover-free families with n edges

• Question. What is N(t)?

CFFs rising from affine planes

Definition (Affine plane)

Affine plane of order t+1, where t+1 is a prime power, is a point-line incidence structure $(\mathcal{P}, \mathcal{L})$ s.t.

- $|\mathcal{P}| = (t+1)^2$, $|\mathcal{L}| = (t+1)^2 + (t+1)$
- ullet every line contains t+1 points
- every point is contained in t + 2 lines
- every pair of lines intersect in at most one point
- Affine plane of order t+1 gives a t-CFF (t+1)-graph with $(t+1)^2$ -vertices and $(t+1)^2+(t+1)$ edges
- For prime power t+1, $N(t) \le (t+1)^2$; for all $t \to \infty$, $N(t) \le t^2 + o(t^2)$.

Conjecture of Erdős-Frankl-Füredi'85, continued

- Conjecture. (Erdős-Frankl-Füredi'85): $\lim_{t\to\infty} \frac{N(t)}{t^2} = 1$ (weak version) and $N(t) \geq (t+1)^2$ (strong version)
- (Erdős-Frankl-Füredi'85) $\mathit{N}(t) \geq \frac{5}{6}t^2 + o(t^2)$
- (S.-Ge'16) $N(t) \geq \frac{15+\sqrt{33}}{24}t^2 > 0.86n^2$, based on Erdős-Gallai'59 exact formula $m(r,2,\ell) = \max\{\binom{2\ell+1}{2},\binom{r}{2}-\binom{r-\ell}{2}\}$ for $r \geq 2\ell+2$.

Union-free r-graphs

- $\mathcal{H} \subseteq \binom{[n]}{r}$ is *t*-union-free if for any two distinct subfamilies $\mathcal{A}, \mathcal{B} \subseteq \mathcal{H}$, with $1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t, \ \cup_{A \in \mathcal{A}} A \neq \cup_{B \in \mathcal{B}} B$
- Observation. t-cover-free $\implies t$ -union-free $\implies (t-1)$ -cover-free
- Bounds via CFF. $\Omega(n^{\lceil \frac{r}{t} \rceil}) = F_t(n,r) \le U_t(n,r) \le F_{t-1}(n,r) = O(n^{\lceil \frac{r}{t-1} \rceil}).$
- Improved bounds
 - (Frankl-Füredi'86) $U_2(n,r) = \Theta(n^{\lceil 4r/3 \rceil/2})$
 - ② (Füredi-Ruszinkó'13) $n^{2-o(1)} < U_r(n,r) = O(n^2)$
 - Conjecture: $U_r(n,r) = o(n^2)$, no Turán exponent
 - **3** (S.-Tamo'20) $\Omega(n^{\frac{r}{t-1}}) = U_t(n,r)$, exact Turán exponent for $(t-1) \mid r$.

Union-free r-graphs

- $\mathcal{H} \subseteq \binom{[n]}{r}$ is *t*-union-free if for any two distinct subfamilies $\mathcal{A}, \mathcal{B} \subseteq \mathcal{H}$, with $1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t, \ \cup_{A \in \mathcal{A}} A \neq \cup_{B \in \mathcal{B}} B$
- Observation. t-cover-free $\Longrightarrow t$ -union-free $\Longrightarrow (t-1)$ -cover-free
- Bounds via CFF. $\Omega(n^{\lceil \frac{r}{t} \rceil}) = F_t(n,r) \le U_t(n,r) \le F_{t-1}(n,r) = O(n^{\lceil \frac{r}{t-1} \rceil})$.
- Improved bounds
 - (Frankl-Füredi'86) $U_2(n,r) = \Theta(n^{\lceil 4r/3 \rceil/2})$
 - (Füredi-Ruszinkó'13) $n^{2-o(1)} < U_r(n,r) = O(n^2)$
 - Conjecture: $U_r(n,r) = o(n^2)$, no Turán exponent
 - **3** (S.-Tamo'20) $\Omega(n^{\frac{r}{t-1}}) = U_t(n,r)$, exact Turán exponent for $(t-1) \mid r$.
 - **1** (S.-Tamo'20) $\gcd(r, t-1) = 1$, $\Omega(n^{\frac{r}{t-1}}(\log n)^{\frac{1}{t-1}}) = U_t(n, r)$

Cancellative r-graphs

- $\mathcal{H} \subseteq \binom{[n]}{r}$ is *t*-cancellative if for any t+2 distinct edges $A_1, \ldots, A_t, B, C \in \mathcal{H}, (\cup_{i=1}^t A_i) \cup B \neq (\cup_{i=1}^t A_i) \cup C$
- Observation. (t+1)-cover-free $\Longrightarrow t$ -cancellative \Longrightarrow "almost" $\left\lfloor \frac{t}{2} \right\rfloor$ -cover-free
- Bounds via CFF. $\Omega(n^{\lceil \frac{r}{t+1} \rceil}) = C_t(n,r) = O(n^{\lceil \frac{r}{\lfloor \frac{t}{2} \rfloor} \rceil})$.
- Improved bounds
 - ① (Tolhuizen'00, Frankl-Füredi'84) $\frac{0.28}{2^r} \binom{n}{r} < C_1(n,r) \le \frac{2^r}{\binom{2r}{r}} \binom{n}{r}$
 - ② (Füredi'12) $\Omega(n^{\lfloor \frac{r}{2} \rfloor}) = C_2(n,r) = O(n^{\lceil \frac{r}{2} \rceil})$
 - (S.-Tamo'20) $\Omega(n^{\lfloor \frac{2r}{t+2} \rfloor + \frac{2r\pmod{t+2}}{t+1}}) = C_t(n,r) = O(n^{\lceil \frac{r}{\lfloor t/2 \rfloor + 1} \rceil})$, exact Turán exponent for $2 \mid t$ and $(t/2 + 1) \mid r$.

Cancellative r-graphs

- $\mathcal{H} \subseteq \binom{[n]}{r}$ is *t*-cancellative if for any t+2 distinct edges $A_1, \ldots, A_t, B, C \in \mathcal{H}$, $(\cup_{i=1}^t A_i) \cup B \neq (\cup_{i=1}^t A_i) \cup C$
- Observation. (t+1)-cover-free $\Longrightarrow t$ -cancellative \Longrightarrow "almost" $\left\lfloor \frac{t}{2} \right\rfloor$ -cover-free
- Bounds via CFF. $\Omega(n^{\lceil \frac{r}{t+1} \rceil}) = C_t(n,r) = O(n^{\lceil \frac{r}{\lfloor \frac{t}{2} \rfloor} \rceil})$.
- Improved bounds
 - (Tolhuizen'00, Frankl-Füredi'84) $\frac{0.28}{2^r} \binom{n}{r} < C_1(n,r) \le \frac{2^r}{\binom{2r}{r}} \binom{n}{r}$
 - ② (Füredi'12) $\Omega(n^{\lfloor \frac{r}{2} \rfloor}) = C_2(n,r) = O(n^{\lceil \frac{r}{2} \rceil})$
 - **③** (S.-Tamo'20) $\Omega(n^{\lfloor \frac{2r}{t+2} \rfloor + \frac{2r \pmod{t+2}}{t+1}}) = C_t(n,r) = O(n^{\lceil \frac{r}{\lfloor t/2 \rfloor + 1} \rceil})$, exact Turán exponent for $2 \mid t$ and $(t/2 + 1) \mid r$.

Sparse *r*-graphs

• (v, e)-free r-graphs: the union of any e distinct edges contains at least v+1 vertices, i.e, for \forall distinct edges $A_1, \ldots, A_e \in \mathcal{H}$,

$$|\cup_{i=1}^e A_i| \geq v+1$$

• Example: Fano plane is (4,2)-free, (5,3)-free, but not (6,4)-free

Sparse *r*-graphs - existence

Lemma (Brown-Erdős-Sós'73, standard probabilistic construction)

Let $s \ge 1$, $r \ge 3$ and (v_i, e_i) for $1 \le i \le s$ be pairs of integers satisfying $v_i \ge r+1$, $e_i \ge 2$. Let $h:=\min\{\frac{e_i r-v_i}{e_i-1}: 1 \le i \le s\}$. Then there exists an r-graph with $\Omega(n^h)$ edges that is simultaneously (v_i, e_i) -free for each $1 \le i \le s$.

Lemma (5.-Tamo'20, cancellative r-graphs via sparse r-graphs)

$$\forall \ 0 \le x \le r-1,$$

(tr + x, t + 2)-free + (2r - x - 1, 2)-free $\implies t$ -cancellative.

Lemma ($\mathbf{5}$ -Tamo'20, cancellative r-graphs via sparse r-graphs)

$$\forall \ 0 \le x \le r-1,$$
 $(tr+x,t+2)$ -free $+ (2r-x-1,2)$ -free $\Longrightarrow t$ -cancellative.

• If not *t*-cancellative, then $\exists (\cup_{i=1}^t A_i) \cup B = (\cup_{i=1}^t A_i) \cup C$

Lemma ($\mathbf{5}$ -Tamo'20, cancellative r-graphs via sparse r-graphs)

$$\forall \ 0 \le x \le r-1,$$
 $(tr+x,t+2)$ -free $+ (2r-x-1,2)$ -free $\Longrightarrow t$ -cancellative.

- If not *t*-cancellative, then $\exists (\cup_{i=1}^t A_i) \cup B = (\cup_{i=1}^t A_i) \cup C$
- So $(B \cup C) \setminus (B \cap C) \subseteq \cup_{i=1}^t A_i$

Lemma ($\mathbf{5}$ -Tamo'20, cancellative r-graphs via sparse r-graphs)

$$\forall \ 0 \le x \le r-1,$$
 $(tr+x,t+2)$ -free $+ (2r-x-1,2)$ -free $\Longrightarrow t$ -cancellative.

- If not *t*-cancellative, then $\exists (\cup_{i=1}^t A_i) \cup B = (\cup_{i=1}^t A_i) \cup C$
- So $(B \cup C) \setminus (B \cap C) \subseteq \cup_{i=1}^t A_i$
- (2r x 1, 2)-free $\Longrightarrow |B \cap C| \le x$

Lemma (S-Tamo'20, cancellative r-graphs via sparse r-graphs)

$$\forall \ 0 \le x \le r-1,$$
 $(tr+x,t+2)$ -free $+ (2r-x-1,2)$ -free $\Longrightarrow t$ -cancellative.

- If not *t*-cancellative, then $\exists (\cup_{i=1}^t A_i) \cup B = (\cup_{i=1}^t A_i) \cup C$
- So $(B \cup C) \setminus (B \cap C) \subseteq \cup_{i=1}^t A_i$
- (2r x 1, 2)-free $\Longrightarrow |B \cap C| \le x$
- Therefore

$$|(\cup_{i=1}^t A_i) \cup B \cup C| = |\cup_{i=1}^t A_i| + |(B \cup C) \setminus (\cup_{i=1}^t A_i)|$$

$$\leq tr + |B \cap C|$$

$$\leq tr + x,$$

a contradiction to (tr + x, t + 2)-free.

r-partite + (tr - r, t)-free + (tr, 2t)-free \implies t-union-free

r-partite + (tr - r, t)-free + (tr, 2t)-free \Longrightarrow t-union-free

Fact

r-partite + (tr - r, t)-free + (tr, 2t)-free \implies t-union-free

Fact

If an r-partite r-graph with vertex parts V_1, \ldots, V_r is (tr - r, t)-free, then \forall distinct edges A_1, \ldots, A_t , \exists i s.t. $A_1 \cap V_i, \ldots, A_t \cap V_i$ all distinct.

• If not *t*-union-free, $\exists \ \mathcal{A} \neq \mathcal{B}, 1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t$, s.t. $\cup_{A \in \mathcal{A}} A = \cup_{B \in \mathcal{B}} B$

r-partite + (tr - r, t)-free + (tr, 2t)-free \Longrightarrow t-union-free

Fact

- If not *t*-union-free, $\exists \ \mathcal{A} \neq \mathcal{B}, 1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t$, s.t. $\cup_{A \in \mathcal{A}} A = \cup_{B \in \mathcal{B}} B$
- (tr r, t)-free $\Longrightarrow |\mathcal{A}| = |\mathcal{B}| = t$

r-partite +(tr-r,t)-free +(tr,2t)-free \implies t-union-free

Fact

- If not *t*-union-free, $\exists \ \mathcal{A} \neq \mathcal{B}, 1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t$, s.t. $\cup_{A \in \mathcal{A}} A = \cup_{B \in \mathcal{B}} B$
- (tr r, t)-free $\Longrightarrow |\mathcal{A}| = |\mathcal{B}| = t$
- (tr, 2t)-free $\Longrightarrow A \cap B \neq \emptyset$, $|A \cap B| = i \ge 1$

r-partite +(tr-r,t)-free +(tr,2t)-free \implies t-union-free

Fact

- If not *t*-union-free, $\exists \ \mathcal{A} \neq \mathcal{B}, 1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t$, s.t. $\cup_{A \in \mathcal{A}} A = \cup_{B \in \mathcal{B}} B$
- (tr r, t)-free $\Longrightarrow |\mathcal{A}| = |\mathcal{B}| = t$
- (tr, 2t)-free $\Longrightarrow \mathcal{A} \cap \mathcal{B} \neq \emptyset$, $|\mathcal{A} \cap \mathcal{B}| = i \geq 1$
- $A := \{C_1, \dots, C_i, A_{i+1}, \dots, A_t\}$ and $B := \{C_1, \dots, C_i, B_{i+1}, \dots, B_t\}$,

r-partite + (tr - r, t)-free + (tr, 2t)-free \implies t-union-free

Fact

- If not *t*-union-free, $\exists \ \mathcal{A} \neq \mathcal{B}, 1 \leq |\mathcal{A}|, |\mathcal{B}| \leq t$, s.t. $\cup_{A \in \mathcal{A}} A = \cup_{B \in \mathcal{B}} B$
- (tr r, t)-free $\Longrightarrow |\mathcal{A}| = |\mathcal{B}| = t$
- (tr, 2t)-free $\Longrightarrow A \cap B \neq \emptyset$, $|A \cap B| = i \ge 1$
- $\bullet \ \mathcal{A}:=\{\textit{C}_1,\ldots,\textit{C}_i,\textit{A}_{i+1},\ldots,\textit{A}_t\} \ \text{and} \ \mathcal{B}:=\{\textit{C}_1,\ldots,\textit{C}_i,\textit{B}_{i+1},\ldots,\textit{B}_t\},$
- Apply Fact to $\mathcal{A}' := \mathcal{A} \cup \{B_{i+1}\} \setminus \{C_1\}, \ \exists \ 1 \leq j \leq r \ \text{such that} \ A \cap V_j, A \in \mathcal{A}' \ \text{are pairwise distinct.}$

Summary

- Cover-free, union-free, cancellative hypergraphs
- Old bounds:
 - t-cover-free $\Longrightarrow t$ -union-free $\Longrightarrow (t-1)$ -cover-free
 - ullet (t+1)-cover-free \Longrightarrow t-cancellative \Longrightarrow "almost" $\lfloor rac{t}{2} \rfloor$ -cover-free
- New bounds:
 - r-partite + (tr r, t)-free + (tr, 2t)-free $\implies t$ -union-free
 - (tr + x, t + 2)-free + (2r x 1, 2)-free \implies t-cancellative
- Questions.
 - **1** Minimum n, s.t. \exists t-CFF \mathcal{H} ⊆ $2^{[n]}$ with $|\mathcal{H}| > n$?

 - Maximum cardinality with no size restriction on the edges?

THANK YOU