A model theoretic approach to sparsity

Jaroslav Nešetřil

Patrice Ossona de Mendez

Charles University Praha, Czech Republic CAMS CNRS/EHESS Paris, France Zhejiang Normal University Jinhua, PRC

— Shanghaï 2020 —

イロト 不得下 イヨト イヨト

Sparse vs Dense — Simple vs Complex

 a_2

Minors 00000000 Density 2000 Separators 000 Cutting 000000000 Ordering 00000

イロト イヨト イヨト イヨト

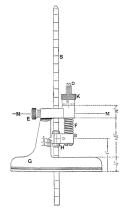
Flatening 000000000

Part I: Sparsity

æ

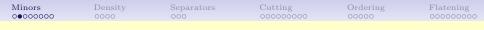
Minors	Density	Separators	Cutting	Orderi
•0000000	0000	000	000000000	00000

Shallow minors



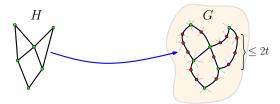
▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理

Flatening



Topological resolution of a class ${\mathscr C}$

Shallow topological minors at depth t:



 $\mathscr{C} \widetilde{\nabla} t = \{H : \text{some } \leq 2t \text{-subdivision of } H \text{ is a subgraph of some } G \in \mathscr{C}\}.$

Topological resolution:

$$\mathscr{C} \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ 0 \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ 1 \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ t \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ \infty$$

time

ъ

イロト 不得下 イヨト イヨト

 Minors
 Density
 Separators
 Cutting
 Ordering
 Flatening

 000000000
 The Somewhere dense
 Nowhere dense dichotomy

A class \mathscr{C} is *somewhere dense* if there exists τ such that $\mathscr{C} \tilde{\nabla} \tau$ contains all graphs.

$$\iff \quad (\exists \tau) \ \omega(\mathscr{C} \ \widetilde{\forall} \ \tau) = \infty.$$

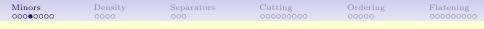
A class \mathscr{C} is *nowhere dense* otherwise.

$$\iff \quad (\forall \tau) \ \omega(\mathscr{C} \ \widetilde{\nabla} \ \tau) < \infty.$$

We define

$$\widetilde{\omega}_{\tau}(G) := \max_{H \in G \,\widetilde{\vee}\, \tau} \,\omega(H).$$

 ものの していた。



Bounded expansion classes

A class \mathscr{C} has *bounded expansion* if for every τ the class $\mathscr{C} \ \widetilde{\nabla} \tau$ has bounded average degree.

$$\iff \quad (\forall \tau) \ \overline{\mathbf{d}}(\mathscr{C} \ \widetilde{\nabla} \ \tau) = \infty.$$

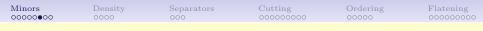
Remark that bounded expansion \implies nowhere dense.

We define

$$\widetilde{\nabla}_{\tau}(G) := \max_{H \in G \,\widetilde{\nabla}\,\tau} \frac{\|H\|}{|H|}.$$

Minors	Density	Separators	Cutting	Ordering	Flatening
0000●000	0000	000	000000000	00000	000000000
		Exa	mples		

- planar graphs;
- cubic graphs;
- K_n subdivided log n times;
- graphs such that any two vertices u, v are at distance at least $f(\min(d(u), d(v)))$ with f non decreasing unbounded.
- the class of graphs G with $\Delta(G) \leq \operatorname{girth}(G)$;
- classes of cage graphs G with degree $|G|^{o(1)}$.

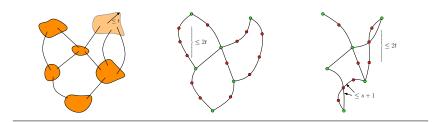


Every kind of shallow minors

Minor

 $Topological\ minor$

Immersion



Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	000000000	00000	000000000

	d	χ	χ_f	ω		
Minors						
Topological minors	Bounded expansion			Nowhere dense		
Immersions						
Definition						

Minors	$\begin{array}{c} \text{Density} \\ \text{0000} \end{array}$	Separators	Cutting	Ordering	Flatening
000000●0		000	000000000	00000	000000000

	d	χ	χ_f	ω		
Minors				Nowhere dense		
Topological minors	Bounded expansion			Nowhere dense		
Immersions						
$\omega_r(G) \le (\widetilde{\omega}_{3r+1}(G))^{2r+2}$						

Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	00000000	00000	000000000

	d	χ	χ_f	ω
Minors	Bounded expansion			Nowhere dense
Topological minors	Bounded expansion			Nowhere dense
Immersions				
	$\nabla_r(G) \le 2^{r^2 + 3r + 3} \lceil \widetilde{\nabla}_r(G) \rceil^{(r+2)^2}$			

Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	00000000	00000	000000000

_	d	χ	χ_f	ω
Minors	Bounded expansion			Nowhere dense
Topological minors	Bounded expansion			Nowhere dense
Immersions	Bounded expansion			Nowhere dense
$\widetilde{\nabla}_r(G \bullet K_p) \le p(p+2r)\widetilde{\nabla}_r(G), ext{ etc.}$				

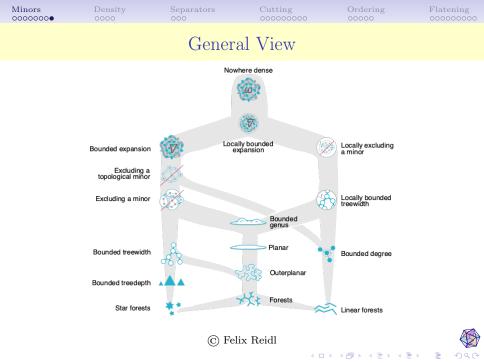
Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	000000000	00000	000000000

	$\overline{\mathrm{d}}$	χ	χ_f	ω	
Minors	Bounded expansion	Bounded expansion		Nowhere dense	
Topological minors	Bounded expansion	Bounded expansion		Nowhere dense	
Immersions	Bounded expansion	Bounded expansion		Nowhere dense	
$\chi(G\widetilde{\triangledown}(2r+1))\gtrsim\widetilde{ abla}_r(G)^{1/3}/\log\widetilde{ abla}_r(G)$ (Dvořák '07)					

Minors	Density 0000	Separators 000	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	00000000

	d	χ	χ_f	ω		
Minors	Bounded	Bounded	Bounded	Nowhere		
	expansion	expansion	expansion	dense		
Topological	Bounded	Bounded	Bounded	Nowhere		
minors	expansion	expansion	expansion	dense		
Immersions	Bounded	Bounded	Bounded	Nowhere		
	expansion	expansion	expansion	dense		
$\chi_f(G \widetilde{\triangledown} (2r+1)) \geq 0.19 \widetilde{ abla}_r(G)^{1/3} ext{ (Dvořák, POM, Wu '19+)}$						

・ロト ・個ト ・モト ・モト 三日



Minors 00000000	Density •000	Separators 000	Cutting 000000000	Ordering 00000	Flatening 000000000
		De	nsity		
	1.				
	Ľ	30	30	Y	
			4	다 《왕 《동》《동》	- E - D Q C

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	000000000

Unavoidable subgraphs

Theorem (Erdős, Simonovits, Stone)

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) {n \choose 2} + o(n^2).$$

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	o●oo	000	00000000	00000	000000000

Unavoidable subgraphs

Theorem (Erdős, Simonovits, Stone)

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Theorem (Jiang, Seiver '12)

Let F be a subdivision of a graph H, where each edge is subdivided by an even number of vertices (at least 2m). Then

$$\operatorname{ex}(n,F) = O(n^{1+\frac{8}{m}}).$$

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	000000000	00000	000000000
		~			

Concentration

Theorem (Jiang, Seiver '12)

$$ex(n, K_t^{(\leq 2p)}) = O(n^{1+\frac{8}{p}}).$$

$$\begin{split} \mathscr{C} \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ 0 \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ t \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ \frac{8t}{\epsilon} \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ \infty \\ & \uparrow \\ \|G\| > C_t \ |G|^{1+\epsilon} \qquad K_t \end{split}$$

||G|| = number of edges |G| = number of vertices

Hence:

$$\limsup_{G\in\mathscr{C}\,\widetilde{\heartsuit}\,t}\frac{\log\|G\|}{\log|G|}>1+\epsilon\quad\Longrightarrow\quad \limsup_{G\in\mathscr{C}\,\widetilde{\heartsuit}\,\frac{8t}{\epsilon}}\frac{\log\|G\|}{\log|G|}=2.$$

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	000•	000	000000000	00000	000000000

Classification by logarithmic density

Theorem (Class trichotomy — Nešetřil and POM)

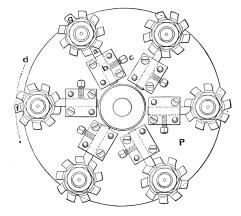
Let ${\mathscr C}$ be an infinite class of graphs. Then

$$\sup_t \limsup_{G \in \mathscr{C} \ \widetilde{\bigtriangledown} \ t} \frac{\log \|G\|}{\log |G|} \in \{-\infty, 0, 1, 2\}.$$

- bounded size class $\iff -\infty$ or 0;
- nowhere dense class $\iff -\infty, 0 \text{ or } 1;$
- somewhere dense class $\iff 2$.

Minors 00000000 Density 0000 Separators •00 Cutting 000000000 Ordering 00000 Flatening 000000000

Expansion and Separators



Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	00000000

Polynomial expansion

Definition

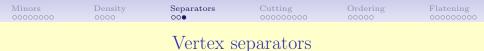
A class ${\mathscr C}$ has polynomial expansion if there is a polynomial P with

$$\nabla_r(G) \le P(r) \qquad (\forall G \in \mathscr{C}).$$

A class ${\mathscr C}$ has polynomial $\omega\text{-expansion}$ if there is a polynomial P with

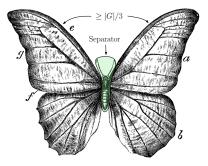
$$\omega_r(G) \le P(r) \qquad (\forall G \in \mathscr{C}).$$

- planar graphs have polynomial expansion;
- cubic graphs do not have polynomial expansion.



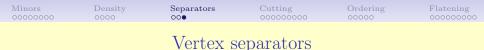
Definition

A class \mathscr{C} has strongly sublinear separators if there exists a constant $\delta > 0$ such that every graph $G \in \mathscr{C}$ has a balanced vertex separator of size at most $|G|^{1-\delta}$.



ъ

イロト 不得下 イヨト イヨト



Definition

A class \mathscr{C} has strongly sublinear separators if there exists a constant $\delta > 0$ such that every graph $G \in \mathscr{C}$ has a balanced vertex separator of size at most $|G|^{1-\delta}$.

Theorem (Dvořák '14)

Let ${\mathscr C}$ be a hereditary class of graphs. The following are equivalent:

- 1. \mathscr{C} has polynomial expansion;
- 2. \mathscr{C} has polynomial ω -expansion;
- 3. C has strongly sublinear separators.

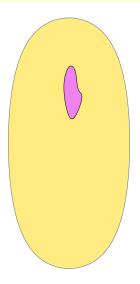
Mi	no	rs	
00	00	0000	

Density 0000 Separators 000 Cutting •00000000 Ordering 00000 Flatening 000000000

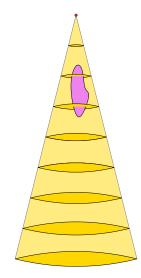
Cutting

・ロト ・御ト ・ヨト ・ヨト 三日

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	000000000





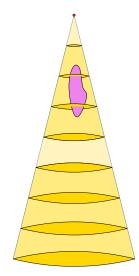


 \rightarrow partition vertices of G by distance to a root mod |F| + 1;

(Eppstein '00)

イロト 不得下 イヨト イヨト

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	000000000

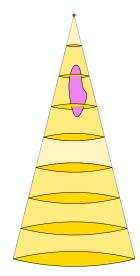


→ partition vertices of G by distance to a root mod |F| + 1; then unions of $\leq |F|$ parts induce a subgraph G_I with bounded tw;

(Eppstein '00)

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

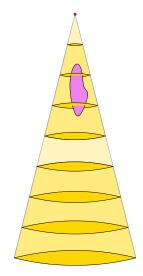


- \rightarrow partition vertices of G by distance to a root mod |F| + 1;
- then unions of $\leq |F|$ parts induce a subgraph G_I with bounded tw;
 - \rightarrow solve the problem in each G_I ;

(Eppstein '00)

・ロト ・ 一下・ ・ 日下・ ・ 日下・

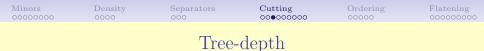
Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

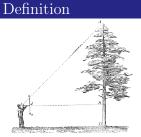


- \rightarrow partition vertices of G by distance to a root mod |F| + 1;
- then unions of $\leq |F|$ parts induce a subgraph G_I with bounded tw;
 - \rightarrow solve the problem in each G_I ; (Eppstein '00)

◊ low tree-width decompositions (DeVos, Ding, Oporowski, Sanders, Reed, Seymour, Vertigan '04)

・ロト ・得 ト ・注 ト ・注 トー 注



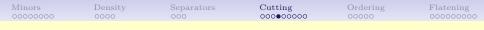


The *tree-depth* td(G) of a graph G is the minimum height of a rooted forest Y s.t.

 $G \subseteq \operatorname{Closure}(Y).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

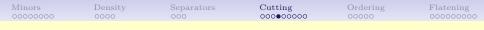
 $\operatorname{td}(P_n) = \log_2(n+1)$



Low tree-depth decompositions

 $\chi_p(G)$ is the minimum number of colors such that every subset I of $\leq p$ colors induces a subgraph G_I so that $td(G_I) \leq |I|$. \iff the minimum number of colors in a *p*-centered coloring of G, i.e. a coloring such that every subgraph with $\leq p$ -colors has some uniquely colored vertex.

rec



Low tree-depth decompositions

 $\chi_p(G)$ is the minimum number of colors such that every subset I of $\leq p$ colors induces a subgraph G_I so that $td(G_I) \leq |I|$. \iff the minimum number of colors in a *p*-centered coloring of G, i.e. a coloring such that every subgraph with $\leq p$ -colors has some uniquely colored vertex.

Theorem (Nešetřil and POM; 2006, 2010)

$$\forall p, \sup_{G \in \mathscr{C}} \chi_p(G) < \infty \qquad \Longleftrightarrow \qquad \mathscr{C} \text{ has bounded expansion.}$$

$$\forall p, \ \limsup_{G \in \mathscr{C}} \frac{\log \chi_p(G)}{\log |G|} = 0 \qquad \Longleftrightarrow \qquad \mathscr{C} \text{ is nowhere dense.}$$

э

イロト 不得下 イヨト イヨト

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	000000000	00000	000000000

Algorithmic version

Theorem (Nešetřil and POM '06)

For every integer p there is a polynomial P_p (deg $P_p \approx 2^{2^p}$) such that for every graph G it holds

$$\chi_p(G) \le N_p(G) \le P_p(\widetilde{\nabla}_{2^{p-2}+1}(G)),$$

and G has a p-centered coloring with at most $N_p(G)$ colors, which can be computed in $O(N_p(G)|G|)$ -time.

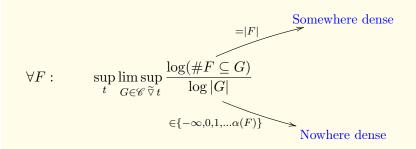
- \rightarrow linear time for bounded expansion classes;
- $\rightarrow\,$ almost linear time for nowhere dense classes.

Minors 0000000	Density Separat o oooo ooo	ors Cutting 000000000	Ordering 00000	Flatening 000000000					
Bounds									
-	Class of graphs		χ_p						
-	Maximum degree $\leq \Delta$	$\Omega(\Delta^{2-\frac{1}{p}}p\ln^{-1}$	$\Omega(\Delta^{2-\frac{1}{p}} p \ln^{-1/p} \Delta), O(\Delta^{2-\frac{1}{p}} p)$						
-	Outerplanar	<i>O</i> (<i>j</i>	$O(p \log p)$						
-	Planar	<i>O</i> (<i>p</i>	$O(p^3 \log p)$						
-	Tree-width	($\binom{p+t}{t}$						
-	No topological K_t mine	r O($O(P_t(p))$						
-	$\nabla_r \le r+2$	Ω($(2^{c\sqrt{p}})$						

(Dębski, Felsner, Micek, Schröder '20; Pilipczuk, Siebertz '19) (Dubois, Joret, Perarnau, Pilipczuk '20)

Application: Logarithmic density

Theorem (Nešetřil and POM)



Remark

Proof based on Low Tree-Depth Decompositions and regularity properties of bounded height trees.



Application: Restricted Homomorphism Dualities

Theorem (Nešetril, POM '06)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Example (Naserasr '07) \forall planar G \swarrow \leftrightarrow $G \rightarrow$

(日)



Application: Restricted Homomorphism Dualities

Theorem (Nešetril, POM '06)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Example (Thomassen '94)

 \forall toroidal G

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ



Application: Restricted Homomorphism Dualities

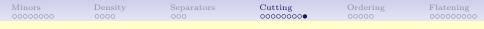
Theorem (Nešetril, POM '06)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Theorem (Nešetril, POM '12)

- For class C of graphs closed under subdivisions: C has ARD $\iff C$ has bounded expansion.
- For class C of directed graphs closed under reorientations: C has ARD $\iff C$ has bounded expansion.



Application: Model checking

Theorem (Dvořák, Kráľ, Thomas 2010)

For every class \mathscr{C} with bounded expansion, every property of graphs definable in first-order logic can be decided in time O(n) on \mathscr{C} .

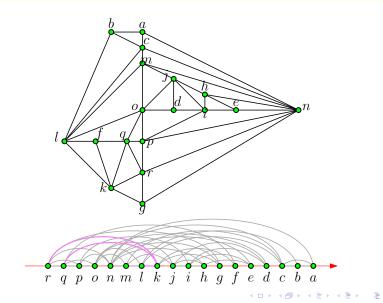
Theorem (Kazana, Segoufin 2013)

For every class \mathscr{C} with bounded expansion, every first-order definable subset can be enumerated in lexicographic order in constant time between consecutive outputs and linear time preprocessing time.

Mino: 0000	Density 0000	Separators 000	Cutting 000000000	Ordering •0000	Flatening 000000000
		Ord	lering		

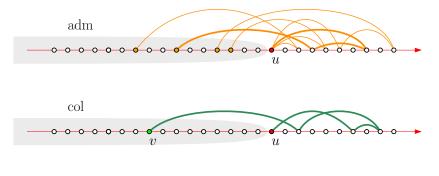
Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	00000	000000000

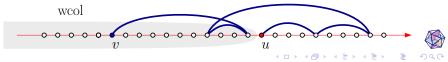
Coloring number



Generalized coloring numbers

$$\operatorname{adm}_r(G) \le \operatorname{col}_r(G) \le \operatorname{wcol}_r(G) \le 1 + r(\operatorname{adm}_r(G) - 1)^{r}$$





Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	000●0	000000000
		Bor	unds		

Class of graphs	wcol_r	
Bounded expansion	$\leq f(r)$	(Zhu '09)
No K_t -minor	$\binom{r+t-2}{t-2}(t-3)(2r+1)$	$\in O(r^{t-1})$
Planar	$\binom{r+2}{2}(2r+1)$	$\in O(r^3)$

(van den Heuvel, POM, Quiroz, Rabinovich, Siebertz '17)

Application: r-neighbourhood covers

Lemma (Grohe, Kreutzer, Siebertz 2013)

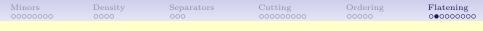
Let $r\in\mathbb{N}.$ For every graph G there exists a family $\mathscr X$ of induced subgraphs of G s.t.

- the maximum radius of $H \in \mathscr{X}$ is $\leq 2r$;
- every $v \in G$ has all its *r*-neighborhood in some $H \in \mathscr{X}$;
- every $v \in G$ belongs to at most $\operatorname{wcol}_{2r}(G)$ subgraphs in \mathscr{X} .

Remark

Leads to a characterization of nowhere dense and bounded expansion monotone classes.

Minor: 00000	Density 0000		Cutting 00000000	Ordering ooooo	Flatening •00000000
		Flateni	ing		



Uniformly quasi-wide classes

A class \mathscr{C} of graphs is *uniformly quasi-wide* if $\forall d \exists s \forall m \exists N: \forall G \in \mathscr{C}, A \subseteq V(G), |A| \geq N, \exists S \subseteq V(G), X \subseteq A$ with

•
$$|S| \leq s, |X| \geq m,$$

•
$$\forall x \neq y \in X \setminus S$$
, $\operatorname{dist}_{G-S}(x, y) > d$.

Theorem (Nešetril and Ossona de Mendez '10)

A class of graphs is uniformly quasi-wide if and only if it is nowhere dense.

Minors	Density	Separators	$\begin{array}{c} \text{Cutting} \\ \text{000000000} \end{array}$	Ordering	Flatening
00000000	0000	000		00000	00●000000

Polynomial uniform quasi-wideness

Theorem (Pilipczuk, Siebertz, Toruńczyk '18)

 $\forall r, t$ there is a polynomial P of degree at most $(2t+1)^{2rt}$ s.t. the following holds:

Let G be a graph such that $K_t \notin G \triangledown \lceil 5r/2 \rceil$ and let $A \subseteq V(G)$ with $|A| \ge P(m)$ then $\exists S \subseteq V(G)$ with $|S| \le t$ and $X \subseteq A - S$ with $|X| \ge m$ such that X is r-independent in G - S. Moreover, given G and A, sets S and X can be computed in time $O(|A| \cdot ||G||)$.



Application: Distance-r Dominating Sets

Lemma (Pilipczuk, Siebertz '18)

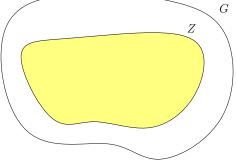
Let \mathscr{C} be a nowhere dense class and let $r \in \mathbb{N}$. Let $Z \subseteq V(G)$ be a large enough vertex subset $(|Z| \ge F_{\mathscr{C},r}(k))$. Then we can compute in polynomial time a vertex $w \in Z$ such that for any set $D \subseteq V(G)$ satisfying $|D| \le k$, we have

D distance-r dominates Z

$$\Leftrightarrow$$

D distance-r dominates $Z - \{w\}$.

Minors 00000000	Density 0000	Separators 000	Cutting 000000000	Ordering 00000	Flatening 0000€0000			
Proof								
				G				

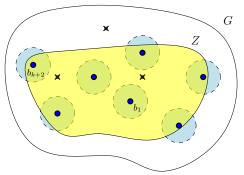


 $Z_{\mathscr{C},r} \geq F(k)$

Minors 00000000	Density 0000	Separators 000	Cutting 000000000	Ordering 00000	Flatening 000000000
		Pr	roof		
		× z		G	

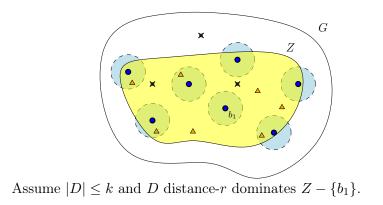
 $\rightarrow \exists S = \{z_1, \dots, z_s\}$ and $> (k+2)(s+1)^r$ vertices pairwise at distance > r in G - S.

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	00000	0000€0000
		Pr	roof		

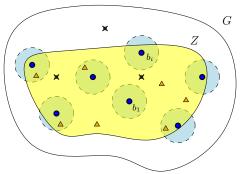


 $\rightarrow \exists S = \{z_1, \ldots, z_s\}$ and $> (k+2)(s+1)^r$ vertices pairwise at distance > r in G - S. Among them, b_1, \ldots, b_{k+2} have the same distance profile w.r.t. z_1, \ldots, z_s . We let $w := b_1$.

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	00000	0000●0000
		Pr	roof		

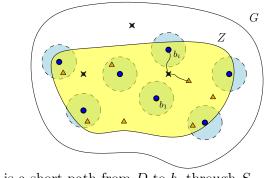


Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	00000	0000●0000
		Pr	roof		



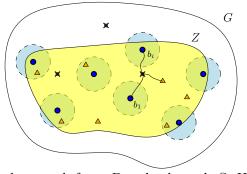
Assume $|D| \leq k$ and D distance-r dominates $Z - \{b_1\}$. Let b_i be such that no vertex of D is at distance at most r from b_i in G - S.

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	00000	0000●0000
		Pr	roof		



 \rightarrow There is a short path from D to b_i through S.

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	00000	0000●0000
Proof					



 \rightarrow There is a short path from D to b_1 through S. Hence D distance-r dominates b_1 .

Application: Model checking

Theorem (Grohe, Kreutzer, Siebertz 2014)

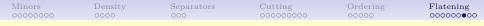
For every nowhere dense class \mathscr{C} and every $\epsilon > 0$, every property of graphs definable in first-order logic can be decided in time $O(n^{1+\epsilon})$ on \mathscr{C} .

Theorem (Dvořák, Kráľ, Thomas 2010; Kreutzer 2011)

if a monotone class \mathscr{C} is somewhere dense, then deciding firstorder properties of graphs in \mathscr{C} is not fixed-parameter tractable (unless FPT = W[1].

Remark

Hence a characterization of nowhere dense/somewhere dense dichotomy in terms of algorithmic complexity.

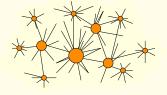


Application: First-order Limits

Theorem (Nešetřil, POM '16)

A hereditary class of graphs C is nowhere dense if and only if $\forall d, \forall \epsilon > 0, \forall G \in C, \exists S \subseteq G \text{ with } |S| \leq N(d, \epsilon)$ such that

$$\sup_{v \in G-S} \frac{|\mathcal{N}_{G-S}^d(v)|}{|G|} \le \epsilon.$$



Application: First-order Limits

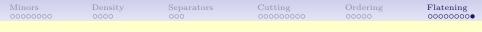
Theorem (Nešetřil, POM '19)

Let \mathscr{C} be a nowhere dense class and let $G_1, G_2, \dots \in \mathscr{C}$. Assume that for every first-order formula $\phi(x_1, \dots, x_p)$ the probability $\Pr[G_n \models \phi(X_1, \dots, X_p)]$ converges as $n \to \infty$. Then there exists a modeling **G** (i.e. a totally Borel graph on a probability space) such that for every first-order formula $\phi(x_1, \dots, x_p)$ we have

$$\Pr[\mathbf{G} \models \phi(X_1, \dots, X_p)] = \lim_{n \to \infty} \Pr[G_n \models \phi(X_1, \dots, X_p)]$$

Remark

Actually a characterization of nowhere dense classes.



Coffee break (and commercial)

下周继续 To be continued next week

ъ

イロト 不得 トイヨト イヨト