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Introduction

This is a gentle introduction to basics of the hypergraph container
method introduced independently by Balogh, Samotij and Morris,
and Saxton and Thomason about 10 years ago.

The method has seen numerous applications in extremal
combinatorics and other related areas in the past decade. We will
focus mostly on examples, illustrating how to apply this method on
various types of problems.

Key idea

Independent sets in many ‘natural’ hypergraphs are ‘clustered’ to-
gether.
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Two counting problems to start

Definition

I How many maximal triangle-free graphs on the vertex set
[n] = {1, . . . , n}?

I How many maximal sum-free sets in the set of integers [n]?

Warm up of estimating the number of triangle-free graphs on [n].

Definition: Extremal number

ex(n,H) = max{e(G ) : |G | = n, H 6⊆ G}.

Theorem [Erdős-Kleitman-Rothschild (1976)]

The number is triangle-free graphs on [n] is

2n
2/4+o(n2) = 2ex(n,K3)+o(n2).
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First attempt, count triangle-free graphs

I Lower bound: take all subgraphs of Kn/2,n/2, at least 2n
2/4.

I Upper bound: ex(n,K3) = n2/4, so at most

∑
i≤n2/4

((n
2

)
i

)
>

(
n2/2

n2/4

)
= 2n

2/2−o(n2)

Problem: Inefficient to count them one by one; lot of them are
similar.
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Container theorem for triangle-free graphs

Theorem[Container for triangle-free graphs]

There exists a collection of graphs F on [n] such that:

I (container) ∀H triangle-free, there is G ∈ F such that H ⊆ G .

I (few) |F| ≤ nO(n3/2).

I (almost triangle-free) ∀G ∈ F contains o(n3) triangles.

I (with supersaturation) ∀G ∈ F , e(G ) ≤ n2/4 + o(n2).

Supersaturation for triangles

For any ε > 0, there is δ > 0 such that

e(G ) ≥
(

1

4
+ ε

)
n2 =⇒ δn3 triangles
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What about maximal triangle-free graphs
Question (Erdős)

Are there much fewer maximal triangle-free graphs?

2n
2/8 ≤ # ≤ 2n

2/4+o(n2)

Lower bound:

I |X | = |Y | = n/2 such that X perfect matching, Y empty.

I For each x1x2 in X and y ∈ Y , add exactly one edge.

X Y

x1

x2

y

Add 1
edge
for

every
pair

(x1x2, y)

n/4 matching edges in X , n/2 vertices in Y ⇒ 2n/4·n/2 = 2n
2/8.
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Matching upper bound
Theorem[Balogh-Petrickova 2014]

The number of maximal triangle-free graphs on [n] is

2n
2/8+o(n2) = 2ex(n,K3)/2+o(n2).

Theorem[Balogh-L.-Petrickova-Sharifzadeh 2015]

Almost all maximal triangle-free graphs looks like the ones from the
construction.

X Y

x1

x2

y

Add 1
edge
for

every
pair

(x1x2, y)
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Upper bound

Theorem[Container for triangle-free graphs]

There exists a collection of graphs F on [n] such that:

I (container) ∀H triangle-free, there is G ∈ F such that H ⊆ G .

I (few) |F| ≤ nO(n3/2).

I (almost triangle-free) ∀G ∈ F contains o(n3) triangles.

I (with supersaturation) ∀G ∈ F , e(G ) ≤ n2/4 + o(n2).

Suffices to show for any G ∈ F , the number of maximal
triangle-free H ⊆ G is at most 2n

2/8+o(n2).

Triangle removal lemma

If an n-vertex G has o(n3) triangles, then it can be made triangle-
free by removing o(n2) edges.
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Upper bound

Fix G ∈ F , Removal lemma implies E (G ) = E (G1) ∪ E (G2), with
triangle-free G1 and e(G2) = o(n2).

Every maximal triangle-free graph H in G can be built:

(S1) Choose a triangle-free subgraph H2 = H ∩ G2.

(S2) Extend H2 in G1 to maximal triangle-free.

#(S1) is negligible: 2o(n
2). Suffices to show, given H2, the number

of its extensions is at most 2n
2/8.
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Bound (S2) via auxiliary graph
Triangle-free H2 and G1, define link graph L = LH2(G1):

V (L) := E (G1)
E (L) := {e1e2 : ∃e ∈ E (H2) s.t. {e1, e2, e} forms a triangle}.

Claim 1: #extensions of H2 is at most MIS(L).
Each extension corresponds to a maximal indep. set in L.

Claim 2: L is triangle-free.
If e1e2e3 triangle in L, then pairwise share endpts in G1: either
triangle, but G1 is K3-free; or star, but H2 is K3-free.

Theorem[Hujter-Tuza]

If G is triangle-free, then MIS(G ) ≤ 2|G |/2.

#extensions in (S2)
C1
≤ MIS(L)

C2&Hujter-Tuza
≤ 2|L|/2 ≤ 2n

2/8.
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Claim 2: L is triangle-free.
If e1e2e3 triangle in L, then pairwise share endpts in G1: either
triangle, but G1 is K3-free; or star, but H2 is K3-free.

Theorem[Hujter-Tuza]

If G is triangle-free, then MIS(G ) ≤ 2|G |/2.

#extensions in (S2)
C1
≤ MIS(L)

C2&Hujter-Tuza
≤ 2|L|/2 ≤ 2n

2/8.
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Open: maximal Kr+1-free graphs

What about the number of maximal Kr+1-free graphs on [n] for
r ≥ 3?

I Alon and  Luczak:

X Y

x1

x2

y

Add 1
edge
for

every
pair

(x1x2, y)

X1 Y

X2

Add 1 edge

Add 3 edges

=⇒ ≥ 2ex(n,Kr+1)/2+o(n2).

I Upper bound: Improvement: ∀r ≥ 3 ∃εr > 0:

≤ 2ex(n,Kr+1)−εrn2 .
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Cameron-Erdős Conjecture

Definition

A set S ⊆ [n] is sum-free if x + y 6∈ S for every x , y ∈ S (x and y
are not necessarily distinct), i.e. no solution to x + y = z .

Example

I Set of odds is sum-free.

I {n/2+1, n/2+2,. . . , n} is sum-free.

Cameron-Erdős Conjecture (1990)

The number of sum-free subsets of [n] is O(2n/2).

Hong Liu Hypergraph container method
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Maximal triangle-free graphs

Maximal sum-free sets

Cameron-Erdős Conjecture (1990)

The number of sum-free subsets of [n] is O(2n/2).

Alon (1991)

The number of sum-free subsets of [n] is 2(1/2+o(1))n.

Green (2004), Sapozhenko (2003)

There are constants c0 and c1, s.t. the number of sum-free subsets
of [n] is

(1 + o(1))ci2
n/2,

where i = n mod 2.
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Maximal sum-free subsets of integers

Cameron-Erdős Conjecture

There is an absolute constant c > 0, s.t. the number of maximal
sum-free subsets of [n] is O(2n/2−cn).

There are at least 2n/4 maximal sum-free subsets of [n].

I Suppose n is even. Let S consist of n together with precisely
one number from each pair {x , n − x} for odd x < n/2. No
further odd numbers can be added.

I Suppose that 4|n and set I1 := {n/2 + 1, . . . , 3n/4} and
I2 := {3n/4 + 1, . . . , n}. First choose the element n/4 and a
set S ⊆ I2. Then for every x ∈ I2 \ S , choose x − n/4 ∈ I1.
No further element in I2 can be added.
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Upper bound
Denote by fmax(n) the number of maximal sum-free subsets in [n].
Recall that fmax(n) ≥ 2n/4.

Cameron-Erdős Conjecture

∃c > 0, fmax(n) = O(2n/2−cn).

 Luczak-Schoen (2001)

fmax(n) = O(2n/2−2
−28n).

Wolfovitz (2009)

fmax(n) ≤ 23n/8+o(n).

Balogh-L.-Sharifzadeh-Treglown (2015)

fmax(n) = 2n/4+o(n).
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Cameron-Erdős Conjecture

∃c > 0, fmax(n) = O(2n/2−cn).

 Luczak-Schoen (2001)

fmax(n) = O(2n/2−2
−28n).

Wolfovitz (2009)

fmax(n) ≤ 23n/8+o(n).

Balogh-L.-Sharifzadeh-Treglown (2015)

fmax(n) = 2n/4+o(n).

Hong Liu Hypergraph container method



Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Upper bound

Balogh-L.-Sharifzadeh-Treglown (2015)

fmax(n) = 2n/4+o(n).

Balogh-L.-Sharifzadeh-Treglown (2018)

For each 1 ≤ i ≤ 4, there is a constant Ci such that, given any
n ≡ i mod 4, [n] contains (Ci + o(1))2n/4 maximal sum-free sets.
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Tools

From additive number theory:

I Container Lemma of Green and Ruzsa.

I Removal lemma of Green.

I Structure of large sum-free sets by Deshouillers, Freiman, Sós
and Temkin.

From extremal graph theory: upper bound on the number of
maximal independent sets for

I all graphs by Moon and Moser.

I triangle-free graphs by Hujter and Tuza.

I Not too sparse and almost regular graphs.
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Tools

Container Lemma for sum-free sets [Green-Ruzsa]

There exists F ⊆ 2[n], s.t.

I (container) ∀S ⊆ [n] sum-free, ∃F ∈ F , s.t. S ⊆ F ;

I (few) |F| = 2o(n);

I (almost sum-free) ∀F ∈ F contains o(n2) Schur triples.

I (with supersaturation) ∀F ∈ F , |F | ≤ (1/2 + o(1))n.

Suffices to show that for every container A ∈ F ,

fmax(A) ≤ 2n/4+o(n).
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Tools
Removal Lemma [Green]

For any A ⊆ [n] with o(n2) Schur triples, A = B ∪ C where B is
sum-free and |C | = o(n).

Removal Lemma + Theorem of Deshouillers, Freiman, Sós and
Temkin

⇓

Structural Lemma

A ⊆ [n] with o(n2) Schur triples and |A| = (12 − γ)n with γ =
γ(n) ≤ 1/11, then
(i) (interval-like) A = B ∪ C where |C | = o(n) and B ⊆ [(1/2 −
γ)n, n].
(ii) (odds-like) Almost all elements of A are odd, i.e. |A\O| = o(n).
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Two counting problems
Maximal triangle-free graphs

Maximal sum-free sets

Sketch of the proof

Case 1: small container, |A| ≤ 0.45n;

Case 2: interval, A = B ∪ C where C = A ∩ [n/2] and B = A \ C .

Case 3: odd, A = B ∪ C where |C | = o(n) and B ⊆ odd integers .

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C ;
(2) Extend S in B to a maximal one.
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maximal sum-free sets ⇒ maximal independent sets

Definition

Given S ,B ⊆ [n] sum-free, the link graph of S on B is LS [B], where
V = B and x ∼ y iff ∃z ∈ S s.t. {x , y , z} is a Schur triple.

Lemma
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Maximal sum-free sets

Case 1: small container, |A| ≤ 0.45n.

Recall A = B ∪ C , B sum-free, |C | = o(n).

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C ;
(2) Extend S in B to a maximal one.

I # S in (1) is at most 2|C | = 2o(n).

I Moon-Moser: ∀G , MIS(G ) ≤ 3|G |/3.

I For a fixed S , # extensions in (2) is exactly MIS(LS [B]),

MIS(LS [B]) ≤ 3|B|/3 ≤ 30.45n/3 � 20.249n.
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Maximal sum-free sets

Case 2: Interval-like case.

I Now container A could be bigger than 0.45n.

I Moon-Moser bound is not enough!

I Instead we obtain more structural information about the link
graphs.

Interval case: C := A ∩ [n/2] and B = A \ C ⇒ LS [B] is ∆-free.
If not, then we have b1 > b2 > b3 > n/2 in B such that
s = b1 − b2, s ′ = b1 − b3 and s ′′ = b2 − b3 are in S ,
but then s + s ′′ = s ′.

Hujter-Tuza: G triangle-free ⇒ MIS(G ) ≤ 2|G |/2.
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Maximal sum-free sets

Case 3: odds-like case.

Odd case: C := A ∩ E and B = A ∩ O, and S ⊆ C .

The number of triangles in LS [B] is O(|S |3).

I Small |S | ≤ n1/4 ⇒ LS [B] has few (o(n)) triangles.

I G − T triangle-free, then MIS(G ) ≤ 2|G |/2+|T |/2.

I Large |S | ≥ n1/4 ⇒ LS [B] is almost regular and dense.

I ∀G : δ(G )→∞, ∆(G ) ≤ kδ(G )

⇒ MIS(G ) ≤ 3( k
k+1 ) |G|

3 +o(|G |).
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Thank you!
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