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An approximate packing duality

Everybody knows that

max |matching| Æ min |vertex-cover| Æ 2 · max |matching|.

Let F be a family of graphs (e.g. F = {edge}).
I an F-packing is a set of (vertex-)disjoint subgraphs in F
I an F-hitting set is a set of vertices intersecting every subgraph in F

max |F-packing| Æ min |F-hitting set| (always true)

min |F-hitting set| Æ 2 · max |F-packing| ???



A-paths

max |matching| Æ min |vertex-cover| Æ 2 · max |matching|

Let A ™ V (G).
A-path: a path with distinct endpoints in A, internally disjoint from A.

Theorem (Gallai, 1961)

min |{A-paths}-hitting set| Æ 2 · max |{A-paths}-packing|

If A = V (G), then an A-path is just an edge.



S-paths

min |vertex-cover| Æ 2 · max |matching|
min |{A-paths}-hitting set| Æ 2 · max |{A-paths}-packing|

Let A ™ V (G) and let S be a partition of A.
S-path: an A-path with ends in distinct parts of S.

Theorem (Mader, 1978)

min |{S-paths}-hitting set| Æ 2 · max |{S-paths}-packing|

If S = {{a} : a œ A}, then an S-path is just an A-path.



Group-labelled graphs

Directed:

a b

c

d
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0

I “(abd) = 1 ≠ 2 = ≠1

Undirected:

a b

c

d

1
3

2

0

I “(abd) = 1 + 2 = 3

Note: the two models are equivalent if every � element has order two.

�-nonzero A-path: an A-path with weight ”= 0(:= id�)

S-paths is a special case: � = (Z/2Z)|S|



Nonzero A-paths

min |vertex-cover| Æ 2 · max |matching|
min |{A-paths}-hitting set| Æ 2 · max |{A-paths}-packing|
min |{S-paths}-hitting set| Æ 2 · max |{S-paths}-packing|

Theorem (Chudnovsky, Geelen, Gerards, Goddyn, Lohman,

and Seymour, 2006)

Let � be an arbitrary group. Then in directed �-labelled graphs,

min |{�-nonzero A-paths}-hitting set|
Æ 2 · max |{�-nonzero A-paths}-packing|



Erdős-Pósa property (EP)

Theorem (Wollan, 2010)

Let � be an abelian group. Then in undirected �-labelled graphs,

min |{�-nonzero A-paths}-hitting set|
Æ 50(max |{�-nonzero A-paths}-packing|)4

We say that F satisfies the Erdős-Pósa property if ÷ function f such
that ’ graphs,

min |F-hitting set| Æ f (max |F-packing|)

Theorem (Erdős and Pósa, 1965)

min |C-hitting set| Æ f (max |C-packing|)

where C = {cycles} and f (k) = O(k log k)



Odd cycles do not satisfy the Erdős-Pósa property
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Each grey line is an edge uivi .
I No two disjoint odd cycles =∆ max |{odd cycle}-packing| = 1.
I No small odd cycle transversal =∆ no function f such that

min |{odd cycle}-transversal| Æ f (max {odd cycle}-packing|)
=∆ no EP. But odd cycles do satisfy the half-integral EP.



Examples of Erdős-Pósa property

See survey: Recent techniques and results on the Erdős-Pósa property

by Raymond and Thilikos (2017).

I even cycles (Neumann-Lara ’84)
I cycles of length 0 mod m (Thomassen ’88)
I cycles of length ”© 0 mod m if and only if m odd (Wollan ’11)
I A-cycles (Pontecorvi and Wollan ’12)

I A-paths (Gallai ’61), S-paths (Mader ’78)
I A-paths of length ”© 0 mod m for all m (Wollan ’10)
I even A-paths (Bruhn, Heinlein, and Joos ’18)
I A-paths of length 0 mod 4 (Bruhn and Ulmer ’18)
I NOT A-paths of length 0 mod m for composite m > 4 (BHJ ’18)



A-paths of length 0 mod m

A-paths of length 0 mod m satisfy EP if m = 2, 4, but not if m > 4 is
composite.

� = Z/6Z:

1 2

1 2

1 2

1 2

1 2

1 2

1 23 3 3 3 3 3

An A-path of length 0 mod 6 must go from left to right using an edge in
the top row =∆ no two such A-paths are disjoint



A-paths of length 0 mod p

Theorem (Thomas and Y. ’20+)

Let p be an odd prime. Then A-paths of length 0 mod p satisfy the

Erdős-Pósa property.

Theorem (Thomas and Y. ’20+)

Let � be an abelian group. Then �-zero A-paths satisfy EP if and only if

� ≥= Z/pZ, Z/4Z, or (Z/2Z)k
.

Recall that the directed and undirected models of �-labelling are
equivalent if every non-identity element of � has order 2.

Theorem (Thomas and Y. ’20+, Böltz ’18)

�-zero A-paths in directed �-labelled graphs satisfy EP if and only if � is

finite.



Infinite �

Proposition

If � is infinite, then �-zero A-paths do not satisfy EP.

Proof.

Choose a sequence of elements g1, g2, · · · œ �.

≠g1

g1

≠g2

g2

≠g3

g3

≠g4g4

≠g5

g5

≠g6

g6

≠g7

g7

No two disjoint �-zero A-paths.

The Erdős-Pósa function f for �-zero A-paths necessarily grows with |�|.



Cycles

I cycles of length 0 mod m (Thomassen ’88)
I cycles of length ”© 0 mod m if and only if m odd (Wollan ’11)

Problem (Dejter and Neumann-Lara ’78)

Characterize the integers ¸ and m such that cycles of length ¸ mod m

satisfy EP.

I If ord(¸) in Z/mZ is even, then EP
not satisfied. (note m even)

I Previously unsolved for cycles of
length 1 mod 3

Theorem (Thomas and Y. ’20+)

If m is an odd prime power, then cycles

of length ¸ mod m satisfy EP (’¸ œ Z).

“(ui vi ) = ¸

“(e) = 0 for all e ”= ui vi
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Tangles

Let F be a family of connected graphs.
Let f : N æ N be a fast-growing function.

We say F satisfies EP with respect to f : N æ N if for all G , either
I G has an F-packing of size k, or
I G has an F-hitting set of size Æ f (k).

(G , k) is a minimal counterexample F satisfying EP w.r.t. f if
(1) G has no F-packing of size k,
(2) G has no F-hitting set of size Æ f (k), and
(3) subject to this, k is minimal



Tangles

(G , k) is a minimal counterexample:
(1) G has no F-packing of size k,
(2) G has no F-hitting set of size Æ f (k), and
(3) subject to this, k is minimal

Take a “small” separation. Then exactly one side contains an F-graph.
I If neither, then ¬(2) using A fl B.
I Suppose both.

I If F-packing of size k ≠ 1 in either A ≠ B or B ≠ A, then ¬(1).
I By (3), A ≠ B and B ≠ A have hitting sets Æ f (k ≠ 1), so ¬(2).

A B

A minimal counterexample admits a large tangle.



Tangles

I In a graph G , a tangle of order t + 1 is an orientation of each
Æ t-separation, pointing to the “highly connected part” in a
consistent way.

I A minimal counterexample (G , k) to F satisfying EP admits a
tangle T of (arbitrarily) large order such that every subgraph of G

in F is highly connected to T .
I Grid Minor Theorem (Robertson and Seymour ’86):

very large tangle T =∆ large wall highly connected to T .



Tangles

I In a graph G , a tangle of order t + 1 is an orientation of each
Æ t-separation, pointing to the “highly connected part” in a
consistent way.

I A minimal counterexample (G , k) to F satisfying EP admits a
tangle T of (arbitrarily) large order such that every subgraph of G

in F is highly connected to T .
I Grid Minor Theorem (Robertson and Seymour ’86):

very large tangle T =∆ large wall highly connected to T .

Theorem (Thomassen 1988)

Let m be a positive integer. Then a very large wall contains a large wall

in which every “edge” is a path of length 0 mod m.

Corollary: For all m œ N, {cycles of length 0 mod m} satisfies EP.
Proof: Min counterexample contains a very very large tangle
=∆ very large wall
=∆ large wall in which every “edge” has length 0 mod m

=∆ many disjoint cycles of length 0 mod m



Structure theorem

I In a graph G , a tangle of order t + 1 is an orientation of each
Æ t-separation, pointing to the “highly connected part” in a
consistent way.

I A minimal counterexample (G , k) to F satisfying EP admits a
tangle T of (arbitrarily) large order such that every subgraph of G

in F is highly connected to T .
I Grid Minor Theorem (Robertson and Seymour ’86):

very large tangle T =∆ large wall highly connected to T .

Theorem (Thomas and Y. ’20+, simplified)

Let (G , “) be an undirected �-labelled graph with a very large wall W .

Then either

(1) many �-nonzero cycles all highly connected to W , distributed in one

of few configurations, or

(2) a small hitting set for {�-nonzero cycles highly connected to W }



Structure theorem

Theorem (Thomas and Y. ’20+, simplified)

Let (G , “) be an undirected �-labelled graph with a very large wall W .

Then either

(1) many �-nonzero cycles all highly connected to W , distributed in one

of few configurations, or

(2) a small hitting set for {�-nonzero cycles highly connected to W }

In (1), we find many disjoint �-nonzero cycles, unless:

I everything inside the wall is �-zero

I each “handle” is �-nonzero and its weight has order 2

I if � has no element of order two, then (1) =∆ many
disjoint �-nonzero cycles



Deriving Erdős-Pósa results: cycles of length ”© 0 mod m

Theorem (Thomas and Y. ’20+, simplified)

Let (G , “) be an undirected �-labelled graph with a very large wall W .

Then either

(1) many �-nonzero cycles all highly connected to W , distributed in one

of few configurations, or

(2) a small hitting set for {�-nonzero cycles highly connected to W }

Theorem (Wollan ’11)

If � has no element of order two, then �-nonzero cycles satisfy EP.

(in particular, for all odd m, cycles of length ”© 0 mod m satisfy EP)

Proof.

Min counterexample has very very large tangle T such that every
�-nonzero cycle is highly connected to T .
=∆ very large wall W h-c. to T =∆ (1) or (2).
(1) =∆ many disjoint �-nonzero cycles, contradiction.
(2) =∆ small hitting set for all �-nonzero cycles, contradiction.



Deriving Erdős-Pósa results: cycles of length © ¸ mod p

Very large wall =∆
(1) many �-nonzero cycles all highly connected to W , distributed in one

of few configurations, or
(2) a small hitting set for {�-nonzero cycles highly connected to W }

Theorem (Thomas and Y. ’20+)

p odd prime, ¸ œ Z. Then cycles of length ¸ mod p satisfy EP.

Proof.

Let � = Z/pZ and ¸ ”= 0 œ �.
I (1) =∆ many disjoint �-nonzero cycles

=∆ many long �-nonzero cycle-chains

I Each chain contains a cycle of weight ¸.
I (2) small hitting set for �-nonzero cycles

=∆ hits all cycles of weight ¸.

“(Pi) ”= “(Qi) ’i

For odd prime powers m = p
a, apply induction on a.



Deriving Erdős-Pósa results: A-paths of length 0 mod p

Very large wall =∆
(1) many �-nonzero cycles all highly connected to W , distributed in one

of few configurations, or
(2) a small hitting set for {�-nonzero cycles highly connected to W }

Theorem (Thomas and Y. ’20+)

Let p be an odd prime. Then A-paths of length 0 mod p satisfy EP.

Proof.

I (1): Similar.

I (2): More complicated: small hitting set Z ™ V (G) such that the
unique 3-block of G ≠ A ≠ Z containing most of W has no
�-nonzero cycles. ( =∆ every edge of 3-block has weight 0)



Deriving Erdős-Pósa results: A-paths of length 0 mod p
I There is a small hitting set Z ™ V (G) such that the unique 3-block

of G ≠ A ≠ Z containing most of W is �-zero (every edge 0)

Lemma: Let ¸ œ �. Given a large wall W , either:
I ÷ large subwall W1 ™ W and many disjoint

“nice” A-W Õ-paths with weight ¸, or
I small hitting set for all A-W -paths of weight ¸.



Deriving Erdős-Pósa results: A-paths of length 0 mod p
P: disjoint A-W2-paths of weight ¸
Q: disjoint A-W2-paths of weight ≠¸

I If ÷k paths in P and k paths in Q all disjoint, link through wall.
I Else, ÷k paths in P and k paths in Q all intersecting (Bipartite

Ramsey Theorem). Apply Menger’s theorem.



Directed cycles

Directed:

a b

c

d

1
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I “(dbcd) = 2 ≠ 3 = ≠1
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Undirected:

a b
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d
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I “(dbcd)2 + 3 = 5
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Directed cycles

Theorem (Reed, Robertson, Thomas, and Seymour, 1996)

Directed cycles satisfy EP.

Theorem (Kawarabayashi, Kreutzer, Kwon, Xie, 2020)

Directed odd cycles satisfy the half-integral EP

Problem

Do directed �-nonzero cycles satisfy the half-integral EP?

Structure theorems for directed cycles in �-labelled graphs?
I Directed Flat Wall Theorem by Giannopoulou, Kawarabayashi,

Kreutzer, and Kwon (2020)

Directed �-nonzero A-paths?


