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A naive question

The n-dimensional cube Q" consists of the binary vectors {0,1}".

An affine hyperplane is:

{X:a1x1 ++apxp = b}.

QUESTION

What is the minimum number of affine hyperplanes that cover all
the vertices of Q"7
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A naive question

The n-dimensional cube Q" consists of the binary vectors {0,1}".

An affine hyperplane is:

{X:a1x1 + - +apxp = b}.

QUESTION

What is the minimum number of affine hyperplanes that cover all
the vertices of Q"7

Answer: 2. K= |
X =0
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The Alon-Furedi Theorem

A NEW QUESTION

Suppose we would like to avoid exactly one vertex of the cube,
how many affine hyperplanes are needed?

For @3, 3 planes are needed.

THEOREM (ALON, FUREDI 1993)

Any set of affine hyperplanes that covers all the vertices of the
n-cube Q" but one contains at least n affine hyperplanes.
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An outline of the proof of Alon-Fiiredi Theorem
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Covering the cube twice

QUESTION (BUKH’S HOMEWORK ASSIGNMENT AT CMU)

What happens if we would like to cover the vertices of Q" at least
twice, with one vertex uncovered?

Xi=|
' tviee,
%=\

Zn+\

Rovae E by ]wP(mL.
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Covering the cube k times

Denote by f(n, k) the minimum number of affine hyperplanes
needed to cover every vertex of Q" at least k times (except for 0
which is not covered at all).

We call such a cover an almost k-cover of the n-cube.
f(n,1)=n.
f(n,2)=n+1.

What is the next?
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Upper and lower bounds

f(n,k)én+(l2() g’ D hay € coonlides = |
Hoy D hos ety lozn canl £ b

Take _/
n x1 =1, x,=1, =
bt X1+ +x,=1 for k-1 times,
“4fe-L
.l X4-—~ X = k-2 for A
+\

x|+ +x,=k—-1 for 1 time.

“
(H+n

f(n,k)2n+k—1I

Note that removing k — 1 planes from an almost k-cover still gives
an almost 1-cover.

k=3: n+2<f(n3)<n+3.
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The k =3 case and a natural conjecture

K=t
IR = \ Wi

TX;=2 Oht

THEOREM (H., CLIFTON 2019)

For n> 2,
f(n,3)=n+3. ntb-l =—n+3

For n >3, M.(l-:_) = n+6
f(n,4)e{n+5n+6}.

CoNJECTURE (H., CLIFTON 2019)

For fixed integer k > 1 and sufficiently large n,

2k e @é/;fmm
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Hilbert's and Combinatorial Nullstellensatz

THE NULLSTELLENSATZ

If F is an algebraically closed field, and £, g1,--,8m € F[x1, -, Xn],
where f vanishes over all common zeros of g1,-+, gm, then there
exists an integer k, and polynomials hy, -, hp, € F[x1, -+, x,], such
that

= higi.
i=1

When m = n, and gj = [1ses,(xi — 5), for some S1,---,5,cF, a
stronger result holds: there are polynomials hy, -, h, with
deg h; < deg f — deg g;, such that

f=> hig.
P
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Punctured Combinatorial Nullstellensatz

We say 3= (a1,--,a,) is a zero of multiplicity t of f € F[xy, -, Xn],
if t is the minimum degree of the terms in f(xy + a1, -+, X, + apn).
Fori=1,---,n, let F2 OE) ke (L) Thbes by 2
Dic SicF. gi=TIlss(xi=5). {i=Tlgep,(xi—d).
(xﬁs em‘ St = (?‘T'\)tx\' Ll = [y
THEOREM (BALL, SERRA 2009)

If f has a zero of multiplicity at least t at all the common zeros of
gi,+,&n, €xcept at least one point of D; x --- x D,, where it has a
zero of multiplicity less than t, then there are polynomials h;
satisfying deg(h,) < deg(f) — ;.. deg(g;), and a non-zero
polynomial u satisfying deg(u) < deg(f) - X7, (deg(gi) —deg(¥;)),

such that )
f :? Z g‘l‘(l)‘“gT(t@ +iun N ) U Tixe-n
TeT(n,t) i=1

T(n, t) consists of all non-decreasing sequences of length t on [n].

.
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Outline of our proof using the PCN (k = 3)
Goak . {(n.s; Z n+3

Seppe ot @4& b <%=
= =
Lo i= <R&> | @ P

































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Follow-up work
A== K=t X2 -+K = |

NN

The essence of this proof can be summarized in one sentence:

If f has zeroes of multiplicity at least 3 at {0,1}" ~ {0} and
f(0) 0, then deg(f) > n+3.

THEOREM (SAUERMANN, WIGDERSON 2020)

For k > 2, the minimum possible degree of a polynomial
f(x1,---, xn) sucht that it has zeroes of multiplicity at least k at
{0,1}"~ {0} and (0) #0, is n+ 2k — 3.

nt(t) =z fnk) = n+2k-3

COROLLARY (SAUERMANN, WIGDERSON 2020)

For k > 2, an almost k-cover of Q" has at least n+ 2k -3
hyperplanes.
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f(n, k) for fixed n and large k

For small n, f(n, k) # n+ (g) Actually,

THEOREM (H., CLIFTON 2019)

For fixed n, and k tends to infinity,

D

@ Upper bound: use every hyperplane

Xi;

et xg =1

3k

a total of X< times. e.g. =
A

k/2 %=\ Lh'

3 l
Kozt Ua— )';l"t >
k/2 K2 gex. M
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f(n, k) for fixed n and large k (ctd.)

@ Lower bound: (e.g. n=3) assign weights to vertices:

Every affine plane covers vertices of total weight at most 1.
Therefore one needs at least

111 1 1 1 1 11
k(— -+ -+ —+—+—+—):—k
3 3 3 6 6 6 3 6
hyperplanes.

For general n, assign weight 1/(1( )) to vertices whose sum of
coordinate is j.
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f(n, k) for fixed n and large k (ctd.)

@ Lower bound: (e.g. n=3) assign weights to vertices:

Every affine plane covers vertices of total weight at most 1.

1
3

1
6

X1+X2+X3=].

Therefore one needs at least L L
= HZHy
11 1 1 1 1 1 11
k- B e e e e k
3'3 3 6 6 6 3 6

hyperplanes.

For general n, assign weight 1/(1( )) to vertices whose sum of
coordinate is j.

Hao Huang Covering cubes by hyperplanes
















































An LYM-like inenquality

THE LUBELL- YAMATO-MESHALKIN INEQUALITY
Let F be a family of subsets in which no set contains another, then

LeMMA (H., CLIFTON 2019)

Given n real numbers ay, -, a,, let

-
JG)

Y >0 F={S:@+Sc[n}Ya-=1},
ieS 044"{‘0-1

then Z 1 2 =1

SeF |S|(|g|)

The inequality is tight for all non-zero binary (az, -, an).
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Proof of the Lemma

We associate every S € F (binary vector covered by the plane) with
some permutations in Ps c S,,.

e.g. When n=5, S={1,3,4}, it means a; + a3z + a4 = 1, take all
permutations in Ss with prefix (i1, iz, i3) satisfying

{i17i2a ’3} = {1>374}7 aj < 1, ajp Tap < L

We can show:
@ Ps are pairwise disjoint.

o |Ps| > (|S|-1)!(n—1|S|)! (the proof uses the lorry driver
puzzle.)

@ Therefore
nl> Y |[Ps| = (IS|-1)!(n-|S])!,
SeF SeF

which simplifies to our desired result.
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Future research problems (1)
‘n-*-(!:) n-\-LL—}

PROBLEM 1

Prove f(n, k) =n+ (12‘) for large n.

Alon (private communication): for large n, if the almost k-cover
containen it contains at least n+ (g) affine
hyperplanes in total. —j No=[n1 - cobor by

Z\ N‘QN' EMG

PROBLEM 2
Let g(n, m, k) be the minimum number of vertices covered less
than k times by m affine hyperplanes not passing through 0.
Determine g(n, m, k).

Alon, Fiiredi 1993: g(n,m,1) =2""",
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Future research problems (I1)

Question: Is it true that for all n, m, k:

where d is the maximum integer such that 7(d, k) < m?

PROBLEM 3

Does there exist an absolute constant C > 0, which does not
depend on n, such that for a fixed integer n, there exists M,,, so
that whenever kK > M,

f(n,k)£(1+i+---+l)k+C?
2 n

N=2,%4K
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Thank you!
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