A model theoretic approach to sparsity

Jaroslav Nešetřil

Patrice Ossona de Mendez

Charles University Praha, Czech Republic CAMS CNRS/EHESS Paris, France Zhejiang Normal University Jinhua, PRC

— Shanghaï 2020 —

イロト 不得下 イヨト イヨト

Sparse vs Dense — Simple vs Complex

 a_2

Minors 00000000 Density 2000 Separators 000 Cutting 000000000 Ordering 00000

イロト イヨト イヨト イヨト

Flatening 000000000

Part I: Sparsity

æ

Minors	Density	Separators	Cutting	Ordering
●0000000	0000	000	00000000	00000

Shallow minors

・ロト ・四ト ・ヨト ・ヨト 三日

Flatening

Topological resolution of a class ${\mathscr C}$

Shallow topological minors at depth t:

 $\mathscr{C} \widetilde{\nabla} t = \{H : \text{some } \leq 2t \text{-subdivision of } H \text{ is a subgraph of some } G \in \mathscr{C}\}.$

Topological resolution:

$$\mathscr{C} \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ 0 \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ 1 \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ t \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ \infty$$

ъ

イロト 不得下 イヨト イヨト

 Minors
 Density
 Separators
 Cutting
 Ordering
 Flatening

 000000000
 The Somewhere dense
 Nowhere dense dichotomy

A class \mathscr{C} is *somewhere dense* if there exists τ such that $\mathscr{C} \tilde{\nabla} \tau$ contains all graphs.

$$\iff \quad (\exists \tau) \ \omega(\mathscr{C} \ \widetilde{\forall} \ \tau) = \infty.$$

A class \mathscr{C} is *nowhere dense* otherwise.

$$\iff \quad (\forall \tau) \ \omega(\mathscr{C} \ \widetilde{\nabla} \ \tau) < \infty.$$

We define

$$\widetilde{\omega}_{\tau}(G) := \max_{H \in G \,\widetilde{\vee}\, \tau} \,\omega(H).$$

Bounded expansion classes

A class \mathscr{C} has *bounded expansion* if for every τ the class $\mathscr{C} \ \widetilde{\nabla} \tau$ has bounded average degree.

$$\iff \quad (\forall \tau) \ \overline{\mathrm{d}}(\mathscr{C} \ \widetilde{\nabla} \ \tau) < \infty.$$

Remark that bounded expansion \implies nowhere dense.

We define

$$\widetilde{\nabla}_{\tau}(G) := \max_{H \in G \,\widetilde{\nabla}\, \tau} \frac{\|H\|}{|H|}.$$

Minors	Density	Separators	$\begin{array}{c} \text{Cutting} \\ \text{000000000} \end{array}$	Ordering	Flatening
00000000	0000	000		00000	000000000
		Exam	ples		

- planar graphs;
- cubic graphs;
- K_n subdivided log n times;
- graphs such that any two vertices u, v are at distance at least $f(\min(d(u), d(v)))$ with f non decreasing unbounded.
- the class of graphs G with $\Delta(G) \leq \operatorname{girth}(G)$;
- classes of cage graphs G with degree $|G|^{o(1)}$.

Every kind of shallow minors

Minor

 $Topological\ minor$

Immersion

Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	000000000	00000	000000000

	d	χ	χ_f	ω	
Minors					
Topological minors	Bounded expansion			Nowhere dense	
Immersions					
Definition					

Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	000000000	00000	000000000

	$\overline{\mathrm{d}}$	χ	χ_f	ω	
Minors				Nowhere dense	
Topological minors	Bounded expansion			Nowhere dense	
Immersions					
$\omega_r(G) \le (\widetilde{\omega}_{3r+1}(G))^{2r+2}$					

Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	000000000	00000	000000000

	$\overline{\mathrm{d}}$	χ	χ_f	ω	
Minors	Bounded expansion			Nowhere dense	
Topological minors	Bounded expansion			Nowhere dense	
Immersions					
	$\nabla_r(G) \le 2^{r^2 + 3r + 3} \lceil \widetilde{\nabla}_r(G) \rceil^{(r+2)^2}$				

Minors	Density	Separators	Cutting	Ordering	Flatening
000000●0	0000	000	000000000	00000	000000000

	d	χ	χ_{f}	ω
Minors	Bounded expansion			Nowhere dense
Topological minors	Bounded expansion			Nowhere dense
Immersions	Bounded expansion			Nowhere dense

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	000000000

	d	χ	χ_f	ω	
Minors	Bounded expansion	Bounded expansion		Nowhere dense	
Topological minors	Bounded expansion	Bounded expansion		Nowhere dense	
Immersions	Bounded expansion	Bounded expansion		Nowhere dense	
$\chi(G \widetilde{arphi} (2r+1)) \gtrsim \widetilde{ abla}_r(G)^{1/3}/\log \widetilde{ abla}_r(G) \; (ext{Dvořák '07})$					

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	000000000

	$\overline{\mathrm{d}}$	χ	χ_f	ω			
Minors	Bounded	Bounded	Bounded	Nowhere			
	expansion	expansion	expansion	dense			
Topological	Bounded	Bounded	Bounded	Nowhere			
minors	expansion	expansion	expansion	dense			
Immersions	Bounded	Bounded	Bounded	Nowhere			
	expansion	expansion	expansion	dense			
$\chi_f(G \widetilde{\nabla} (2r+1)) \geq 0.19 \widetilde{\nabla}_r(G)^{1/3}$ (Dvořák, POM, Wu '19+)							

・ロト ・個ト ・モト ・モト 三日

Minors 00000000	Density •000	Separators 000	Cutting 000000000	Ordering 00000	Flatening 000000000
		Dei	nsity		
		3524		35-	
			۹ 🗆	▶ ▲ EP ▶ ▲ 문 ▶ ▲ 문 ▶	≣ *) Q (*

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

Unavoidable subgraphs

Theorem (Erdős, Simonovits, Stone)

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) {n \choose 2} + o(n^2).$$

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

Unavoidable subgraphs

Theorem (Erdős, Simonovits, Stone)

$$ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Theorem (Jiang, Seiver '12)

Let F be a subdivision of a graph H, where each edge is subdivided by an even number of vertices (at least 2m). Then

$$\operatorname{ex}(n,F) = O(n^{1+\frac{8}{m}}).$$

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	00000000
			· · · · ·		

Concentration

Theorem (Jiang, Seiver '12)

$$ex(n, K_t^{(\leq 2p)}) = O(n^{1+\frac{8}{p}}).$$

$$\begin{split} \mathscr{C} \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ 0 \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ t \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ \frac{8t}{\epsilon} \ \subseteq \ \ldots \ \subseteq \ \mathscr{C} \ \widetilde{\nabla} \ \infty \\ & \uparrow \\ \|G\| > C_t \ |G|^{1+\epsilon} \qquad K_t \end{split}$$

||G|| = number of edges |G| = number of vertices

Hence:

$$\limsup_{G\in\mathscr{C}\,\widetilde{\heartsuit}\,t}\frac{\log\|G\|}{\log|G|}>1+\epsilon\quad\Longrightarrow\quad \limsup_{G\in\mathscr{C}\,\widetilde{\heartsuit}\,\frac{8t}{\epsilon}}\frac{\log\|G\|}{\log|G|}=2.$$

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	000●	000	000000000	00000	000000000

Classification by logarithmic density

Theorem (Class trichotomy — Nešetřil and POM)

Let ${\mathscr C}$ be an infinite class of graphs. Then

$$\sup_t \limsup_{G \in \mathscr{C} \ \widetilde{\bigtriangledown} \ t} \frac{\log \|G\|}{\log |G|} \in \{-\infty, 0, 1, 2\}.$$

- bounded size class $\iff -\infty$ or 0;
- nowhere dense class $\iff -\infty, 0 \text{ or } 1;$
- somewhere dense class $\iff 2$.

Minors 00000000 Density 0000 Separators •00 Cutting 000000000 Ordering 00000 Flatening 000000000

Expansion and Separators

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

Polynomial expansion

Definition

A class ${\mathscr C}$ has polynomial expansion if there is a polynomial P with

$$\nabla_r(G) \le P(r) \qquad (\forall G \in \mathscr{C}).$$

A class ${\mathscr C}$ has polynomial $\omega\text{-expansion}$ if there is a polynomial P with

$$\omega_r(G) \le P(r) \qquad (\forall G \in \mathscr{C}).$$

- planar graphs have polynomial expansion;
- cubic graphs do not have polynomial expansion.

Definition

A class \mathscr{C} has strongly sublinear separators if there exists a constant $\delta > 0$ such that every graph $G \in \mathscr{C}$ has a balanced vertex separator of size at most $|G|^{1-\delta}$.

ъ

イロト 不得下 イヨト イヨト

Definition

A class \mathscr{C} has strongly sublinear separators if there exists a constant $\delta > 0$ such that every graph $G \in \mathscr{C}$ has a balanced vertex separator of size at most $|G|^{1-\delta}$.

Theorem (Dvořák '14)

Let ${\mathscr C}$ be a hereditary class of graphs. The following are equivalent:

- 1. \mathscr{C} has polynomial expansion;
- 2. \mathscr{C} has polynomial ω -expansion;
- 3. C has strongly sublinear separators.

M	in	or	S		
00	00		00	00	С

Density 0000 Separators 000 Cutting •00000000 Ordering 00000 Flatening 000000000

Cutting

・ロト ・個ト ・ヨト ・ヨト 三日

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	000000000

 \rightarrow partition vertices of G by distance to a root mod |F| + 1;

(Eppstein '00)

イロト 不得下 イヨト イヨト

ъ

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

→ partition vertices of G by distance to a root mod |F| + 1; then unions of $\leq |F|$ parts induce a subgraph G_I with bounded tw;

(Eppstein '00)

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

ъ

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

- \rightarrow partition vertices of G by distance to a root mod |F| + 1;
- then unions of $\leq |F|$ parts induce a subgraph G_I with bounded tw;
 - \rightarrow solve the problem in each G_I ;

(Eppstein '00)

・ロト ・ 一下・ ・ 日下・ ・ 日下・

ъ

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

- \rightarrow partition vertices of G by distance to a root mod |F| + 1;
- then unions of $\leq |F|$ parts induce a subgraph G_I with bounded tw;
 - \rightarrow solve the problem in each G_I ; (Eppstein '00)

◊ low tree-width decompositions (DeVos, Ding, Oporowski, Sanders, Reed, Seymour, Vertigan '04)

・ロト ・得 ト ・注 ト ・注 トー 注

The *tree-depth* td(G) of a graph G is the minimum height of a rooted forest Y s.t.

 $G \subseteq \text{Closure}(Y).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 $\operatorname{td}(P_n) = \log_2(n+1)$

3

Low tree-depth decompositions

 $\chi_p(G)$ is the minimum number of colors such that every subset I of $\leq p$ colors induces a subgraph G_I so that $td(G_I) \leq |I|$. \iff the minimum number of colors in a *p*-centered coloring of G, i.e. a coloring such that every subgraph with $\leq p$ -colors has some uniquely colored vertex.

rec

Low tree-depth decompositions

 $\chi_p(G)$ is the minimum number of colors such that every subset I of $\leq p$ colors induces a subgraph G_I so that $td(G_I) \leq |I|$. \iff the minimum number of colors in a *p*-centered coloring of G, i.e. a coloring such that every subgraph with $\leq p$ -colors has some uniquely colored vertex.

Theorem (Nešetřil and POM; 2006, 2010)

$$\forall p, \sup_{G \in \mathscr{C}} \chi_p(G) < \infty \qquad \Longleftrightarrow \qquad \mathscr{C} \text{ has bounded expansion.}$$

$$\forall p, \ \limsup_{G \in \mathscr{C}} \frac{\log \chi_p(G)}{\log |G|} = 0 \qquad \Longleftrightarrow \qquad \mathscr{C} \text{ is nowhere dense.}$$

э

イロト 不得下 イヨト イヨト

Minors	Density	Separators	Cutting	Ordering	Flatening
0000000	0000	000	00000000	00000	000000000

Algorithmic version

Theorem (Nešetřil and POM '06)

For every integer p there is a polynomial P_p (deg $P_p \approx 2^{2^p}$) such that for every graph G it holds

$$\chi_p(G) \le N_p(G) \le P_p(\widetilde{\nabla}_{2^{p-2}+1}(G)),$$

and G has a p-centered coloring with at most $N_p(G)$ colors, which can be computed in $O(N_p(G)|G|)$ -time.

- \rightarrow linear time for bounded expansion classes;
- $\rightarrow\,$ almost linear time for nowhere dense classes.

Minors 00000000	Density Separato 0 0000 000	S Cutting	Ordering 00000	Flatening 000000000					
Bounds									
_	Class of graphs		χ_p						
_	Maximum degree $\leq \Delta$	$\Omega(\Delta^{2-\frac{1}{p}} p \ln^{-1/p} \Delta), O(\Delta^{2-\frac{1}{p}} p)$)					
	Outerplanar	$O(p\log p)$							
_	Planar	O(p							
_	Tree-width	($\binom{p+t}{t}$						
_	No topological K_t minor	<i>O</i> (1							
_	$\nabla_r \le r+2$	Ω(

(Dębski, Felsner, Micek, Schröder '20; Pilipczuk, Siebertz '19) (Dubois, Joret, Perarnau, Pilipczuk '20)

Application: Logarithmic density

Theorem (Nešetřil and POM)

Remark

Proof based on Low Tree-Depth Decompositions and regularity properties of bounded height trees.

Application: Restricted Homomorphism Dualities

Theorem (Nešetril, POM '06)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Example (Naserasr '07) \forall planar G \swarrow \leftrightarrow $G \rightarrow$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Application: Restricted Homomorphism Dualities

Theorem (Nešetril, POM '06)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Example (Thomassen '94)

 \forall toroidal G

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Application: Restricted Homomorphism Dualities

Theorem (Nešetril, POM '06)

Every class C with bounded expansion has all restricted dualities (ARD): $\forall F$ connected $\exists D$ such that $F \not\rightarrow D$ and

$$\forall G \in \mathcal{C}, \qquad (F \nrightarrow G) \iff (G \to D).$$

Theorem (Nešetril, POM '12)

- For class C of graphs closed under subdivisions: C has ARD $\iff C$ has bounded expansion.
- For class C of directed graphs closed under reorientations: C has ARD $\iff C$ has bounded expansion.

Application: Model checking

Theorem (Dvořák, Kráľ, Thomas 2010)

For every class \mathscr{C} with bounded expansion, every property of graphs definable in first-order logic can be decided in time O(n) on \mathscr{C} .

Theorem (Kazana, Segoufin 2013)

For every class \mathscr{C} with bounded expansion, every first-order definable subset can be enumerated in lexicographic order in constant time between consecutive outputs and linear time preprocessing time.

Minors 00000000	Density 0000	Separators 000	Cutting 000000000	Ordering •0000	Flatening 00000000
		Ord	ering		
Ð					
J			MAAAA		£-3-20

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	000000000	o●ooo	000000000

Coloring number

Generalized coloring numbers

$$\operatorname{adm}_r(G) \le \operatorname{col}_r(G) \le \operatorname{wcol}_r(G) \le 1 + r(\operatorname{adm}_r(G) - 1)^{r}$$

Minors	Density	Separators	Cutting	Ordering	Flatening		
00000000	0000	000	000000000	000€0	000000000		
Bounds							

Class of graphs	wcol_r	
Bounded expansion	$\leq f(r)$	(Zhu '09)
No K_t -minor	$\binom{r+t-2}{t-2}(t-3)(2r+1)$	$\in O(r^{t-1})$
Planar	$\binom{r+2}{2}(2r+1)$	$\in O(r^3)$

(van den Heuvel, POM, Quiroz, Rabinovich, Siebertz '17)

Application: r-neighbourhood covers

Lemma (Grohe, Kreutzer, Siebertz 2013)

Let $r\in\mathbb{N}.$ For every graph G there exists a family $\mathscr X$ of induced subgraphs of G s.t.

- the maximum radius of $H \in \mathscr{X}$ is $\leq 2r$;
- every $v \in G$ has all its *r*-neighborhood in some $H \in \mathscr{X}$;
- every $v \in G$ belongs to at most $\operatorname{wcol}_{2r}(G)$ subgraphs in \mathscr{X} .

Remark

Leads to a characterization of nowhere dense and bounded expansion monotone classes.

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	•00000000
		Flaten	ing		

Uniformly quasi-wide classes

A class \mathscr{C} of graphs is *uniformly quasi-wide* if $\forall d \exists s \forall m \exists N: \forall G \in \mathscr{C}, A \subseteq V(G), |A| \geq N, \exists S \subseteq V(G), X \subseteq A$ with

•
$$|S| \leq s, |X| \geq m,$$

•
$$\forall x \neq y \in X \setminus S$$
, $\operatorname{dist}_{G-S}(x, y) > d$.

Theorem (Nešetril and Ossona de Mendez '10)

A class of graphs is uniformly quasi-wide if and only if it is nowhere dense.

Minors	Density	Separators	Cutting	Ordering	Flatening
00000000	0000	000	00000000	00000	000000000

Polynomial uniform quasi-wideness

Theorem (Pilipczuk, Siebertz, Toruńczyk '18)

 $\forall r, t$ there is a polynomial P of degree at most $(2t+1)^{2rt}$ s.t. the following holds:

Let G be a graph such that $K_t \notin G \triangledown \lceil 5r/2 \rceil$ and let $A \subseteq V(G)$ with $|A| \ge P(m)$ then $\exists S \subseteq V(G)$ with $|S| \le t$ and $X \subseteq A - S$ with $|X| \ge m$ such that X is r-independent in G - S. Moreover, given G and A, sets S and X can be computed in time $O(|A| \cdot ||G||)$.

Application: Distance-r Dominating Sets

Lemma (Pilipczuk, Siebertz '18)

Let \mathscr{C} be a nowhere dense class and let $r \in \mathbb{N}$. Let $Z \subseteq V(G)$ be a large enough vertex subset $(|Z| \ge F_{\mathscr{C},r}(k))$. Then we can compute in polynomial time a vertex $w \in Z$ such that for any set $D \subseteq V(G)$ satisfying $|D| \le k$, we have

D distance-r dominates Z

$$\Leftrightarrow$$

D distance-r dominates $Z - \{w\}$.

Minors 00000000	$\begin{array}{c} \text{Density} \\ \text{0000} \end{array}$	Separators 000	Cutting 000000000	Ordering 00000	Flatening 000000000			
Proof								

 $Z \ge F_{\mathscr{C},r}(k)$

Minors 0000000	Density 0000	Separators 000	Cutting 000000000	Ordering 00000	Flatening 000000000
		Proc	of		
		× z ₂		G	

 $\rightarrow \exists S = \{z_1, \dots, z_s\}$ and $> (k+2)(s+1)^r$ vertices pairwise at distance > r in G - S.

Minors	Density	Separators	Cutting	Ordering	Flatening		
00000000	0000	000	000000000	00000	0000●0000		
Proof							

 $\rightarrow \exists S = \{z_1, \ldots, z_s\}$ and $> (k+2)(s+1)^r$ vertices pairwise at distance > r in G - S. Among them, b_1, \ldots, b_{k+2} have the same distance profile w.r.t. z_1, \ldots, z_s . We let $w := b_1$.

Minors	Density	Separators	Cutting	Ordering	Flatening		
00000000	0000	000	000000000	00000	000000000		
Proof							

Minors	Density	Separators	Cutting	Ordering	Flatening		
00000000	0000	000	000000000	00000	0000●0000		
Proof							

Assume $|D| \leq k$ and D distance-r dominates $Z - \{b_1\}$. Let b_i be such that no vertex of D is at distance at most r from b_i in G - S.

Minors	Density	Separators	Cutting	Ordering	Flatening		
00000000	0000	000	000000000	00000	000000000		
Proof							

 \rightarrow There is a short path from D to b_i through S.

Minors	Density	Separators	Cutting	Ordering	Flatening			
00000000	0000	000	000000000	00000	0000●0000			
Proof								

 \rightarrow There is a short path from D to b_1 through S. Hence D distance-r dominates b_1 .

Application: Model checking

Theorem (Grohe, Kreutzer, Siebertz 2014)

For every nowhere dense class \mathscr{C} and every $\epsilon > 0$, every property of graphs definable in first-order logic can be decided in time $O(n^{1+\epsilon})$ on \mathscr{C} .

Theorem (Dvořák, Kráľ, Thomas 2010; Kreutzer 2011)

if a monotone class \mathscr{C} is somewhere dense, then deciding firstorder properties of graphs in \mathscr{C} is not fixed-parameter tractable (unless FPT = W[1].

Remark

Hence a characterization of nowhere dense/somewhere dense dichotomy in terms of algorithmic complexity.

Application: First-order Limits

Theorem (Nešetřil, POM '16)

A hereditary class of graphs C is nowhere dense if and only if $\forall d, \forall \epsilon > 0, \forall G \in C, \exists S \subseteq G \text{ with } |S| \leq N(d, \epsilon)$ such that

$$\sup_{v \in G-S} \frac{|\mathcal{N}_{G-S}^d(v)|}{|G|} \le \epsilon.$$

Application: First-order Limits

Theorem (Nešetřil, POM '19)

Let \mathscr{C} be a nowhere dense class and let $G_1, G_2, \dots \in \mathscr{C}$. Assume that for every first-order formula $\phi(x_1, \dots, x_p)$ the probability $\Pr[G_n \models \phi(X_1, \dots, X_p)]$ converges as $n \to \infty$. Then there exists a modeling **G** (i.e. a totally Borel graph on a probability space) such that for every first-order formula $\phi(x_1, \dots, x_p)$ we have

$$\Pr[\mathbf{G} \models \phi(X_1, \dots, X_p)] = \lim_{n \to \infty} \Pr[G_n \models \phi(X_1, \dots, X_p)]$$

Remark

Actually a characterization of nowhere dense classes.

Coffee break (and commercial)

下周继续 To be continued next week

ъ

イロト 不得 トイヨト イヨト

æ

イロト イヨト イヨト イヨト

æ

イロト イヨト イヨト イヨト

Subcoloring powers

Definition

A *subcoloring* of a graph G is a coloring of the vertices such that each color class induces a disjoint union of cliques.

$$\max_{H \subseteq_i G} \frac{\chi(H)}{\omega(H)} \le \chi_{\rm sub}(G).$$

Subcoloring powers

Definition

A *subcoloring* of a graph G is a coloring of the vertices such that each color class induces a disjoint union of cliques.

$$\max_{H\subseteq_i G} \frac{\chi(H)}{\omega(H)} \le \chi_{\rm sub}(G).$$

Theorem (Nešetřil, POM, Pilipczuk, Zhu '19+)

For every graph G and every integer $d\geq 2$ we have

$$\chi_{\rm sub}(G^d) \le \begin{cases} \operatorname{wcol}_{2d-1}(G) & \text{ if } d \text{ is odd,} \\ \operatorname{wcol}_{2d}(G) & \text{ if } d \text{ is even.} \end{cases}$$

ъ

・ロット 全部 マート・トロッ

Let
$$d' = \lfloor d/2 \rfloor$$
 and $\begin{cases} (c, <) \text{ a rank } d+2d' \text{ weak colouring;} \\ v \mapsto \hat{v} := \min \operatorname{Ball}_{d'}(v); \\ \gamma(v) := c(\hat{v}). \end{cases}$

$$\begin{cases} uv \in E(G^d) \\ \gamma(u) = \gamma(v) \end{cases} \Rightarrow \hat{u} = \hat{v} \quad \rightsquigarrow \quad \text{No } \gamma \text{-monochromatic induced } P_3. \end{cases}$$

Theorem (Nešetřil, POM, Pilipczuk, Zhu '19+)

For every $H \subseteq_i G^d$ we have

$$\frac{\operatorname{col}(H)}{\operatorname{wcol}_{2d}(G)} \le \omega(H) \le \chi(H) \le \operatorname{col}(H).$$

Remark

Linear time constant factor approximation for $\chi(G^d)$ if G is in a bounded expansion class.

C	G^d 00000	$G^{[\sharp p]}$	T(<i>G</i>) 00000000	NIP & Co 00000	Sparsification 000000000
		Dis	stance colori	ng	

(日)、<四)、<回</p>

Distance Coloring of Planar Graphs

Problem

How many colors are needed to ensure that any two vertices at distance 3 get different colors?

 $G^{[\sharp p]}$: x and y adjacent if $\operatorname{dist}_G(x, y) = p$.

Distance Coloring of Planar Graphs

NIP & Co

Problem

How many colors are needed to ensure that any two vertices at distance 3 get different colors?

 $G^{[\sharp p]}$: x and y adjacent if $\operatorname{dist}_G(x, y) = p$.

Theorem (Sampathkumar; '77)

 $C^{[\sharp p]}$

00000

For planar G and every odd p it holds $\chi(G^{[\sharp p]}) \leq 5$.

Distance Coloring

Counterexample (Nešetřil, POM)

 $\substack{G^{[\sharp p]}\\\circ\circ\bullet\circ\circ\circ}$

???

NIP & Co

Counterexample (Nešetřil, POM)

 $C^{[\sharp p]}$

000000

Theorem (Nešetřil, POM; '06)

For all graph G and odd integer p it holds $\chi(G^{[\sharp p]}) \leq 2^{2^{p^{\chi_p(G)^p}}}$. Thus $\sup_{G \in \mathscr{C}} \chi(G^{[\sharp p]}) < \infty$ for every bounded expansion class \mathscr{C} .

$$6 \leq \sup_{G \text{ planar}} \chi(G^{[\sharp 3]}) \leq 5 \cdot 2^{20971522}$$

Theorem (van den Heuvel, Quiroz, Kierstead 2016)

$$\chi(G^{[\sharp p]}) \leq \begin{cases} \operatorname{wcol}_{2p-1}(G) & \text{if } p \text{ is odd,} \\ \operatorname{wcol}_{2p}(G) \Delta(G) & \text{if } p \text{ is even.} \end{cases}$$

$$\sup_{G \text{ planar}} \chi(G^{[\sharp(2p+1)]}) = O(p^3)$$

$$7 \le \sup_{G \text{ planar}} \chi(G^{[\sharp 3]}) \le 103$$

	G^d	$G^{[\sharp p]}$	T(G)	NIP & Co	Sparsification
C	00000	000000	00000000	00000	000000000

Assume p > 1. Then

- $\chi(G^{[\sharp 2p]}) = 2.$
- wcol_{4p}(G) ~ log p;
- $\Delta(G)$ unbounded.

	G^d	$G^{[\sharp p]}$	T(G)	NIP & Co	Sparsification
)	00000	000000	00000000	00000	00000000

Assume p > 1. Then

- $\chi(G^{[\sharp 2p]}) = 2.$
- wcol_{4p}(G) ~ log p;
- $\Delta(G)$ unbounded.

Theorem (Jiang, POM '20+)

$$\frac{\chi(G^{[\sharp 2p]})}{\omega(G^{[\sharp 2p]})} \le \operatorname{wol}_{4p}(G) \operatorname{wol}_{4p-3}(G).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Odd Distance Coloring

Problem (Van den Heuvel and Naserasr)

Does there exist a constant C such that for every odd-integer p and any planar graph G it holds

 $\chi(G^{[\sharp p]}) \leq C?$

Theorem (Bousquet, Esperet, Harutyunyan, de Joannis de Verclos 2018)

$$\chi(G^{[\sharp p]}) = \Theta\left(\frac{p}{\log p}\right).$$

How to encode graphs in a structure?

- Use a formula $\varphi(x, y)$ to define the edges,
- Use colors to encode several graphs in the same graph,
- Extract induced subgraphs.

$$\mathscr{C} \longrightarrow \mathscr{D}$$

Remark

Transduction compose. In particular,

$$\mathscr{C} \longrightarrow \mathscr{D} \longrightarrow \mathscr{E} \quad \Longrightarrow \quad \mathscr{C} \longrightarrow \mathscr{E}$$

э

イロト 不得 トイヨト イヨト

Transduction: Color, Interpret, and Cut

æ

イロト イヨト イヨト イヨト

0	G^d 00000	$G^{[\sharp p]}$	T(G) 000●00000	NIP & Co 00000	Sparsification 000000000

Edgeless graphs

 ${\rm Edgeless} \longrightarrow {\rm Blowing \ of \ a \ fixed \ graph}$

- 2

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Unit interval graphs —— Half-graphs

Unit interval graphs \longrightarrow All graphs

0	<i>G^d</i> 00000	$G^{[\sharp p]}$	T(G) 00000●000	NIP & Co 00000	Sparsification
		cle graphs			

Circle graphs \longrightarrow All graphs

 $\begin{aligned} & \text{Interval graphs} \longrightarrow \text{All graphs} \\ \exists y (G(y) \land \forall x (B(x) \to ((x \sim b \to x \sim y) \land (x \sim y \to x \sim a)))) \end{aligned}$

0	<i>G</i> ^{<i>d</i>} 00000	$G^{[\sharp p]}_{000000}$	T(G) 0000000●0	NIP & Co 00000	Sparsification 000000000
		Sh	rub-depth		

 \mathscr{C} has bounded shrub-depth \iff $(\exists n) \mathscr{Y}_n \longrightarrow \mathscr{C}$

æ

イロト イヨト イヨト イヨト

More transductions

It follows from (Colcombet '07) that we have:

 $\operatorname{Half-graphs} \longrightarrow \mathscr{C} \quad \iff \quad \mathscr{C} \text{ has bounded linear-rankwidth}$

 $\operatorname{Cographs} \longrightarrow \mathscr{C} \quad \iff \quad \mathscr{C} \text{ has bounded rankwidth}$

neo

More transductions

It follows from (Colcombet '07) that we have:

Half-graphs $\longrightarrow \mathscr{C} \iff \mathscr{C}$ has bounded linear-rankwidth

 $\operatorname{Cographs} \longrightarrow \mathscr{C} \quad \iff \quad \mathscr{C} \text{ has bounded rankwidth}$

If ${\mathcal C}$ has bounded linear rankwidth then

 $\mathscr{C} \longrightarrow \operatorname{Half-graphs}$

 \Leftrightarrow

% is a transduction of a class with bounded pathwidth.(Nešetřil, POM, Rabinovich, Siebertz '20)

More transductions

It follows from (Colcombet '07) that we have:

 $\operatorname{Half-graphs} \longrightarrow \mathscr{C} \quad \iff \quad \mathscr{C} \text{ has bounded linear-rankwidth}$

 $\operatorname{Cographs} \longrightarrow \mathscr{C} \quad \iff \quad \mathscr{C} \text{ has bounded rankwidth}$

If ${\mathscr C}$ has bounded rankwidth then

 $\mathscr{C} { \longrightarrow } \operatorname{Half-graphs}$

 \Leftrightarrow

\mathscr{C} is a transduction of a class with bounded treewidth. (Nešetřil, POM, Pilipczuk, Rabinovich, Siebertz '20+)

Monadic dependence and stability

æ

・ロト ・四ト ・ヨト ・ヨト

	G^d	$G^{[\sharp p]}$	T(G)	NIP & Co	Sparsification
0	00000	000000	00000000	00000	00000000

Monadic dependence and stability

Definition

A class ${\mathscr C}$ is monadically dependent if ${\mathscr C} \longrightarrow \operatorname{All graphs}$.

A class ${\mathscr C}$ is monadically stable if ${\mathscr C} {\sc {\sc {\rm \hspace{-.1em} Half-graphs}}}\,.$

	G^d	$G^{[\sharp p]}$	T(G)	NIP & Co	Sparsification
C	00000	000000	00000000	0000	000000000

Monadic dependence and stability

Definition

A class ${\mathscr C}$ is monadically dependent if ${\mathscr C} \longrightarrow \operatorname{All}$ graphs .

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ = Ξ

A class ${\mathscr C}$ is monadically stable if ${\mathscr C} \longrightarrow \operatorname{Half-graphs}$.

Theorem (Podewski, Ziegler '78; Adler, Adler '14)

For a monotone class ${\mathscr C}$ the following are equivalent:

- \mathscr{C} is nowhere dense,
- C is monadically stable,
- \mathscr{C} is monadically dependent.

0	<i>G</i> ^{<i>d</i>} 00000	$G^{[\sharp p]}$	T(G) 00000000	NIP & Co 00●00	Sparsification

VC-dimension

$$\begin{split} \pi_{\mathscr{F}}(n) &= \max_{|A| \leq n} \left| \{C \cap A : C \in \mathscr{F}\} \right| \quad shatter \ function \\ \mathrm{VC}(\mathscr{F}) &= \max\{n : \pi_{\mathscr{F}}(n) = 2^n\} \qquad \qquad VC\text{-dimension} \end{split}$$

0	<i>G</i> ^{<i>d</i>} 00000	$G^{[\sharp p]}$	T(<i>G</i>) 00000000	NIP & Co 000●0	Sparsification
		oplication			

Problem

How many distinct traces vertex neighborhoods can have on a subset of n vertices?

Theorem (Reidl '15; Adler² '10+ Sauer-Shelah)

Let \mathscr{C} be a monotone class of graphs. For $r \in \mathbb{N}$ let $\mathscr{S}_r = \{N_r(G, v) : v \in V(G), G \in \mathscr{C}\}.$

Then \mathscr{C} is

- a bounded expansion class iff $(\forall r) \pi_{\mathscr{S}_r}(n)$ is linear;
- a nowhere dense class iff $(\forall r) \pi_{\mathscr{S}_r}(n)$ is polynomial;
- a somewhere dense class iff $(\exists r) \ \pi_{\mathscr{S}_r}(n) = 2^n$.

 G^d
 G^{[[#p]}
 T(G)
 NIP & Co
 Sparsification

 coccco
 coccco
 coccco
 coccco
 coccco

 Polynomial or Quasi-Linear?

Theorem

If \mathscr{C} is nowhere dense then $\pi_{\mathscr{S}_r}(n) = n^{1+o(1)}$.

- case r = 1: (Gajarský, Hlinený, Obdrzálek, Ordyniak, Reidl, Rossmanith, Villaamil, and Sikdar '13).
- general case: (Eickmeyer, Giannopoulou, Kreutzer, Kwon, Pilipczuk, Rabinovich, and Siebertz '17)

 G^d
 G^{[[#p]}
 T(G)
 NIP & Co
 Sparsification

 Polynomial or Quasi-Linear?

Theorem

If \mathscr{C} is nowhere dense then $\pi_{\mathscr{S}_r}(n) = n^{1+o(1)}$.

- case r = 1: (Gajarskỳ, Hlinenỳ, Obdrzálek, Ordyniak, Reidl, Rossmanith, Villaamil, and Sikdar '13).
- general case: (Eickmeyer, Giannopoulou, Kreutzer, Kwon, Pilipczuk, Rabinovich, and Siebertz '17)

Theorem (Pilipczuk, Siebertz, and Toruńczyk '18)

If $\mathscr C$ is nowhere dense and $\ \mathscr C \longrightarrow \mathscr D$ then on $\mathscr D$ we have $\pi_{\mathscr S_r}(n)=n^{1+o(1)}$

FO model checking on transduction of sparse classes?

For any sparse graph class $\mathscr{C}\colon$

- • Characterize graph classes that are transductions of ${\mathscr C}$
- Find an algorithm to 'reverse' transductions
- Find a model checking algorithm

Examples:

- Interpretations of classes with bounded degree (Gajarský, Hliněný, Lokshtanov, Obdržálek, Ramanujan '16)
- Map graphs (Eickmeyer, Kawarabayashi '17)
- Classes obtained from degenerate ND classes by a bounded number of complementations (Gajarský, Kraľ '18)

A □ ▶ A □ ▶ A □ ▶ A □ ▶ B □ ▶

FO model checking on transduction of sparse classes?

For any sparse graph class \mathscr{C} :

- Characterize graph classes that are transductions of ${\mathscr C}$
- Find an algorithm to 'reverse' transductions
- Find a model checking algorithm

Conjecture (Gajarský et al. 2016)

Let \mathscr{C} be a nowhere dense class and \mathscr{D} a graph class interpretable in \mathscr{C} . Then \mathscr{D} has an FO model checking algorithm in FPT.

Tree-depth covers

Definition

Class \mathscr{C} of graphs has *low tree-depth covers* if for every k there exist N and a class \mathscr{T} with bounded tree-depth such that for each $G \in \mathscr{C}$ we there is a system G_1, \ldots, G_N of induced subgraphs of G such that:

- Each G_i belongs to \mathscr{T} ,
- Each k-tuple of vertices is in at least one G_i .

Theorem (Nešetřil, POM '06)

A class has bounded expansion if and only if it has low tree-depth covers.

ъ

・ロト ・ 一下 ・ ト ・ ト ・

Shrub-depth covers

Definition

Class \mathscr{C} of graphs has *low shrub-depth covers* if for every k there exist N and a class \mathscr{S} with bounded shrub-depth such that for each $G \in \mathscr{C}$ we there is a system G_1, \ldots, G_N of induced subgraphs of G such that:

- Each G_i belongs to \mathscr{S} ,
- Each k-tuple of vertices is in at least one G_i .

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM, Pilipczuk, Siebertz, Toruńczyk '18)

If ${\mathscr C}$ has low shrub-depth covers then ${\sf T}({\mathscr C})$ has low shrub-depth covers.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Structural Sparsity

Theorem (Gajarský, Kreutzer, Kwon, Nešetril, POM, Pilipczuk, Siebertz, Toruńczyk '18)

For a class of graphs ${\mathscr C}$ the following are equivalent:

• \mathscr{C} has structurally bounded expansion, i.e. there is a bounded expansion class \mathscr{D} such that

$$\mathscr{D} \longrightarrow \mathscr{C}$$

- C has low shrub-depth covers;
- there is a class $\mathrm{Sparsify}(\mathscr{C})$ with bounded expansion such that

 $Sparsify(\mathscr{C}) \longrightarrow \mathscr{C} \longrightarrow Sparsify(\mathscr{C})$

Application: χ -boundedness

Definition

A class ${\mathscr C}$ is $\chi\text{-bounded}$ if there is a function f with

 $\forall G \in \mathscr{C} \qquad \chi(G) \leq f(\omega(G)).$

The class ${\mathcal C}$ is linearly $\chi\text{-bounded}$ if

$$\forall G \in \mathscr{C} \qquad \chi(G) = O(\omega(G)).$$

Corollary

Every class with structurally bounded expansion is linearly $\chi\text{-bounded}.$

0	G^d 00000	$G^{[\sharp p]}$	T(G) 00000000	NIP & Co 00000	Sparsification 0000000000

Furt	her c	overs
------	-------	-------

		Low rank-width covers (Kwon, Pilipczuk, Siebertz '17)	⇒	polynomially χ-bounded (Bonamy, Pilipczuk '20)
Monadically	Lo dependent?	w linear rank-width covers \uparrow	\Rightarrow	linearly χ -bounded (Nešetřil, Ossona de Mendez, Rabinovich, Siebertz '20)
SBE (∫) BE	$\Leftrightarrow \\ \Leftrightarrow \\ \Leftrightarrow \\$	Low shrub-depth covers Low tree-depth covers	⇒	linearly χ -bounded
Monadical	lly stable			

0	<i>G</i> ^{<i>d</i>} 00000	<i>G</i> ^[#<i>p</i>] 000000	T(G) 00000000	NIP & Co 00000	Sparsification 0000000000

Low complexity classes

(オロト オピト オミト オミト 三日

0	<i>G^d</i> 00000	$G^{[\sharp p]}$	T(G) 00000000	NIP & Co 00000	Sparsification 00000000

Transduction semilattice

(日)、(四)、(日)、(日)、(日)

Thank you for your attention.

ъ

・ロト ・四ト ・ヨト ・ヨト