Large deviations in random graphs

Wojciech Samotij

(joint works with Matan Harel, Gady Kozma, and Frank Mousset)

Shanghai Center for Mathematical Sciences
Online Seminar

June 11, 2020
Suppose that Y_1, \ldots, Y_N are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).
Suppose that Y_1, \ldots, Y_N are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).

Define

$$X = X_N := Y_1 + \cdots + Y_N.$$
Sums of i.i.d. random variables

Suppose that Y_1, \ldots, Y_N are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).

Define

$$X = X_N := Y_1 + \cdots + Y_N.$$

Letting $\mu := \mathbb{E}[Y_1]$, we have

$$\mathbb{E}[X_N] = \mathbb{E}[Y_1] + \cdots + \mathbb{E}[Y_N] = \mu N.$$
Sums of i.i.d. random variables

Suppose that \(Y_1, \ldots, Y_N \) are independent, identically distributed (i.i.d.) random variables (each taking finitely many values).

Define
\[
X = X_N := Y_1 + \cdots + Y_N.
\]

Letting \(\mu := \mathbb{E}[Y_1] \), we have
\[
\mathbb{E}[X_N] = \mathbb{E}[Y_1] + \cdots + \mathbb{E}[Y_N] = \mu N.
\]

Question
How ‘concentrated’ is \(X_N \) around its expectation?
The (Weak) Law of Large Numbers

For every fixed $\epsilon > 0$,

$$\lim_{N \to \infty} \Pr \left(|X_N - \mu N| \geq \epsilon N \right) = 0.$$
The (Weak) Law of Large Numbers (Bernoulli 1713)

For every fixed $\varepsilon > 0$,

$$\lim_{N \to \infty} \Pr \left(|X_N - \mu N| \geq \varepsilon N \right) = 0.$$

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

For every fixed $\varepsilon > 0$,
\[
\lim_{N \to \infty} \Pr \left(|X_N - \mu N| \geq \varepsilon N \right) = 0.
\]

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

Two possible ways to strengthen this result:
The (Weak) Law of Large Numbers

For every fixed $\varepsilon > 0$,

$$\lim_{N \to \infty} \Pr(|X_N - \mu N| \geq \varepsilon N) = 0.$$

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

Two possible ways to strengthen this result:

- How fast can ε tend to zero as $N \to \infty$?
The (Weak) Law of Large Numbers (Bernoulli 1713)

For every fixed $\varepsilon > 0$,

$$\lim_{N \to \infty} \Pr \left(|X_N - \mu N| \geq \varepsilon N \right) = 0.$$

In other words, X_N typically takes values between $(\mu - \varepsilon)N$ and $(\mu + \varepsilon)N$.

Two possible ways to strengthen this result:

- How fast can ε tend to zero as $N \to \infty$?
- What is the rate of convergence?
The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\text{Var}(Y_1)} = (\mathbb{E}[Y_1^2] - \mathbb{E}[Y_1]^2)^{1/2}.$$

The standard deviation σ of Y_1 is defined by
\[\sigma := \sqrt{\text{Var}(Y_1)} = \left(\mathbb{E}[Y_1^2] - \mathbb{E}[Y_1]^2 \right)^{1/2}. \]

The Central Limit Theorem (Laplace 1810)

For every fixed $x \geq 0$,
\[\lim_{N \to \infty} \Pr \left(\left| X_N - \mu N \right| \geq x \cdot \sigma \sqrt{N} \right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} \, du. \]
Typical deviations – Central Limit Theorem

The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\text{Var}(Y_1)} = \left(\mathbb{E}[Y_1^2] - \mathbb{E}[Y_1]^2\right)^{1/2}.$$

The Central Limit Theorem (Laplace 1810)

For every fixed $x \geq 0$,

$$\lim_{N \to \infty} \Pr \left(|X_N - \mu N| \geq x \cdot \sigma \sqrt{N} \right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} \, du.$$

The quantity $\sigma \sqrt{N}$ is the standard deviation of X_N.
The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\text{Var}(Y_1)} = \left(\mathbb{E}[Y_1^2] - \mathbb{E}[Y_1]^2\right)^{1/2}.$$

The Central Limit Theorem (Laplace 1810)

For every fixed $x \geq 0$,

$$\lim_{N \to \infty} \Pr \left(|X_N - \mu N| \geq x \cdot \sigma \sqrt{N} \right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} \, du.$$

The quantity $\sigma \sqrt{N}$ is the standard deviation of X_N.

It is already unlikely that $|X_N - \mu N| \gg \sqrt{N}$.
The standard deviation σ of Y_1 is defined by

$$\sigma := \sqrt{\text{Var}(Y_1)} = (\mathbb{E}[Y_1^2] - \mathbb{E}[Y_1]^2)^{1/2}.$$

The Central Limit Theorem (Laplace 1810)

For every fixed $x \geq 0$,

$$\lim_{N \to \infty} \Pr \left(|X_N - \mu N| \geq x \cdot \sigma \sqrt{N} \right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} \, du.$$

The quantity $\sigma \sqrt{N}$ is the standard deviation of X_N.

It is already unlikely that $|X_N - \mu N| \gg \sqrt{N}$.

The limiting behaviour depends only on $\mathbb{E}[Y_1]$ and $\mathbb{E}[Y_1^2]$.
Theorem (Cramér 1938)

There is a function $I = I_{Y_1}: (0, \infty) \to (0, \infty]$ such that

$$\Pr \left(X_N \geq (\mu + \varepsilon)N \right) = \exp \left(-(I(\varepsilon) + o(1)) \cdot N \right).$$
Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \rightarrow (0, \infty]$ such that

$$
\Pr \left(X_N \geq (\mu + \varepsilon)N \right) = \exp \left(- (I(\varepsilon) + o(1)) \cdot N \right).
$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$
\Pr(X_N \geq t)
$$
Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr(X_N \geq (\mu + \varepsilon)N) = \exp\left(-\left(I(\varepsilon) + o(1)\right) \cdot N\right).$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geq t) = \Pr\left(e^{\lambda X_N} \geq e^{\lambda t}\right).$$
Large deviations – Cramér’s theorem

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$\Pr(X_N \geq (\mu + \varepsilon)N) = \exp\left(-\left(I(\varepsilon) + o(1)\right) \cdot N\right).$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$\Pr(X_N \geq t) = \Pr\left(e^{\lambda X_N} \geq e^{\lambda t}\right) \leq e^{-\lambda t} \cdot \mathbb{E}\left[e^{\lambda X_N}\right],$$

by Markov’s inequality.
Large deviations – Cramér’s theorem

Theorem (Cramér 1938)

There is a function \(I = I_{Y_1} : (0, \infty) \to (0, \infty] \) such that

\[
\Pr (X_N \geq (\mu + \varepsilon)N) = \exp \left(- (I(\varepsilon) + o(1)) \cdot N\right).
\]

Proof of the upper bound (sketch).

For every \(\lambda > 0 \), the function \(x \mapsto e^{\lambda x} \) is (strictly) increasing. Thus

\[
\Pr(X_N \geq t) = \Pr \left(e^{\lambda X_N} \geq e^{\lambda t}\right) \leq e^{-\lambda t} \cdot \mathbb{E} \left[e^{\lambda X_N}\right],
\]

by Markov’s inequality. Moreover,

\[
\mathbb{E} \left[e^{\lambda X_N}\right] = \mathbb{E} \left[e^{\sum_{i=1}^{N} \lambda Y_i}\right]
\]
Large deviations – Cramér’s theorem

Theorem (Cramér 1938)

There is a function \(I = I_{Y_1} : (0, \infty) \to (0, \infty] \) such that

\[
\Pr(X_N \geq (\mu + \varepsilon)N) = \exp \left(-\left(I(\varepsilon) + o(1) \right) \cdot N \right).
\]

Proof of the upper bound (sketch).

For every \(\lambda > 0 \), the function \(x \mapsto e^{\lambda x} \) is (strictly) increasing. Thus

\[
\Pr(X_N \geq t) = \Pr \left(e^{\lambda X_N} \geq e^{\lambda t} \right) \leq e^{-\lambda t} \cdot \mathbb{E} \left[e^{\lambda X_N} \right],
\]

by Markov’s inequality. Moreover,

\[
\mathbb{E} \left[e^{\lambda X_N} \right] = \mathbb{E} \left[e^{\sum_{i=1}^{N} \lambda Y_i} \right] = \mathbb{E} \left[\prod_{i=1}^{N} e^{\lambda Y_i} \right].
\]
Large deviations – Cramér’s theorem

Theorem (Cramér 1938)

There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$
\Pr \left(X_N \geq (\mu + \varepsilon)N \right) = \exp \left(- \left(I(\varepsilon) + o(1) \right) \cdot N \right).
$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$
\Pr(X_N \geq t) = \Pr \left(e^{\lambda X_N} \geq e^{\lambda t} \right) \leq e^{-\lambda t} \cdot \mathbb{E} \left[e^{\lambda X_N} \right],
$$

by Markov’s inequality. Moreover,

$$
\mathbb{E} \left[e^{\lambda X_N} \right] = \mathbb{E} \left[e^{\sum_{i=1}^{N} \lambda Y_i} \right] = \mathbb{E} \left[\prod_{i=1}^{N} e^{\lambda Y_i} \right] = \prod_{i=1}^{N} \mathbb{E} \left[e^{\lambda Y_i} \right] = \mathbb{E} \left[e^{\lambda Y_1} \right]^N,
$$

as Y_1, \ldots, Y_N are i.i.d.
Large deviations – Cramér’s theorem

Theorem (Cramér 1938)
There is a function $I = I_{Y_1} : (0, \infty) \to (0, \infty]$ such that

$$
\Pr \left(X_N \geq (\mu + \varepsilon)N \right) = \exp \left(- \left(I(\varepsilon) + o(1) \right) \cdot N \right).
$$

Proof of the upper bound (sketch).

For every $\lambda > 0$, the function $x \mapsto e^{\lambda x}$ is (strictly) increasing. Thus

$$
\Pr(\ X_N \geq t) = \Pr \left(e^{\lambda X_N} \geq e^{\lambda t} \right) \leq e^{-\lambda t} \cdot E \left[e^{\lambda X_N} \right],
$$

by Markov's inequality. Moreover,

$$
E \left[e^{\lambda X_N} \right] = E \left[e^{\sum_{i=1}^{N} \lambda Y_i} \right] = E \left[\prod_{i=1}^{N} e^{\lambda Y_i} \right] = \prod_{i=1}^{N} E \left[e^{\lambda Y_i} \right] = E \left[e^{\lambda Y_1} \right]^N,
$$

as Y_1, \ldots, Y_N are i.i.d. We choose the optimal value of λ (…).
A word of motivation

The proof of Cramér’s theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_is? Perhaps a low degree polynomial?

A natural example coming from random graph theory: $X_N = \#\text{triangles in } G_{n,p}$; here, $N = \binom{n}{2}$ and X_N may be expressed as degree-three polynomial in N independent Bernoulli random variables.
The proof of Cramér’s theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_is?
The proof of Cramér’s theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_is?

Perhaps a low degree polynomial?
The proof of Cramér’s theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_is?

Perhaps a low degree polynomial?

A natural example coming from random graph theory:

$$X_N = \#\text{triangles in } G_{n,p};$$
A word of motivation

The proof of Cramér’s theorem crucially uses the assumption that X is a linear function of independent random variables.

What happens if we take away the linearity property and assume that X is a more complicated function of the Y_is?

Perhaps a low degree polynomial?

A natural example coming from random graph theory:

$$X_N = \#\text{triangles in } G_{n,p};$$

here, $N = \binom{n}{2}$ and X_N may be expressed as degree-three polynomial in N independent Bernoulli random variables.
The binomial random graph $G_{n,p}$ has vertex set $[n] := \{1, \ldots, n\}$ and

$$\Pr (ij \in G_{n,p}) = p \quad \text{for all } i, j \in [n],$$

independently of all other pairs.
The binomial random graph $G_{n,p}$ has vertex set $[n] := \{1, \ldots, n\}$ and

$$\Pr (ij \in G_{n,p}) = p \quad \text{for all } i, j \in [n],$$

independently of all other pairs.

A triangle in $G_{n,p}$ is a triple $\{i, j, k\}$ of vertices such that $ij, ik, jk \in G_{n,p}$.

Remark

We will allow p to depend on n. In fact, assume $p = p(n) \to 0$ as $n \to \infty$.

The binomial random graph $G_{n,p}$ has vertex set $[n] := \{1, \ldots, n\}$ and

$$\Pr (ij \in G_{n,p}) = p \quad \text{for all } i, j \in [n],$$

independently of all other pairs.

A triangle in $G_{n,p}$ is a triple $\{i, j, k\}$ of vertices such that $ij, ik, jk \in G_{n,p}$.

Let X_N denote the number of triangles in $G_{n,p}$ and note that

$$X_N = \sum_{i,j,k} Y_{ij} Y_{ik} Y_{jk} \quad \text{and} \quad \mathbb{E}[X_N] = \binom{n}{3} p^3,$$

where $Y_{ij} = 1_{ij \in G_{n,p}} \sim \text{Bernoulli}(p)$.

Remark: We will allow p to depend on n. In fact, assume $p(n) \to 0$ as $n \to \infty$.

The binomial random graph $G_{n,p}$ has vertex set $[n] := \{1, \ldots, n\}$ and

$$\Pr (ij \in G_{n,p}) = p \quad \text{for all } i, j \in [n],$$

independently of all other pairs.

A triangle in $G_{n,p}$ is a triple $\{i, j, k\}$ of vertices such that $ij, ik, jk \in G_{n,p}$.

Let X_N denote the number of triangles in $G_{n,p}$ and note that

$$X_N = \sum_{i,j,k} Y_{ij} Y_{ik} Y_{jk} \quad \text{and} \quad \mathbb{E}[X_N] = \binom{n}{3} p^3,$$

where $Y_{ij} = 1_{ij \in G_{n,p}} \sim \text{Bernoulli}(p)$.

Remark

We will allow p to depend on n. In fact, assume $p = p(n) \to 0$ as $n \to \infty$.
If $\mathbb{E}[X_N] \to \infty$, then X_N obeys a Central Limit Theorem.
Typical deviations of triangle count

If $E[X_N] \to \infty$, then X_N obeys a Central Limit Theorem.

Theorem (Ruciński 1988)

If $p \gg 1/n$, then, for every fixed $x \geq 0$,

$$\lim_{N \to \infty} \Pr \left(|X_N - E[X_N]| \geq x \cdot \sigma_N \right) = F(x) := \sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-u^2/2} \, du,$$

where σ_N is the standard deviation of X_N.
Typical deviations of triangle count

If \(\mathbb{E}[X_N] \to \infty \), then \(X_N \) obeys a Central Limit Theorem.

Theorem (Ruciński 1988)

If \(p \gg 1/n \), then, for every fixed \(x \geq 0 \),

\[
\lim_{N \to \infty} \text{Pr} \left(|X_N - \mathbb{E}[X_N]| \geq x \cdot \sigma_N \right) = F(x) := \sqrt{\frac{2}{\pi}} \int_x^\infty e^{-u^2/2} \, du,
\]

where \(\sigma_N \) is the standard deviation of \(X_N \).

The standard deviation of \(X_N \) is straightforward to compute:

\[
\sigma_N^2 = \text{Var}(X_N) = \binom{n}{3} p^3(1 - p^3) + \binom{n}{4} \binom{4}{2} p^5(1 - p).
\]
Large deviations of triangle count

Problem
For a given $\delta > 0$, determine the asymptotics of

$$\Pr \left(|X - \mathbb{E}[X]| \geq \delta \mathbb{E}[X] \right).$$
Large deviations of triangle count

Problem
For a given $\delta > 0$, determine the asymptotics of

$$\Pr \left(|X - \mathbb{E}[X]| \geq \delta \mathbb{E}[X] \right).$$

Problem (upper tail)
For a given $\delta > 0$, determine the asymptotics of

$$\Pr \left(X \geq (1 + \delta) \mathbb{E}[X] \right).$$
Large deviations of triangle count

Problem
For a given $\delta > 0$, determine the asymptotics of

$$\Pr \left(|X - \mathbb{E}[X]| \geq \delta \mathbb{E}[X] \right).$$

Problem (upper tail)
For a given $\delta > 0$, determine the asymptotics of

$$\Pr \left(X \geq (1 + \delta) \mathbb{E}[X] \right).$$

Problem (lower tail)
For a given $\delta \in (0, 1]$, determine the asymptotics of

$$\Pr \left(X \leq (1 - \delta) \mathbb{E}[X] \right).$$
Upper tail – lower bounds

By classical large deviation theory, the 'cost' is $\exp(-c\delta^2 n)$.

If $G_{n,p}$ contains a graph G with $\left(1 + \delta\right)^E[X]$ triangles, then $X \geq \left(1 + \delta\right)^E[X]$.

The 'cost' of planting any G in $G_{n,p}$ is $pe(G)$. Letting G be the complete graph with $\left(1 + \delta\right)^{1/3}np$ vertices (which has the required number of triangles), we get a lower bound of $p c^2 \delta n^2 p^2$.

If $p \ll 1$, then $p^2 \log(1/p) \ll p$ and the second strategy is more effective!

We conclude that $\Pr\left(X \geq \left(1 + \delta\right)^E[X]\right) \geq \exp\left(-c\delta^2 n^2 p^2 \log(1/p)\right)$.
Upper tail – lower bounds

(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$.

By classical large deviation theory, the 'cost' is $\exp(-c\delta n^2 p)$.

Plant a subgraph with many triangles!

If $G_{n,p}$ contains a graph G with $(1 + \delta)E[X]$ triangles, then $X \geq (1 + \delta)E[X]$.

The 'cost' of planting any G in $G_{n,p}$ is $p e(G)$.

Letting G be the complete graph with $(1 + \delta)1/3np$ vertices (which has the required number of triangles), we get a lower bound of $p c \delta n^2 p^2$.

If $p \ll 1$, then $p^2 \log(1/p) \ll p$ and the second strategy is more effective!

We conclude that $\Pr(X \geq (1 + \delta)E[X]) \geq \exp(-c\delta n^2 p^2 \log(1/p))$.
(1st guess) Increase the number of edges by a factor of \((1 + \delta)^{1/3}\). By classical large deviation theory, the ‘cost’ is \(\exp(-c_\delta n^2 p)\).
(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the ‘cost’ is $\exp(-c_\delta n^2 p)$.

(2nd guess) Plant a subgraph with many triangles!
(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the ‘cost’ is $\exp(-c\delta n^2 p)$.

(2nd guess) Plant a subgraph with many triangles!

If $G_{n,p}$ contains a graph G with $(1 + \delta)\mathbb{E}[X]$ triangles, then $X \geq (1 + \delta)\mathbb{E}[X]$.
Upper tail – lower bounds

\textbf{(1st guess)} Increase the number of edges by a factor of \((1 + \delta)^{1/3}\).
By classical large deviation theory, the ‘cost’ is \(\exp(-c_\delta n^2 p)\).

\textbf{(2nd guess)} Plant a subgraph with many triangles!
If \(G_{n,p}\) contains a graph \(G\) with \((1 + \delta)\mathbb{E}[X]\) triangles, then
\(X \geq (1 + \delta)\mathbb{E}[X]\).
The ‘cost’ of planting any \(G\) in \(G_{n,p}\) is \(p^{e(G)}\).
(1st guess) Increase the number of edges by a factor of $(1 + \delta)^{1/3}$. By classical large deviation theory, the ‘cost’ is $\exp(-c_\delta n^2 p)$.

(2nd guess) Plant a subgraph with many triangles! If $G_{n,p}$ contains a graph G with $(1 + \delta)\mathbb{E}[X]$ triangles, then $X \geq (1 + \delta)\mathbb{E}[X]$.

The ‘cost’ of planting any G in $G_{n,p}$ is $p^{e(G)}$. Letting G be the complete graph with $(1 + \delta)^{1/3}np$ vertices (which has the required number of triangles), we get a lower bound of $p^{c_\delta n^2 p^2}$.
(1st guess) Increase the number of edges by a factor of \((1 + \delta)^{1/3}\).

By classical large deviation theory, the ‘cost’ is \(\exp(-c_\delta n^2 p)\).

(2nd guess) Plant a subgraph with many triangles!

If \(G_{n,p}\) contains a graph \(G\) with \((1 + \delta)\mathbb{E}[X]\) triangles, then
\[X \geq (1 + \delta)\mathbb{E}[X].\]

The ‘cost’ of planting any \(G\) in \(G_{n,p}\) is \(p^{e(G)}\).

Letting \(G\) be the complete graph with \((1 + \delta)^{1/3}np\) vertices (which has the required number of triangles), we get a lower bound of \(p^{c_\delta n^2 p^2}\).

If \(p \ll 1\), then \(p^2 \log(1/p) \ll p\) and the second strategy is more effective!
Upper tail – lower bounds

(1st guess) Increase the number of edges by a factor of \((1 + \delta)^{1/3}\).
By classical large deviation theory, the ‘cost’ is \(\exp(-c_\delta n^2 p)\).

(2nd guess) Plant a subgraph with many triangles!
If \(G_{n, p}\) contains a graph \(G\) with \((1 + \delta)\mathbb{E}[X]\) triangles, then \(X \geq (1 + \delta)\mathbb{E}[X]\).
The ‘cost’ of planting any \(G\) in \(G_{n, p}\) is \(p^{e(G)}\).
Letting \(G\) be the complete graph with \((1 + \delta)^{1/3} np\) vertices (which has the required number of triangles), we get a lower bound of \(p^{c_\delta n^2 p^2}\).

If \(p \ll 1\), then \(p^2 \log(1/p) \ll p\) and the second strategy is more effective!

We conclude that

\[
\Pr \left(X \geq (1 + \delta)\mathbb{E}[X] \right) \geq \exp \left(- c_\delta n^2 p^2 \log(1/p) \right).
\]
Progression of upper bounds on $\Pr\left(X \geq (1 + \delta)\mathbb{E}[X] \right)$:

- Vu (2001): $\exp\left(-c\delta (np)^{3/2} \right)$
- Janson–Ruciński (2002): $\exp\left(-c\delta n^2 p^{3/2} \right)$
- Kim–Vu (2004): $\exp\left(-c\delta n^2 p^2 \log(1/p) \right)$
- Janson–Oleszkiewicz–Ruciński (2004): $\exp\left(-c\delta n^2 p^2 \log(1/p) \right)$
- Chatterjee (2012)
- DeMarco–Kahn (2012)

Theorem (Chatterjee / DeMarco–Kahn)

If $p \gg \log n / n$, then, for every fixed $\delta > 0$,

$$\Pr\left(X \geq (1 + \delta)\mathbb{E}[X] \right) = \exp\left(-\Theta(\delta (n^2 p^2 \log(1/p)) \right).$$

The assumption $p \gg \log n / n$ is necessary.
Upper tail – upper bounds

Progression of upper bounds on $\Pr(X \geq (1 + \delta)\mathbb{E}[X])$:

Vu (2001) \hspace{1cm} \exp(- c_\delta(np)^{3/2})
Progression of upper bounds on $\Pr(\mathcal{X} \geq (1 + \delta)\mathbb{E}[\mathcal{X}])$:

- Vu (2001) \quad \exp(-c_\delta (np)^{3/2})
- Janson–Ruciński (2002) \quad \exp(-c_\delta n^2 p^3)$

The assumption $p \gg \log n / n$ is necessary.
Upper tail – upper bounds

Progression of upper bounds on $\Pr(X \geq (1 + \delta)\mathbb{E}[X])$:

- **Vu (2001)**
 \[\exp \left(- c_\delta (np)^{3/2} \right) \]

- **Janson–Ruciński (2002)**
 \[\exp \left(- c_\delta n^2 p^3 \right) \]

- **Kim–Vu (2004)**
 \[\exp \left(- c_\delta n^2 p^2 \right) \]

- **Janson–Oleszkiewicz–Ruciński (2004)**
 \[\exp \left(- c_\delta n^2 p^2 \right) \]

Theorem (Chatterjee / DeMarco–Kahn)
If $p \gg \log n / n$, then, for every fixed $\delta > 0$,
\[\Pr(X \geq (1 + \delta)\mathbb{E}[X]) = \exp \left(- \Theta(\delta) n^2 p^2 \log(1/p) \right) \]

The assumption $p \gg \log n / n$ is necessary.
Progression of upper bounds on $\Pr(X \geq (1 + \delta)E[X])$:

- **Vu (2001)**
 \[\exp(-c_\delta (np)^{3/2}) \]

- **Janson–Ruciński (2002)**
 \[\exp(-c_\delta n^2 p^3) \]

- **Kim–Vu (2004)**
 \[\exp(-c_\delta n^2 p^2) \]

- **Janson–Oleszkiewicz–Ruciński (2004)**
 \[\exp(-c_\delta n^2 p^2 \log(1/p)) \]

- **Chatterjee (2012)**

- **DeMarco–Kahn (2012)**

The assumption $p \gg \log n / n$ is necessary.
Upper tail – upper bounds

Progression of upper bounds on $\Pr (X \geq (1 + \delta)\mathbb{E}[X])$:

- Vu (2001): $\exp (- c_\delta (np)^{3/2})$
- Janson–Ruciński (2002): $\exp (- c_\delta n^2 p^3)$
- Kim–Vu (2004): $\exp (- c_\delta n^2 p^2)$
- Janson–Oleszkiewicz–Ruciński (2004): $\exp (- c_\delta n^2 p^2 \log(1/p))$
- Chatterjee (2012): $\exp (- c_\delta n^2 p^2 \log(1/p))$
- DeMarco–Kahn (2012)

Theorem (Chatterjee / DeMarco–Kahn)

If $p \gg \log n/n$, then, for every fixed $\delta > 0$,

$$\Pr (X \geq (1 + \delta)\mathbb{E}[X]) = \exp (- \Theta_\delta(n^2 p^2 \log(1/p))) .$$
Upper tail – upper bounds

Progression of upper bounds on \(\Pr (X \geq (1 + \delta)\mathbb{E}[X]) \):

- Vu (2001): \(\exp (-c_\delta (np)^{3/2}) \)
- Janson–Ruciński (2002): \(\exp (-c_\delta n^2 p^3) \)
- Kim–Vu (2004): \(\exp (-c_\delta n^2 p^2) \)
- Janson–Oleszkiewicz–Ruciński (2004): \(\exp (-c_\delta n^2 p^2 \log(1/p)) \)
- Chatterjee (2012)
- DeMarco–Kahn (2012)

Theorem (Chatterjee / DeMarco–Kahn)

If \(p \gg \log n/n \), then, for every fixed \(\delta > 0 \),
\[
\Pr (X \geq (1 + \delta)\mathbb{E}[X]) = \exp (-\Theta_\delta (n^2 p^2 \log(1/p))) .
\]

The assumption \(p \gg \log n/n \) is necessary.
Upper tail – lower bounds (revisited)

Question

Can we compute \(\log \Pr (X \geq (1 + \delta)\mathbb{E}[X]) \) asymptotically?

Proposition (easy)

If \(\psi(\delta) \to \infty \), then

\[
\Pr (X \geq (1 + \delta)\mathbb{E}[X]) \geq p(1+o(1)) \cdot \psi(\delta).
\]

Theorem (Lubetzky–Zhao 2014)

\[
\frac{\psi(\delta)}{n^2} \to \begin{cases}
\frac{\delta^2}{3/2} & \text{if } n - 1 \ll p \ll n - 1, \\
\min\left\{ \frac{\delta^2}{3/2}, \frac{\delta}{3} \right\} & \text{if } n^{-1/2} \ll p \ll 1.
\end{cases}
\]
Question

Can we compute \(\log \Pr (X \geq (1 + \delta)\mathbb{E}[X]) \) asymptotically? (What for?)
Question

Can we compute \(\log \Pr (X \geq (1 + \delta)\mathbb{E}[X]) \) asymptotically? (What for?)

Define

\[
\psi(\delta) = \min \left\{ e(G) : \mathbb{E}[X | G \subseteq G_{n,p}] \geq (1 + \delta)\mathbb{E}[X] \right\}.
\]
Upper tail – lower bounds (revisited)

Question
Can we compute \(\log \Pr (X \geq (1 + \delta)\mathbb{E}[X]) \) asymptotically? (What for?)

Define

\[
\psi(\delta) = \min \{ e(G) : \mathbb{E}[X | G \subseteq G_{n,p}] \geq (1 + \delta)\mathbb{E}[X] \}.
\]

Proposition (easy)
If \(\psi(\delta) \to \infty \), then

\[
\Pr (X \geq (1 + \delta)\mathbb{E}[X]) \geq p^{(1+o(1))\cdot \psi(\delta)}.
\]
Question
Can we compute \(\log \Pr(X \geq (1 + \delta)\mathbb{E}[X]) \) asymptotically? (What for?)

Define

\[
\psi(\delta) = \min \{ e(G) : \mathbb{E}[X | G \subseteq G_{n,p}] \geq (1 + \delta)\mathbb{E}[X] \}.
\]

Proposition (easy)
If \(\psi(\delta) \to \infty \), then

\[
\Pr(X \geq (1 + \delta)\mathbb{E}[X]) \geq p^{(1+o(1)) \cdot \psi(\delta)}.
\]

Theorem (Lubetzky–Zhao 2014)

\[
\psi(\delta)/n^2p^2 \to \begin{cases}
\delta^2/3 / 2 & \text{if } n^{-1} \ll p \ll n^{-1/2}, \\
\min\{\delta^2/3 / 2, \delta / 3\} & \text{if } n^{-1/2} \ll p \ll 1.
\end{cases}
\]
Optimal planted subgraphs

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:
Optimal planted subgraphs

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

A clique containing $\delta E[X]$ triangles

The 'hub' works only when $np^2 \gg 1$, as $(\delta/3)np^2$ is assumed an integer.
Optimal planted subgraphs

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

- A clique containing $\delta \mathbb{E}[X]$ triangles.
- A K_3-free ‘hub’ with $\delta \mathbb{E}[X]/p$ copies of $K_{1,2}$.
Optimal planted subgraphs

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

- Clique containing $\delta^{1/3}np$ triangles
- K_3-free ‘hub’ with $\delta \mathbb{E}[X]/p$ copies of $K_{1,2}$ (each becomes a triangle with probability p)

\[\frac{\delta^{2/3}}{2} \text{ and } \frac{\delta}{3}\]
Optimal planted subgraphs

The constants $\delta^{2/3}/2$ and $\delta/3$ come from the following:

- A clique containing $\delta^{1/3}np$ triangles.
- A K_3-free ‘hub’ with $\delta\mathbb{E}[X]/p$ copies of $K_{1,2}$ (each becomes a triangle with probability p).

The ‘hub’ works only when $np^2 \gg 1$, as $(\delta/3)np^2$ is assumed an integer.
Upper tail – upper bounds (revisited)

We expect the following to be true (the assumption \(p \ll 1 \) is needed):

Theorem

If \(n^{-\alpha} \ll p \ll 1 \), then, for every \(\delta > 0 \),

\[
\Pr (X \geq (1 + \delta)\mathbb{E}[X]) \leq p^{(1-o(1)) \cdot \psi(\delta)}.
\]
We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr \left(X \geq (1 + \delta)\mathbb{E}[X] \right) \leq p^{(1-o(1)) \cdot \psi(\delta)}.$$

A short summary of the progression:

<table>
<thead>
<tr>
<th>authors</th>
<th>on arXiv</th>
<th>assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatterjee–Dembo</td>
<td>2014</td>
<td>$\alpha = 1/42$</td>
</tr>
<tr>
<td>Eldan</td>
<td>2016</td>
<td>$\alpha = 1/18$</td>
</tr>
<tr>
<td>Cook–Dembo</td>
<td>Sep 2018</td>
<td>$\alpha = 1/3$</td>
</tr>
<tr>
<td>Augeri</td>
<td>Oct 2018</td>
<td>$\alpha = 1/2$</td>
</tr>
</tbody>
</table>
We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr(X \geq (1 + \delta)\mathbb{E}[X]) \leq p^{(1-o(1)) \cdot \psi(\delta)}.$$

A short summary of the progression:

<table>
<thead>
<tr>
<th>authors</th>
<th>on arXiv</th>
<th>assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatterjee–Dembo</td>
<td>2014</td>
<td>$\alpha = 1/42$</td>
</tr>
</tbody>
</table>
Upper tail – upper bounds (revisited)

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$
\Pr \left(X \geq (1 + \delta)\mathbb{E}[X] \right) \leq p^{(1-o(1)) \cdot \psi(\delta)}.
$$

A short summary of the progression:

<table>
<thead>
<tr>
<th>authors</th>
<th>on arXiv</th>
<th>assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatterjee–Dembo</td>
<td>2014</td>
<td>$\alpha = 1/42$</td>
</tr>
<tr>
<td>Eldan</td>
<td>2016</td>
<td>$\alpha = 1/18$</td>
</tr>
</tbody>
</table>
We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr \left(X \geq (1 + \delta)\mathbb{E}[X] \right) \leq p^{(1-o(1))\cdot\psi(\delta)}.$$

A short summary of the progression:

<table>
<thead>
<tr>
<th>authors</th>
<th>on arXiv</th>
<th>assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatterjee–Dembo</td>
<td>2014</td>
<td>$\alpha = 1/42$</td>
</tr>
<tr>
<td>Eldan</td>
<td>2016</td>
<td>$\alpha = 1/18$</td>
</tr>
<tr>
<td>Cook–Dembo</td>
<td>Sep 2018</td>
<td>$\alpha = 1/3$</td>
</tr>
</tbody>
</table>
Upper tail – upper bounds (revisited)

We expect the following to be true (the assumption $p \ll 1$ is needed):

Theorem

If $n^{-\alpha} \ll p \ll 1$, then, for every $\delta > 0$,

$$
\Pr \left(X \geq (1 + \delta) \mathbb{E}[X] \right) \leq p^{(1-o(1)) \cdot \psi(\delta)}.
$$

A short summary of the progression:

<table>
<thead>
<tr>
<th>authors</th>
<th>on arXiv</th>
<th>assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatterjee–Dembo</td>
<td>2014</td>
<td>$\alpha = 1/42$</td>
</tr>
<tr>
<td>Eldan</td>
<td>2016</td>
<td>$\alpha = 1/18$</td>
</tr>
<tr>
<td>Cook–Dembo</td>
<td>Sep 2018</td>
<td>$\alpha = 1/3$</td>
</tr>
<tr>
<td>Augeri</td>
<td>Oct 2018</td>
<td>$\alpha = 1/2$</td>
</tr>
</tbody>
</table>
Our contribution

Theorem (Harel–Mousset–S. 2019+)

If \(\log n / n \ll p \ll 1 \), then, for every \(\delta > 0 \),

\[
\Pr (X \geq (1 + \delta)E[X]) = p^{(1+o(1))\cdot \psi(\delta)}.
\]
Our contribution

Theorem (Harel–Mousset–S. 2019+)

If $\log n / n \ll p \ll 1$, then, for every $\delta > 0$,

$$\Pr (X \geq (1 + \delta) \mathbb{E}[X]) = p^{(1+o(1)) \cdot \psi(\delta)}.$$

Moreover, conditioned on the upper tail event, $G_{n,p}$ typically contains either an ‘almost-clique’ or an ‘almost-hub’ of the right size.
Our contribution

Theorem (Harel–Mousset–S. 2019+)

If \(\log n/n \ll p \ll 1 \), then, for every \(\delta > 0 \),

\[
\Pr (X \geq (1 + \delta)\mathbb{E}[X]) = p^{(1+o(1))\cdot\psi(\delta)}.
\]

Moreover, conditioned on the upper tail event, \(G_{n,p} \) typically contains either an ‘almost-clique’ or an ‘almost-hub’ of the right size ... or a combination of the two if \(p = \Theta(n^{-1/2}) \).
Our contribution

Theorem (Harel–Mousset–S. 2019+)

If \(\log \frac{n}{n} \ll p \ll 1 \), then, for every \(\delta > 0 \),

\[
\Pr \left(X \geq (1 + \delta)\mathbb{E}[X] \right) = p^{(1+o(1)) \psi(\delta)}.
\]

Moreover, conditioned on the upper tail event, \(G_{n,p} \) typically contains either an ‘almost-clique’ or an ‘almost-hub’ of the right size ... or a combination of the two if \(p = \Theta(n^{-1/2}) \).

The assumption \(p \gg \log n/n \) is necessary.
Our contribution

Theorem (Harel–Mousset–S. 2019+)

If \(\log n/n \ll p \ll 1 \), then, for every \(\delta > 0 \),

\[
\Pr \left(X \geq (1 + \delta) \mathbb{E}[X] \right) = p^{(1+o(1)) \cdot \psi(\delta)}.
\]

Moreover, conditioned on the upper tail event, \(G_{n,p} \) typically contains either an ‘almost-clique’ or an ‘almost-hub’ of the right size ... or a combination of the two if \(p = \Theta(n^{-1/2}) \).

The assumption \(p \gg \log n/n \) is necessary. But what if \(p \ll \log n/n \)?
Our contribution

Theorem (Harel–Mousset–S. 2019+)

If \(\log n/n \ll p \ll 1 \), then, for every \(\delta > 0 \),

\[
\Pr(X \geq (1 + \delta) \mathbb{E}[X]) = p^{(1+o(1)) \cdot \psi(\delta)}.
\]

Moreover, conditioned on the upper tail event, \(G_{n,p} \) typically contains either an ‘almost-clique’ or an ‘almost-hub’ of the right size ... or a combination of the two if \(p = \Theta(n^{-1/2}) \).

The assumption \(p \gg \log n/n \) is necessary. But what if \(p \ll \log n/n \)?

Theorem (Harel–Mousset–S. 2019+)

If \(1/n \ll p \ll \log n/n \), then, for every \(\delta > 0 \),

\[
\Pr(X \geq (1 + \delta) \mathbb{E}[X]) = \exp\left(- (1 + o(1)) \cdot \text{Po}(\delta) \cdot \mathbb{E}[X]\right).
\]

where \(\text{Po}(\delta) = (1 + \delta) \log(1 + \delta) - \delta \).
Problem (lower tail)

For a given $\delta \in (0, 1]$, determine the asymptotics of

$$\Pr (X \leq (1 - \delta)\mathbb{E}[X]).$$
For a given $\delta \in (0, 1]$, determine the asymptotics of

$$\Pr(X \leq (1 - \delta)\mathbb{E}[X]).$$

Harris’s correlation inequality implies

$$\Pr(X = 0) \geq \max \left\{ (1 - p^3)^{\binom{n}{3}}, (1 - p)^{\binom{n}{2}} \right\}.$$
Problem (lower tail)

For a given $\delta \in (0, 1]$, determine the asymptotics of

$$\Pr \left(X \leq (1 - \delta)\mathbb{E}[X] \right).$$

Harris’s correlation inequality implies

$$\Pr(X = 0) \geq \max \left\{ (1 - p^3)^{n\choose 3}, (1 - p)^{n\choose 2} \right\}.$$

On the other hand, Janson’s inequality gives, for every $\delta \in (0, 1]$,

$$\Pr \left(X \leq (1 - \delta)\mathbb{E}[X] \right) \leq \exp \left(-c_\delta \cdot \min \left\{ n^2 p, n^3 p^3 \right\} \right).$$
For a given $\delta \in (0, 1]$, determine the asymptotics of $\Pr(X \leq (1 - \delta)\mathbb{E}[X])$.

Harris’s correlation inequality implies

$$\Pr(X = 0) \geq \max \left\{ (1 - p^3)^{\binom{n}{3}}, (1 - p)^{\binom{n}{2}} \right\}.$$

On the other hand, Janson’s inequality gives, for every $\delta \in (0, 1]$,

$$\Pr(X \leq (1 - \delta)\mathbb{E}[X]) \leq \exp\left(-c_\delta \cdot \min\{n^2 p, n^3 p^3\}\right).$$

If $p < .99$, then, for every $\delta \in (0, 1]$,

$$\Pr(X \leq (1 - \delta)\mathbb{E}[X]) = \exp\left(-\Theta_\delta\left(\min\{n^2 p, n^3 p^3\}\right)\right).$$
Can we compute \(\log \Pr (X \geq (1 + \delta)\mathbb{E}[X]) \) asymptotically?
Lower tail (revisited)

Question

Can we compute \(\log \Pr \left(X \geq (1 + \delta)\mathbb{E}[X] \right) \) asymptotically?

Here, we assume that \(p \gg n^{-1/2} \), so that \(n^3 p^3 \gg n^2 p \).
Lower tail (revisited)

Question

Can we compute $\log \Pr \left(X \geq (1 + \delta)\mathbb{E}[X] \right)$ asymptotically?

Here, we assume that $p \gg n^{-1/2}$, so that $n^3 p^3 \gg n^2 p$.

If G has no triangles, then

$$\Pr(X = 0) \geq \Pr(G_{n,p} \subseteq G) = (1 - p)^\binom{n}{2} - e(G).$$
Question

Can we compute \(\log \Pr \left(X \geq (1 + \delta) \mathbb{E}[X] \right) \) asymptotically?

Here, we assume that \(p \gg n^{-1/2} \), so that \(n^3 p^3 \gg n^2 p \).

If \(G \) has no triangles, then

\[
\Pr(X = 0) \geq \Pr(G_{n,p} \subseteq G) = (1 - p)^{\binom{n}{2}} - e(G).
\]

The right-hand side is maximised when \(G \) is complete bipartite, giving

\[
\Pr(X = 0) \geq (1 - p)^{n^2/4}.
\]
Lower tail (revisited)

Question
Can we compute \(\log \Pr (X \geq (1 + \delta)\mathbb{E}[X]) \) asymptotically?

Here, we assume that \(p \gg n^{-1/2} \), so that \(n^3p^3 \gg n^2p \).

If \(G \) has no triangles, then

\[
\Pr(X = 0) \geq \Pr(G_{n,p} \subseteq G) = (1 - p)^{\binom{n}{2} - e(G)}.
\]

The right-hand side is maximised when \(G \) is complete bipartite, giving

\[
\Pr(X = 0) \geq (1 - p)^{n^2/4}.
\]

Theorem (Łuczak 2000)
If \(p \gg n^{-1/2} \), then \(\Pr(X = 0) \leq (1 - p)^{n^2/4 - o(n^2)} \).
Lower tail (revisited)

If $\delta < 1$, then we could consider a graph G_δ with at most $(1 - \delta) \binom{n}{3}$ triangles and as many edges as possible to obtain

$$\Pr(X \leq (1 - \delta) \mathbb{E}[X]) \gtrapprox \Pr(G_{n,p} \subseteq G_\delta) = (1 - p)\binom{n}{2} - e(G_\delta).$$
If $\delta < 1$, then we could consider a graph G_δ with at most $(1 - \delta)\binom{n}{3}$ triangles and as many edges as possible to obtain

$$\Pr(X \leq (1 - \delta)\mathbb{E}[X]) \gtrapprox \Pr(G_{n,p} \subseteq G_\delta) = (1 - p)\binom{n}{2} - e(G_\delta).$$

Choose $q: \binom{[n]}{2} \to [0, 1]$ and let $G_{n,q}$ be the random graph on $[n]$ s.t.:

$$\Pr(ij \in G_{n,q}) = q_{ij} \quad \text{for all } i, j \in [n].$$
If \(\delta < 1 \), then we could consider a graph \(G_\delta \) with at most \((1 - \delta)\binom{n}{3}\) triangles and as many edges as possible to obtain

\[
\Pr \left(X \leq (1 - \delta)\mathbb{E}[X] \right) \gtrsim \Pr(G_{n,p} \subseteq G_\delta) = (1 - p)\binom{n}{2} - e(G_\delta).
\]

Choose \(q : \binom{[n]}{2} \to [0, 1] \) and let \(G_{n,q} \) be the random graph on \([n]\) s.t.:

\[
\Pr(ij \in G_{n,q}) = q_{ij} \quad \text{for all } i, j \in [n].
\]

Proposition

Suppose that \(q \) is such that \(\mathbb{E}[\#K_3(G_{n,q})] \leq (1 - \delta)\mathbb{E}[X] = (1 - \delta)\binom{n}{3}p^3 \).

Then,

\[
\Pr \left(X \leq (1 - \delta)\mathbb{E}[X] \right) \geq \exp \left(-(1 + o(1)) \cdot \sum_{i,j} l_p(q_{ij}) \right),
\]

where \(l_p(q) = q \log \frac{q}{p} + (1 - q) \log \frac{1-q}{1-p} \).
Our contribution

Define, for every $\delta \in (0, 1]$,

$$
\Phi(\delta) = \min \left\{ \sum_{i,j} I_p(q_{ij}) : \mathbb{E}[\#K_3(G_n,q)] \leq (1 - \delta)\mathbb{E}[X] \right\}.
$$

We have

$$
\Phi(1) \log(1 - p) = e(x(n, K_3)) - n^2 = \lfloor n^2/4 \rfloor - n^2,
$$

but computing the function $\Phi(\delta)$ for all δ seems very hard.

Theorem (Kozma–S. 2019++)

If $n - 1/2 \ll p \leq 0.99$, then, for every $\delta \in (0, 1]$,

$$
\Pr(X \leq (1 - \delta)\mathbb{E}[X]) = \exp\left(-\left(1 + o(1)\right) \cdot \Phi(\delta)\right).
$$
Our contribution

Define, for every $\delta \in (0, 1]$,

$$\Phi(\delta) = \min \left\{ \sum_{i,j} I_p(q_{ij}) : \mathbb{E}[\#K_3(G_n, q)] \leq (1 - \delta)\mathbb{E}[X] \right\}.$$

We have

$$\frac{\Phi(1)}{\log(1 - p)} = \text{ex}(n, K_3) - {n \choose 2} = \left\lfloor \frac{n^2}{4} \right\rfloor - {n \choose 2},$$
Define, for every $\delta \in (0, 1]$,

$$
\Phi(\delta) = \min \left\{ \sum_{i,j} l_p(q_{ij}) : \mathbb{E}[\#K_3(G_{n,q})] \leq (1 - \delta)\mathbb{E}[X] \right\}.
$$

We have

$$
\frac{\Phi(1)}{\log(1 - p)} = \text{ex}(n, K_3) - \binom{n}{2} = \left\lfloor \frac{n^2}{4} \right\rfloor - \binom{n}{2},
$$

but computing the function $\Phi(\delta)$ for all δ seems very hard.
Define, for every $\delta \in (0, 1],\n
$$\Phi(\delta) = \min \left\{ \sum_{i,j} l_p(q_{ij}) : \mathbb{E}[\#K_3(G_{n,q})] \leq (1 - \delta)\mathbb{E}[X] \right\}.$$\n
We have

$$\frac{\Phi(1)}{\log(1 - p)} = \text{ex}(n, K_3) - \binom{n}{2} = \left\lfloor \frac{n^2}{4} \right\rfloor - \binom{n}{2},$$

but computing the function $\Phi(\delta)$ for all δ seems very hard.

Theorem (Kozma–S. 2019++)

If $n^{-1/2} \ll p \leq 0.99$, then, for every $\delta \in (0, 1],$

$$\mathbb{P}(X \leq (1 - \delta)\mathbb{E}[X]) = \exp\left(- (1 + o(1)) \cdot \Phi(\delta)\right).$$
Thank you for your attention!