Covering cubes by hyperplanes

Hao Huang

Emory University

Oct 8, 2020

Joint work with Alexander Clifton (Emory).

Alexander Clifton (Ph.D student at Emory)

A naive question

The *n*-dimensional cube Q^n consists of the binary vectors $\{0,1\}^n$.

An affine hyperplane is:

$$\{\vec{x}:a_1x_1+\cdots+a_nx_n=\mathbf{b}\}.$$

QUESTION

What is the minimum number of affine hyperplanes that cover all the vertices of Q^n ?

A naive question

The *n*-dimensional cube Q^n consists of the binary vectors $\{0,1\}^n$.

An affine hyperplane is:

$$\{\vec{x}:a_1x_1+\cdots+a_nx_n=b\}.$$

QUESTION

What is the minimum number of affine hyperplanes that cover all the vertices of Q^n ?

Answer: 2.

X:=| X:=0

Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For Q^3 , 3 planes are needed.

THEOREM (ALON, FÜREDI 1993)

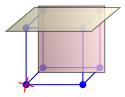
Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For Q^3 , 3 planes are needed.

THEOREM (ALON, FÜREDI 1993)

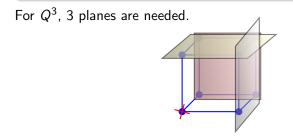
Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For Q^3 , 3 planes are needed.



THEOREM (ALON, FÜREDI 1993)

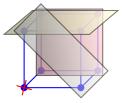
Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?



THEOREM (ALON, FÜREDI 1993)

Suppose we would like to avoid exactly one vertex of the cube, how many affine hyperplanes are needed?

For Q^3 , 3 planes are needed.



THEOREM (ALON, FÜREDI 1993)

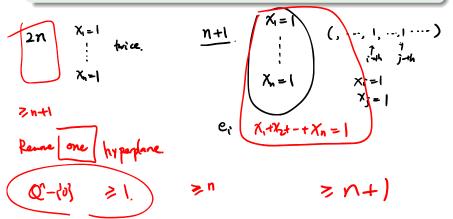
An outline of the proof of Alon-Füredi Theorem

Hi:
$$\langle \vec{x}, \vec{a}_i \rangle = b_i$$
 $b_i \neq 0$
 $\in_{R} \in_{R}$
 $p(x_1, \dots, x_n) = \prod_{i=1}^{n} (\langle \vec{x}, \vec{a}_i \rangle - b_i)$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$
 $(\Box \ p(\vec{x}) = 0 \quad f_{ir} \ x \in Q^{n-1}o]$

Covering the cube twice

QUESTION (BUKH'S HOMEWORK ASSIGNMENT AT CMU)

What happens if we would like to cover the vertices of Q^n at least twice, with one vertex uncovered?



Denote by f(n, k) the minimum number of affine hyperplanes needed to cover every vertex of Q^n at least k times (except for $\vec{0}$ which is not covered at all).

We call such a cover an almost *k*-cover of the *n*-cube.

f(n, 1) = n.f(n, 2) = n + 1.

What is the next?

Upper and lower bounds

$$f(n,k) \leq n + {k \choose 2}$$

$$f(n,k) \leq n + {k \choose 2}$$

$$f(n,k) \leq n + {k \choose 2}$$

$$f(n,k) \leq n + k - 1$$

$$f(n,k) \geq n + k - 1$$

Note that removing k - 1 planes from an almost k-cover still gives an almost 1-cover.

$$k=3: \quad n+2 \leq f(n,3) \leq n+3.$$

The $k = 3$ case and a natural conjecture				
		πi=1 Σπi=1 Σxi=2	trice once	
	Theorem (H., Clifton 2019)			
	For $n \ge 2$,			
	f(n,3) = n+3		n+12-1 = n+3	
	For $n \ge 3$,		n+(<u>k</u>) = n+6	
	$f(n,4) \in \{n+5, n-1\}$	$(-) \in \{n+5, n+6\}.$		

For fixed integer $k \ge 1$ and sufficiently large n,

$$f(n,k) = n + \binom{k}{2}.$$

2 k the

The Nullstellensatz

If \mathbb{F} is an algebraically closed field, and $f, g_1, \dots, g_m \in \mathbb{F}[x_1, \dots, x_n]$, where f vanishes over all common zeros of g_1, \dots, g_m , then there exists an integer k, and polynomials $h_1, \dots, h_m \in \mathbb{F}[x_1, \dots, x_n]$, such that

$$f^k = \sum_{i=1}^m h_i g_i.$$

When m = n, and $g_i = \prod_{s \in S_i} (x_i - s)$, for some $S_1, \dots, S_n \subset \mathbb{F}$, a stronger result holds: there are polynomials h_1, \dots, h_n with deg $h_i \leq \deg f - \deg g_i$, such that

$$f=\sum_{i=1}^n h_i g_i.$$

Punctured Combinatorial Nullstellensatz

We say $\vec{a} = (a_1, \dots, a_n)$ is a zero of multiplicity t of $f \in \mathbb{F}[x_1, \dots, x_n]$, if t is the minimum degree of the terms in $f(x_1 + a_1, \dots, x_n + a_n)$. For $i = 1, \dots, n$, let

$$D_i \subset S_i \subset \mathbb{F}. \quad g_i = \prod_{s \in S_i} (x_i - s). \quad \ell_i = \prod_{d \in D_i} (x_i - d).$$

$$\{b_i\} \quad \{b_i\} \quad \{c_i \in \mathcal{K}\}.$$

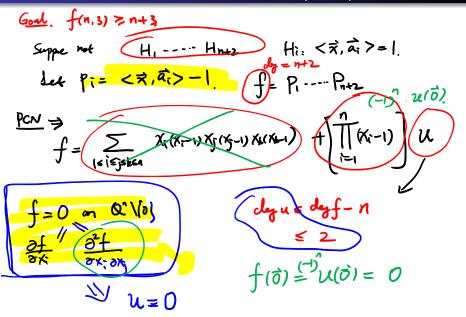
THEOREM (BALL, SERRA 2009)

If f has a zero of multiplicity at least t at all the common zeros of g_1, \dots, g_n , except at least one point of $D_1 \times \dots \times D_n$ where it has a zero of multiplicity less than t, then there are polynomials h_{τ} satisfying $\deg(h_{\tau}) \leq \deg(f) - \sum_{i \in \tau} \deg(g_i)$, and a non-zero polynomial u satisfying $\deg(u) \leq \deg(f) - \sum_{i=1}^{n} (\deg(g_i) - \deg(\ell_i))$, such that

$$f = \sum_{\tau \in T(n,t)} g_{\tau(1)} \cdots g_{\tau(t)} h_{\tau} + u \prod_{i=1}^{t} \frac{g_i}{\ell_i}.$$

T(n, t) consists of all non-decreasing sequences of length t on [n].

Outline of our proof using the PCN (k = 3)



Follow-up work $x_{i=1}, \dots, x_{n-1} = 1$ $x_{i+1} + x_{n-1} = 1$ The essence of this proof can be summarized in one sentence: If f has zeroes of multiplicity at least 3 at $\{0,1\}^n \setminus \{0\}$ and $f(0) \neq 0$, then deg $(f) \geq n+3$. $f=P_1\cdots P_m$ THEOREM (SAUERMANN, WIGDERSON 2020) For $k \ge 2$, the minimum possible degree of a polynomial $f(x_1, \dots, x_n)$ sucht that it has zeroes of multiplicity at least k at $\{0,1\}^n \setminus \{0\}$ and $f(0) \neq 0$, is n + 2k - 3. $n+(\frac{k}{2}) \geq f(n,k) \geq n+2k-3$ COROLLARY (SAUERMANN, WIGDERSON 2020) For $k \ge 2$, an almost k-cover of Q^n has at least n + 2k - 3

hyperplanes.

f(n, k) for fixed n and large k

For small
$$n$$
, $f(n, k) \neq n + \binom{k}{2}$. Actually,

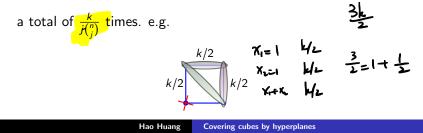
THEOREM (H., CLIFTON 2019)

For fixed n, and k tends to infinity,

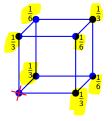
$$f(n,k) = \left(1 + \frac{1}{2} + \dots + \frac{1}{n} + o(1)\right)k.$$

• Upper bound: use every hyperplane

$$x_{i_1}+\cdots+x_{i_i}=1$$



• Lower bound: (e.g. n = 3) assign weights to vertices:

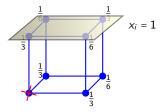


Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$k \cdot \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{3}\right) = \frac{11}{6}k$$

hyperplanes.

• Lower bound: (e.g. n = 3) assign weights to vertices:

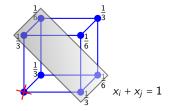


Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$k \cdot \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{3}\right) = \frac{11}{6}k$$

hyperplanes.

• Lower bound: (e.g. n = 3) assign weights to vertices:

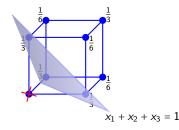


Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$k \cdot \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{3}\right) = \frac{11}{6}k$$

hyperplanes.

• Lower bound: (e.g. n = 3) assign weights to vertices:



Every affine plane covers vertices of total weight at most 1. Therefore one needs at least

$$k \cdot \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{3}\right) = \left(\frac{11}{6}k\right)^{2} + \frac{1}{2} = \frac{1}{2}$$

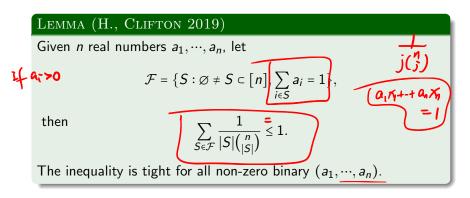
hyperplanes.

An LYM-like inenquality

THE LUBELL-YAMATO-MESHALKIN INEQUALITY

Let ${\mathcal F}$ be a family of subsets in which no set contains another, then

$$\sum_{S \in \mathcal{F}} \frac{1}{\binom{n}{|S|}} \leq 1.$$



Proof of the Lemma

We associate every $S \in \mathcal{F}$ (binary vector covered by the plane) with some permutations in $\mathcal{P}_S \subset S_n$.

e.g. When n = 5, $S = \{1, 3, 4\}$, it means $a_1 + a_3 + a_4 = 1$, take all permutations in S_5 with prefix (i_1, i_2, i_3) satisfying

$$\{i_1, i_2, i_3\} = \{1, 3, 4\}, \quad a_{i_1} < 1, \quad a_{i_1} + a_{i_2} < 1.$$

We can show:

- \mathcal{P}_S are pairwise disjoint.
- $|\mathcal{P}_S| \ge (|S| 1)!(n |S|)!$ (the proof uses the *lorry driver puzzle*.)
- Therefore

$$n! \geq \sum_{S \in \mathcal{F}} |\mathcal{P}_S| = \sum_{S \in \mathcal{F}} (|S| - 1)! (n - |S|)!,$$

which simplifies to our desired result.

Future research problems (I)

n+(1) (n+24-3

Problem 1

Prove
$$f(n, k) = n + \binom{k}{2}$$
 for large *n*.

Alon (private communication): for large *n*, if the almost *k*-cover contains $x_1 = 1$, then it contains at least $n + \binom{k}{2}$ affine hyperplanes in total. No = $\lfloor n \rfloor$ $N_0 = \lfloor n \rfloor$ $color by hyperplanes \lfloor n \rfloor$ $k_1 \leq N_0$.

Problem 2

Let g(n, m, k) be the minimum number of vertices covered less than k times by m affine hyperplanes not passing through $\vec{0}$. Determine g(n, m, k).

Alon, Füredi 1993: $g(n, m, 1) = 2^{n-m}$.

Question: Is it true that for all n, m, k:

$$g(n,m,k)=2^{n-d},$$

where d is the maximum integer such that $f(d, k) \le m$?

Problem 3

Does there exist an absolute constant C > 0, which does not depend on n, such that for a fixed integer n, there exists M_n , so that whenever $k \ge M_n$,

$$f(n,k) \leq \underbrace{\left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)k}_{k+1} C?$$

1=2,3,4

Thank you!