Packing A-paths and cycles with modularity constraints

Youngho Yoo

School of Mathematics Georgia Institute of Technology

December 10, 2020 SCMS Combinatorics Seminar

joint work with Robin Thomas

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

An approximate packing duality

Everybody knows that

 $\max | matching | \le \min | vertex-cover | \le 2 \cdot \max | matching |$.

Let \mathcal{F} be a family of graphs (e.g. $\mathcal{F} = \{edge\}$).

- ▶ an *F*-packing is a set of (vertex-)disjoint subgraphs in *F*
- ▶ an \mathcal{F} -hitting set is a set of vertices intersecting every subgraph in \mathcal{F}

 $\max |\mathcal{F}\text{-packing}| \le \min |\mathcal{F}\text{-hitting set}|$ (always true)

min $|\mathcal{F}$ -hitting set $| \leq 2 \cdot \max |\mathcal{F}$ -packing| ???

A-paths

 $\max |matching| \le \min |vertex-cover| \le 2 \cdot \max |matching|$

Let $A \subseteq V(G)$. *A*-**path:** a path with distinct endpoints in *A*, internally disjoint from *A*. Theorem (Gallai, 1961)

 $min |\{A-paths\}-hitting set| \le 2 \cdot max |\{A-paths\}-packing|$

If A = V(G), then an A-path is just an edge.

\mathcal{S} -paths

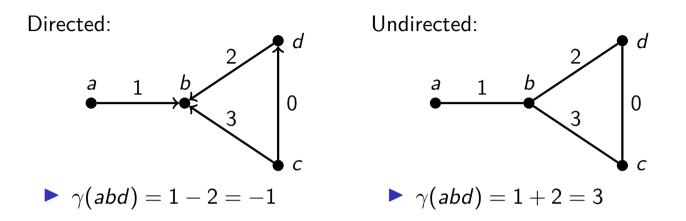
$$\begin{split} &\min |\mathsf{vertex}\mathsf{-}\mathsf{cover}| \leq 2 \cdot \max |\mathsf{matching}| \\ &\min |\{A\mathsf{-}\mathsf{paths}\}\mathsf{-}\mathsf{hitting set}| \leq 2 \cdot \max |\{A\mathsf{-}\mathsf{paths}\}\mathsf{-}\mathsf{packing}| \end{split}$$

Let $A \subseteq V(G)$ and let S be a partition of A. S-path: an A-path with ends in distinct parts of S. Theorem (Mader, 1978)

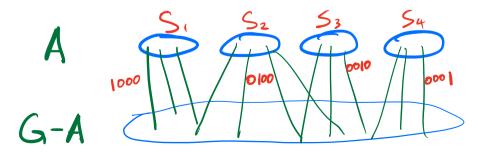
 $min | \{S \text{-}paths\} \text{-}hitting set | \leq 2 \cdot \max | \{S \text{-}paths\} \text{-}packing |$

If $S = \{\{a\} : a \in A\}$, then an S-path is just an A-path.

Group-labelled graphs



Note: the two models are equivalent if every Γ element has order two. Γ -nonzero *A*-path: an *A*-path with weight $\neq 0(:= id_{\Gamma})$ *S*-paths is a special case: $\Gamma = (\mathbb{Z}/2\mathbb{Z})^{|S|}$



Nonzero A-paths

$$\begin{split} \min |\text{vertex-cover}| &\leq 2 \cdot \max |\text{matching}| \\ \min |\{A\text{-paths}\}\text{-hitting set}| &\leq 2 \cdot \max |\{A\text{-paths}\}\text{-packing}| \\ \min |\{\mathcal{S}\text{-paths}\}\text{-hitting set}| &\leq 2 \cdot \max |\{\mathcal{S}\text{-paths}\}\text{-packing}| \end{split}$$

Theorem (Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and Seymour, 2006)

Let Γ be an arbitrary group. Then in directed Γ -labelled graphs,

 $\begin{array}{l} \min |\{\Gamma \textit{-nonzero } A \textit{-paths}\} \textit{-hitting set}| \\ &\leq 2 \cdot \max |\{\Gamma \textit{-nonzero } A \textit{-paths}\} \textit{-packing}| \end{array}$

Erdős-Pósa property (EP)

Theorem (Wollan, 2010)

Let Γ be an abelian group. Then in undirected Γ -labelled graphs,

```
min |{Γ-nonzero A-paths}-hitting set|
```

 \leq 50(max |{ Γ -nonzero A-paths}-packing|)⁴

We say that \mathcal{F} satisfies the **Erdős-Pósa property** if \exists function f such that \forall graphs,

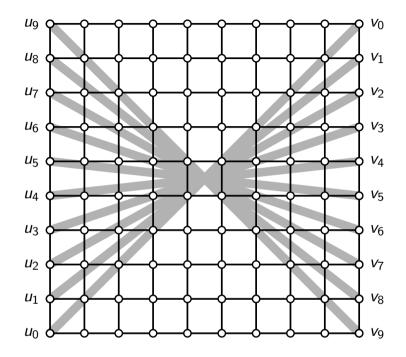
```
min |\mathcal{F}-hitting set| \leq f(\max |\mathcal{F}-packing|)
```

```
Theorem (Erdős and Pósa, 1965)

min |C-hitting set| \le f(\max |C-packing|)

where C = \{cycles\} and f(k) = O(k \log k)
```

Odd cycles do not satisfy the Erdős-Pósa property



Each grey line is an edge $u_i v_i$.

- ▶ No two disjoint odd cycles \implies max |{odd cycle}-packing| = 1.
- No small odd cycle transversal ⇒ no function f such that min |{odd cycle}-transversal| ≤ f(max {odd cycle}-packing|)
- \implies no EP. But odd cycles do satisfy the **half-integral** EP.

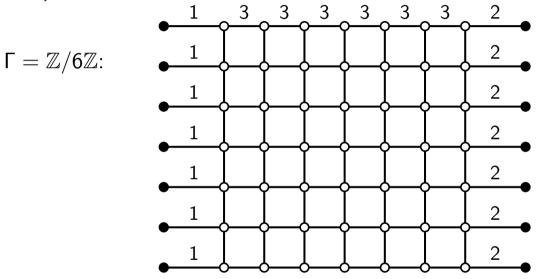
Examples of Erdős-Pósa property

See survey: *Recent techniques and results on the Erdős-Pósa property* by Raymond and Thilikos (2017).

- even cycles (Neumann-Lara '84)
- cycles of length 0 mod m (Thomassen '88)
- ▶ cycles of length $\neq 0 \mod m$ if and only if *m* odd (Wollan '11)
- A-cycles (Pontecorvi and Wollan '12)
- A-paths (Gallai '61), S-paths (Mader '78)
- ▶ A-paths of length $\neq 0 \mod m$ for all m (Wollan '10)
- even A-paths (Bruhn, Heinlein, and Joos '18)
- A-paths of length 0 mod 4 (Bruhn and Ulmer '18)
- ▶ NOT A-paths of length 0 mod m for composite m > 4 (BHJ '18)

A-paths of length 0 mod m

A-paths of length 0 mod m satisfy EP if m = 2, 4, but not if m > 4 is composite.



An A-path of length 0 mod 6 must go from left to right using an edge in the top row \implies no two such A-paths are disjoint

A-paths of length 0 mod p

Theorem (Thomas and Y. '20+)

Let p be an odd prime. Then A-paths of length 0 mod p satisfy the Erdős-Pósa property.

Theorem (Thomas and Y. '20+)

Let Γ be an abelian group. Then Γ -zero A-paths satisfy EP if and only if $\Gamma \cong \mathbb{Z}/p\mathbb{Z}, \ \mathbb{Z}/4\mathbb{Z}, \text{ or } (\mathbb{Z}/2\mathbb{Z})^k$.

Recall that the directed and undirected models of Γ -labelling are equivalent if every non-identity element of Γ has order 2.

Theorem (Thomas and Y. '20+, Böltz '18)

 Γ -zero A-paths in directed Γ -labelled graphs satisfy EP if and only if Γ is finite.

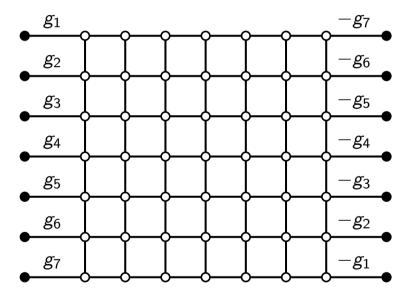
Infinite **F**

Proposition

If Γ is infinite, then Γ -zero A-paths do not satisfy EP.

Proof.

Choose a sequence of elements $g_1, g_2, \dots \in \Gamma$.



No two disjoint Γ -zero A-paths.

The Erdős-Pósa function f for Γ -zero A-paths **necessarily** grows with $|\Gamma|$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q @

Cycles

- cycles of length 0 mod m (Thomassen '88)
- ▶ cycles of length $\neq 0 \mod m$ if and only if m odd (Wollan '11)

Problem (Dejter and Neumann-Lara '78)

Characterize the integers ℓ and m such that cycles of length $\ell \mod m$ satisfy EP.

- If ord(ℓ) in Z/mZ is even, then EP not satisfied. (note m even)
- Previously unsolved for cycles of length 1 mod 3

Theorem (Thomas and Y. '20+)

If *m* is an **odd prime power**, then cycles of length $\ell \mod m$ satisfy EP ($\forall \ell \in \mathbb{Z}$).

$$\gamma(u_{i}v_{i}) = \ell$$

$$\gamma(e) = 0 \text{ for all } e \neq u_{i}v_{i}$$

$$u_{0}$$

$$v_{0}$$

$$v_{1}$$

$$v_{2}$$

$$v_{3}$$

$$u_{2}$$

$$v_{4}$$

$$u_{1}$$

$$v_{0}$$

$$v_{1}$$

$$v_{2}$$

$$v_{3}$$

$$v_{4}$$

$$v_{5}$$

$$v_{0}$$

$$v_{6}$$

Let \mathcal{F} be a family of connected graphs. Let $f : \mathbb{N} \to \mathbb{N}$ be a fast-growing function.

We say \mathcal{F} satisfies EP with respect to $f : \mathbb{N} \to \mathbb{N}$ if for all G, either

- ► G has an *F*-packing of size k, or
- G has an \mathcal{F} -hitting set of size $\leq f(k)$.

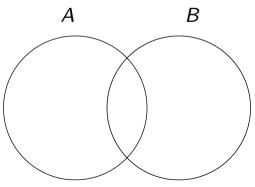
(G, k) is a minimal counterexample \mathcal{F} satisfying EP w.r.t. f if

- (1) G has **no** \mathcal{F} -packing of size k,
- (2) G has **no** \mathcal{F} -hitting set of size $\leq f(k)$, and
- (3) subject to this, k is minimal

- (G, k) is a minimal counterexample:
- (1) G has **no** \mathcal{F} -packing of size k,
- (2) G has **no** \mathcal{F} -hitting set of size $\leq f(k)$, and
- (3) subject to this, k is minimal

Take a "small" separation. Then exactly one side contains an \mathcal{F} -graph.

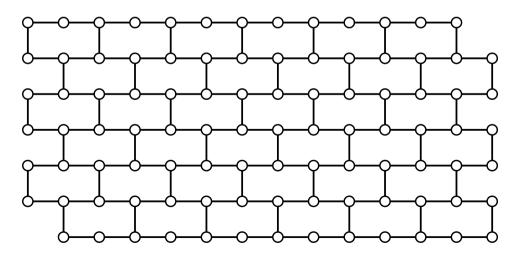
- ▶ If neither, then \neg (2) using $A \cap B$.
- Suppose both.
 - ▶ If \mathcal{F} -packing of size k-1 in either A-B or B-A, then $\neg(1)$.
 - ▶ By (3), A B and B A have hitting sets $\leq f(k 1)$, so $\neg(2)$.



A minimal counterexample admits a large tangle.

・ロト・日本・日本・日本・日本・日本

- In a graph G, a tangle of order t + 1 is an orientation of each ≤ t-separation, pointing to the "highly connected part" in a consistent way.
- A minimal counterexample (G, k) to F satisfying EP admits a tangle T of (arbitrarily) large order such that every subgraph of G in F is highly connected to T.
- ► Grid Minor Theorem (Robertson and Seymour '86): very large tangle $\mathcal{T} \implies$ large *wall* highly connected to \mathcal{T} .



- In a graph G, a tangle of order t + 1 is an orientation of each ≤ t-separation, pointing to the "highly connected part" in a consistent way.
- A minimal counterexample (G, k) to F satisfying EP admits a tangle T of (arbitrarily) large order such that every subgraph of G in F is highly connected to T.
- ► Grid Minor Theorem (Robertson and Seymour '86):

very large tangle $\mathcal{T} \implies$ large *wall* highly connected to \mathcal{T} .

Theorem (Thomassen 1988)

Let m be a positive integer. Then a very large wall contains a large wall in which every "edge" is a path of length 0 mod m.

Corollary: For all $m \in \mathbb{N}$, {cycles of length 0 mod m} satisfies EP. **Proof:** Min counterexample contains a very very large tangle

- \implies very large wall
- \implies large wall in which every "edge" has length 0 mod m
- \implies many disjoint cycles of length 0 mod m

Structure theorem

- In a graph G, a tangle of order t + 1 is an orientation of each ≤ t-separation, pointing to the "highly connected part" in a consistent way.
- A minimal counterexample (G, k) to F satisfying EP admits a tangle T of (arbitrarily) large order such that every subgraph of G in F is highly connected to T.
- ▶ Grid Minor Theorem (Robertson and Seymour '86):
 very large tangle T ⇒ large wall highly connected to T.

Theorem (Thomas and Y. '20+, simplified)

Let (G, γ) be an undirected Γ -labelled graph with a very large wall W. Then either

- (1) many Γ -nonzero cycles all highly connected to W, distributed in one of few configurations, or
- (2) a small hitting set for $\{\Gamma$ -nonzero cycles highly connected to $W\}$

Structure theorem

Theorem (Thomas and Y. '20+, simplified)

Let (G, γ) be an undirected Γ -labelled graph with a very large wall W. Then either

- (1) many Γ -nonzero cycles all highly connected to W, distributed in one of few configurations, or
- (2) a small hitting set for $\{\Gamma$ -nonzero cycles highly connected to $W\}$
- In (1), we find many disjoint Γ -nonzero cycles, **unless**:

- each "handle" is Γ-nonzero and its weight has order 2
 - if Γ has no element of order two, then (1) ⇒ many disjoint Γ-nonzero cycles

Deriving Erdős-Pósa results: cycles of length $\neq 0 \mod m$

Theorem (Thomas and Y. '20+, simplified)

Let (G, γ) be an undirected Γ -labelled graph with a very large wall W. Then either

- (1) many Γ -nonzero cycles all highly connected to W, distributed in one of few configurations, or
- (2) a small hitting set for $\{\Gamma$ -nonzero cycles highly connected to $W\}$

Theorem (Wollan '11)

If Γ has no element of order two, then Γ -nonzero cycles satisfy EP. (in particular, for all odd m, cycles of length $\neq 0 \mod m$ satisfy EP)

Proof.

Min counterexample has very very large tangle \mathcal{T} such that **every** Γ -nonzero cycle is highly connected to \mathcal{T} .

- \implies very large wall W h-c. to $\mathcal{T} \implies$ (1) or (2).
- (1) \implies many disjoint Γ -nonzero cycles, contradiction.
- (2) \implies small hitting set for **all** Γ -nonzero cycles, contradiction.

Deriving Erdős-Pósa results: cycles of length $\equiv \ell \mod p$

Very large wall \implies

- (1) many Γ -nonzero cycles all highly connected to W, distributed in one of few configurations, or
- (2) a small hitting set for $\{\Gamma$ -nonzero cycles highly connected to $W\}$

Theorem (Thomas and Y. '20+)

p odd prime, $\ell \in \mathbb{Z}$. Then cycles of length ℓ mod p satisfy EP.

Proof.

Let
$$\Gamma = \mathbb{Z}/p\mathbb{Z}$$
 and $\ell \neq 0 \in \Gamma$.

- $(1) \implies \text{many disjoint } \Gamma \text{-nonzero cycles} \\ \implies \text{many long } \Gamma \text{-nonzero cycle-chains}$
- Each chain contains a cycle of weight ℓ .
- (2) small hitting set for Γ-nonzero cycles
 ⇒ hits all cycles of weight l.

For odd prime powers $m = p^a$, apply induction on a.

 P_1 Q_2 P_2 Q_1 Q_2 Q_3 P_3 P_5 Q_4 P_3 P_4

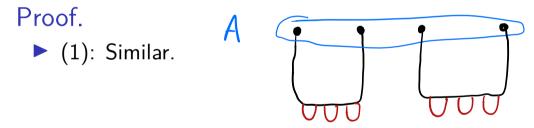
 $\gamma(P_i) \neq \gamma(Q_i) \ \forall i$

Deriving Erdős-Pósa results: A-paths of length 0 mod p

Very large wall \implies

- (1) many Γ -nonzero cycles all highly connected to W, distributed in one of few configurations, or
- (2) a small hitting set for $\{\Gamma$ -nonzero cycles highly connected to $W\}$

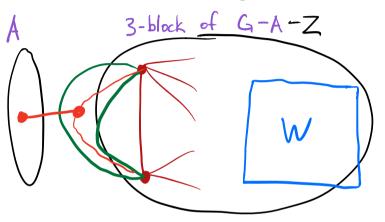
Theorem (Thomas and Y. '20+) Let p be an odd prime. Then A-paths of length 0 mod p satisfy EP.



(2): More complicated: small hitting set Z ⊆ V(G) such that the unique 3-block of G − A − Z containing most of W has no Γ-nonzero cycles. (⇒ every edge of 3-block has weight 0)

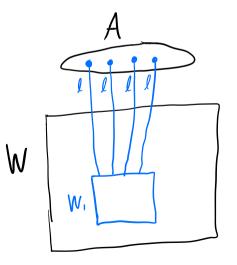
Deriving Erdős-Pósa results: A-paths of length 0 mod p

► There is a small hitting set $Z \subseteq V(G)$ such that the unique **3-block** of G - A - Z containing most of W is **Γ-zero** (every edge 0)



Lemma: Let $\ell \in \Gamma$. Given a large wall W, either:

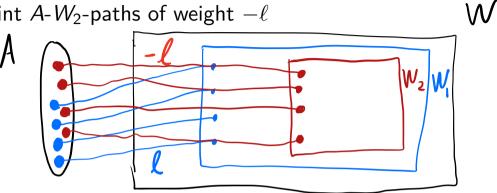
- ▶ ∃ large subwall $W_1 \subseteq W$ and many disjoint "nice" *A*-*W*′-paths with weight ℓ , or
- small hitting set for all A-W-paths of weight ℓ .



Deriving Erdős-Pósa results: A-paths of length 0 mod p

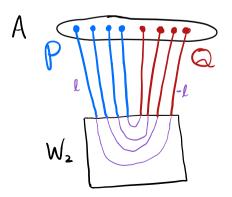
 \mathcal{P} : disjoint A-W₂-paths of weight ℓ

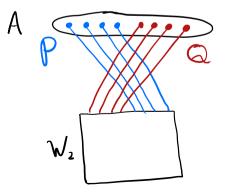
Q: disjoint A-W₂-paths of weight $-\ell$



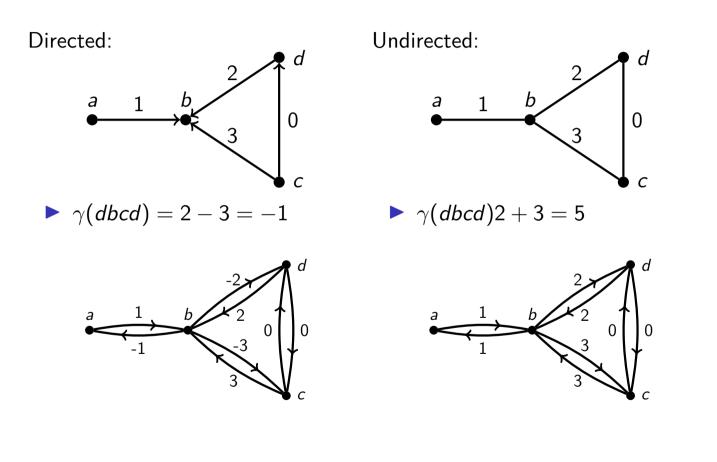
▶ If $\exists k$ paths in \mathcal{P} and k paths in \mathcal{Q} all disjoint, link through wall.

 \triangleright Else, $\exists k$ paths in \mathcal{P} and k paths in \mathcal{Q} all intersecting (Bipartite Ramsey Theorem). Apply Menger's theorem.





Directed cycles



▲□▶ ▲□▶ ▲三▶ ▲三▶ ● □ ● ● ●

Directed cycles

Theorem (Reed, Robertson, Thomas, and Seymour, 1996) *Directed cycles satisfy EP.*

Theorem (Kawarabayashi, Kreutzer, Kwon, Xie, 2020) Directed odd cycles satisfy the half-integral EP

Problem Do directed Γ-nonzero cycles satisfy the half-integral EP?

Structure theorems for directed cycles in Γ-labelled graphs?

 Directed Flat Wall Theorem by Giannopoulou, Kawarabayashi, Kreutzer, and Kwon (2020)

Directed Γ-nonzero A-paths?