Ranking Tournaments with No Errors

Xujin Chen

Academy of Mathematics & Systems Science Chinese Academy of Sciences

Joint work with Guoli Ding, Wenan Zang, Qiulan Zhao

Fudan University, December 17, 2020

イヨケイヨト

-99.0-

Outline

1 Motivations

- Minimum feedback arc set problem
- Cycle Mengerian digraphs

2 Results

- Characterization
- Structures

3 Proofs

- Properties of 1-sums
- Chain theorem
- Structural description
- Min-max relation

Onclusion

< 国 > < 国 >

1

Dar

< 🗆 🕨

-

∃ ▶

Ξ

Sar

Sports tournament

Find a ranking of all *n* teams (players) that minimizes # upsets, where an **upset** occurs if a **higher** ranked team (player) was actually defeated by a **lower** ranked team (player).

Sports tournament

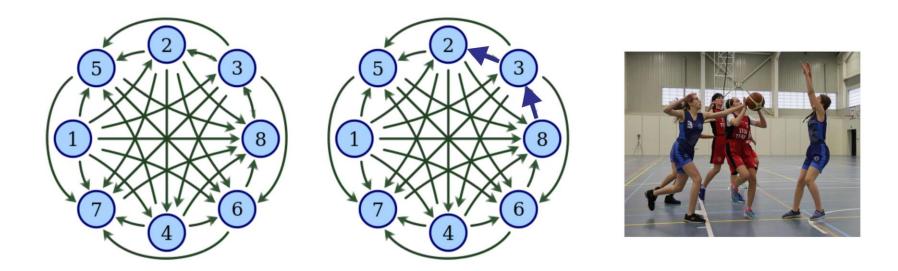
Find a ranking of all *n* teams (players) that minimizes # upsets, where an **upset** occurs if a **higher** ranked team (player) was actually defeated by a **lower** ranked team (player).

Digraph G is called a tournament if there is precisely one arc between any two vertices in G, indicating the head was defeated by the tail.

< 口 > < 戸 > < 三 > < 三 >

Sar

Upsets



Find a ranking of all *n* teams (players) that minimizes **# upsets**, where an **upset** occurs if a **higher** ranked team (player) was actually defeated by a **lower** ranked team (player).

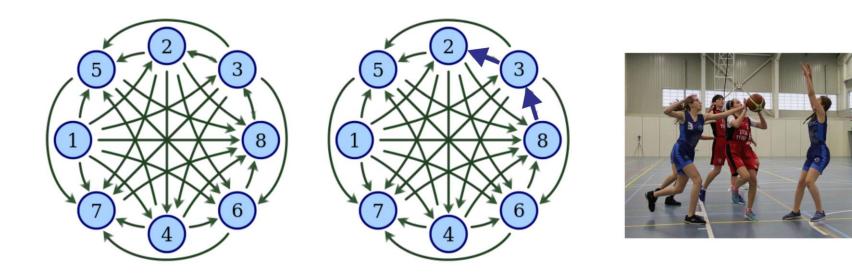
Digraph G is called a tournament if there is precisely one arc between any two vertices in G, indicating the head was defeated by the tail.

イロト イヨト イヨト イヨト

DQQ

ヘロア ヘロア ヘビア ヘビア

Ranking with no upsets



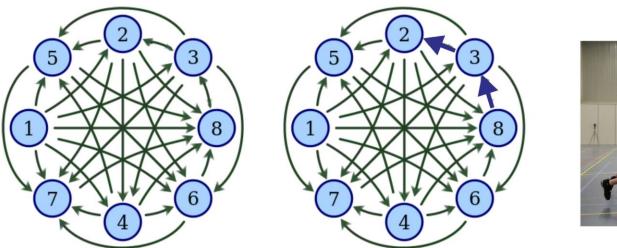
Find a ranking of all *n* teams (players) that minimizes # upsets, where an **upset** occurs if a **higher** ranked team (player) was actually defeated by a **lower** ranked team (player).

A tournament has a ranking with no upset if and only if it is acyclic, i.e., has no directed cycles.

Motivations Results Proofs Conclusion

FAS problem CM digraphs

Ranking with minimum # upsets



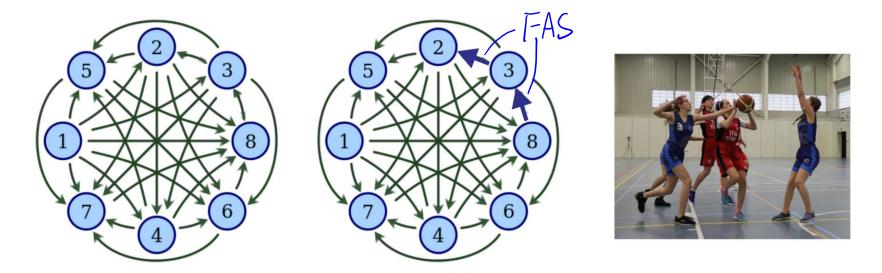
ヘロア ヘロア ヘビア ヘビア

SQR

Find a ranking of all n teams (players) that <u>minimizes</u> # upsets, where an upset occurs if a higher ranked team (player) was actually defeated by a lower ranked team (player).

This problem can be rephrased as the minimum feedback arc set problem on tournament *G*.

Minimum FAS problem



Find a ranking of all *n* teams (players) that <u>minimizes</u> # upsets, where an upset occurs if a higher ranked team (player) was actually defeated by a lower ranked team (player).

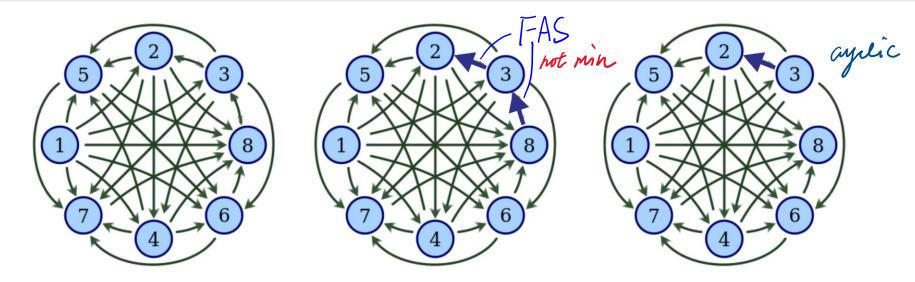
• A subset *F* of arcs is called a feedback arc set (FAS) of *G* if $G \setminus F$ contains no (directed) cycles.

ヘロマ ヘロマ ヘロマ

DQQ

• The minimum FAS problem is to find an FAS in *G* with a minimum number of arcs.

Minimum FAS problem



Find a ranking of all *n* teams (players) that <u>minimizes</u> # upsets, where an upset occurs if a higher ranked team (player) was actually defeated by a lower ranked team (player).

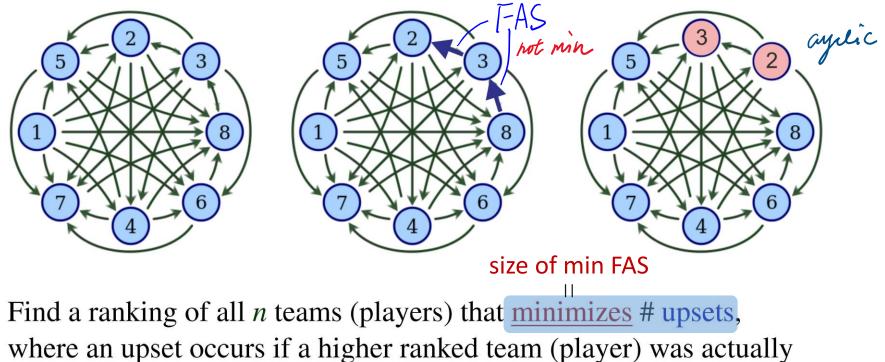
• A subset *F* of arcs is called a feedback arc set (FAS) of *G* if $G \setminus F$ contains no cycles (directed).

ヘロマ ヘロマ ヘロマ

DQQ

• The minimum FAS problem is to find an FAS in *G* with a minimum number of arcs.

Minimum FAS problem



defeated by a lower ranked team (player).

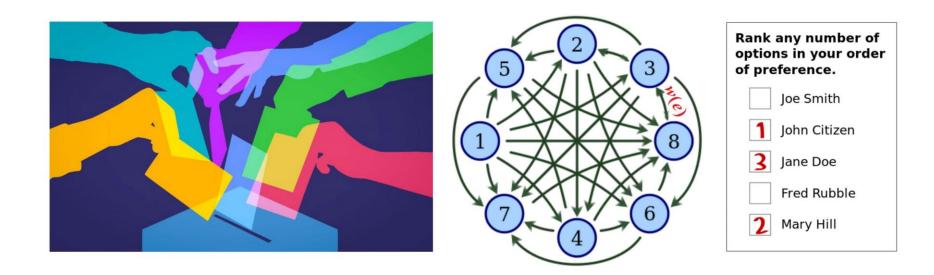
• A subset *F* of arcs is called a feedback arc set (FAS) of *G* if $G \setminus F$ contains no cycles (directed).

ヘロマ ヘロマ ヘロマ

DQQ

• The minimum FAS problem is to find an FAS in *G* with a minimum number of arcs.

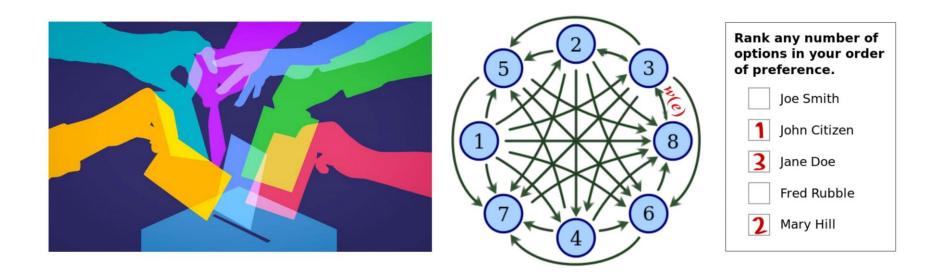
Voting



Let G = (V,A) be a digraph with a nonnegative integral weight w(e) on each arc e.

ヘロマ 人間マ 人間マー

Voting



Let G = (V,A) be a digraph with a nonnegative integral weight w(e) on each arc e.

The minimum-weight FAS problem (FAS problem) is to find an FAS in *G* with minimum total weight \Leftrightarrow a rank with a min amount of upset.

ヘロマ 人間マ 人間マ 人間マー

1

The FAS problem on tournaments (FAST)

- Borda count (1770, 1781)
- Condorcet method (1785)
- a rich variety of applications in sports, databases, and statistics ...

< ロ > < 回 > < 回 > < 回 > < 回 > <

1

SQR

The FAS problem on tournaments (FAST)

- Borda count (1770, 1781)
- Condorcet method (1785)
- a rich variety of applications in sports, databases, and statistics ...

Alon (2006) & Charbit et al. (2007): FAST is **NP-hard** even in the unweighted case.

Mathieu/Schudy (2007): "rank with few errors", i.e., a **PTAS** (polynomial time approximation scheme) for FAST.

ヘロア 人間 ア 人間 ア 一

Dar

The FAS problem on tournaments (FAST)

- Borda count (1770, 1781)
- Condorcet method (1785)
- a rich variety of applications in sports, databases, and statistics ...

Alon (2006) & Charbit et al. (2007): FAST is **NP-hard** even in the unweighted case.

Mathieu/Schudy (2007): "rank with few errors", i.e., a **PTAS** (polynomial time approximation scheme) for FAST.

Question

When can FAST be solved exactly in polynomial time?

ヘロマ ヘロマ ヘロマ

1

San

The FAS problem on tournaments (FAST)

- Borda count (1770, 1781)
- Condorcet method (1785)
- a rich variety of applications in sports, databases, and statistics ...

Alon (2006) & Charbit et al. (2007): FAST is **NP-hard** even in the unweighted case.

Mathieu/Schudy (2007): "rank with few errors", i.e., a **PTAS** (polynomial time approximation scheme) for FAST.

Question

When can FAST be solved exactly in polynomial time? ⇔ Which tournaments can be ranked with no errors?

ヘロア ヘビア ヘビア

-

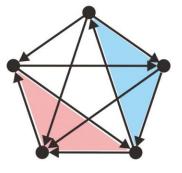
-99.0-

Cycle packing

Given digraph G = (V, A) and arc weight $\mathbf{w} \in \mathbb{Z}_+^A$,

- A collection & of cycles (with repetition allowed) in G is called a cycle packing of G if each arc e is used at most w(e) times by members of &.
- The cycle packing problem consists in finding a cycle packing with maximum size,

all black arcs have weight 1



ヘロマ ヘロマ ヘロマー

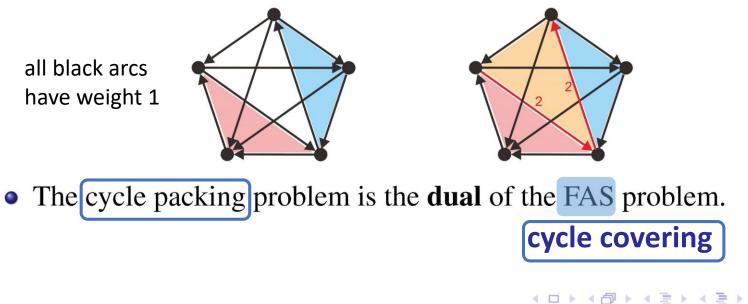
1

SQR

Cycle packing

Given digraph G = (V, A) and arc weight $\mathbf{w} \in \mathbb{Z}_+^A$,

- A collection & of cycles (with repetition allowed) in G is called a cycle packing of G if each arc e is used at most w(e) times by members of &.
- The cycle packing problem consists in finding a cycle packing with maximum size,



SQR

Motivations Results Proofs Conclusion FAS problem CM digraphs

Max cycle packing vs. min FAS

Given digraph G = (V, A) and arc weight $\mathbf{w} \in \mathbb{Z}_+^A$,

- A collection & of cycles (with repetition allowed) in G is called a cycle packing of G if each arc e is used at most w(e) times by members of &.
- The cycle packing problem consists in finding a cycle packing with maximum size,
- The cycle packing problem is the **dual** of the FAS problem.
- $v_w(G)$ = the maximum size of a cycle packing in (G, w), $\tau_w(G)$ = the minimum total weight of an FAS in (G, w).

$$oldsymbol{v}_{\scriptscriptstyle {\mathcal W}}(G) \leq au_{\scriptscriptstyle {\mathcal W}}(G).$$

イロアイロアイロア 相

-090-

▲田 ▶ ▲田 ▶

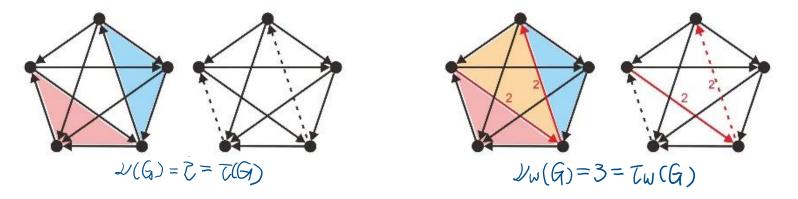
DQQ

Cycle Mengerian digraphs

Given digraph G = (V,A) and arc weight w, let $v_w(G)$ be the maximum size of a cycle packing, and let $\tau_w(G)$ be the minimum total weight of an FAS. Then

$$v_w(G) \leq \tau_w(G).$$

We call *G* cycle Mengerian (CM) if $v_w(G) = \tau_w(G)$ for every nonnegative integral function w defined on *A*.



CM digraphs

A characterization of CM digraphs can yield not only a beautiful minimax theorem but also a polynomial-time algorithm for the FAS problem on such digraphs [Grötschel/Lovász/Schrijver,1981]

- Lucchesi/Younger (1978): plane digraph
- Seymour (1977, 1996): matroid, Eulerian digraph
- Geelen/Guenin (2002): odd circuits in Eulerain graph

•

ヘロア 人間 アメ 回 ア

SQR

CM digraphs

A characterization of CM digraphs can yield not only a beautiful minimax theorem but also a polynomial-time algorithm for the FAS problem on such digraphs [Grötschel/Lovász/Schrijver,1981]

- Lucchesi/Younger (1978): plane digraph
- Seymour (1977, 1996): matroid, Eulerian digraph
- Geelen/Guenin (2002): odd circuits in Eulerain graph

•

Despite tremendous research efforts, only some **special classes** of CM digraphs have been identified to date.

A complete characterization seems extremely hard to obtain.

・ロア・1日マ・日マー 田

SQR

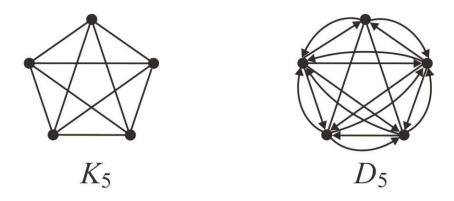
Results

▲日を▲国を▲国を

1

CM digraphs

Let D_5 be the digraph obtained from K_5 by replacing each edge *ij* with a pair of opposite arcs (i,j) and (j,i).



Applegate et al. (1991), Barahona et al. (1994) proved that

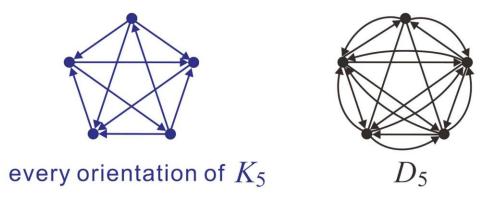
D_5 is CM

thereby confirming a conjecture posed by both Barahona/Mahjoub (1985) and Jünger (1985).

ヘロマ 人間マ 人間マ 人間マ

CM tournaments

Let D_5 be the digraph obtained from K_5 by replacing each edge *ij* with a pair of opposite arcs (i,j) and (j,i).



Applegate et al. (1991), Barahona et al. (1994) proved that

 D_5 is CM \Leftrightarrow Every tournament with five vertices is CM

thereby confirming a conjecture posed by both Barahona/Mahjoub (1985) and Jünger (1985).

ヘロア ヘロア ヘビア 一切

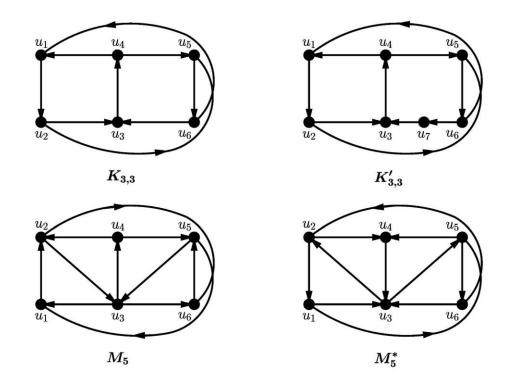
▲ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲

E

DQC

Möbius-free tournaments

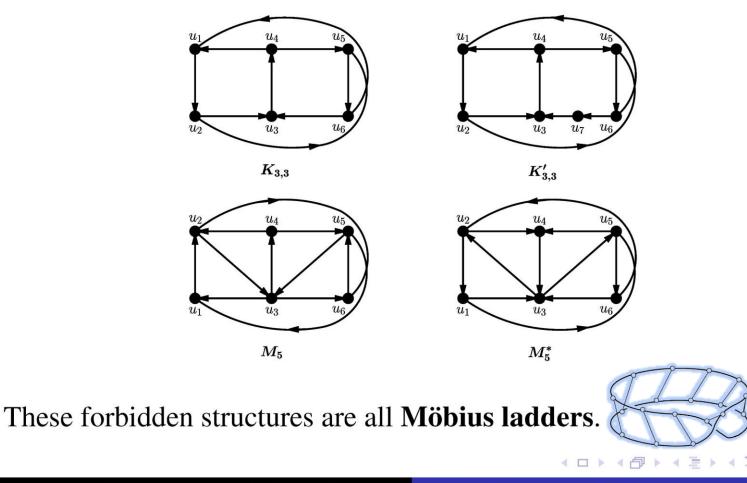
A tournament is called Möbius-free if it contains none of $K_{3,3}$, $K'_{3,3}$, M_5 , and M_5^* a subgraph.



DQQ

Möbius-free tournaments

A tournament is called Möbius-free if it contains none of $K_{3,3}$, $K'_{3,3}$, M_5 , and M_5^* a subgraph.

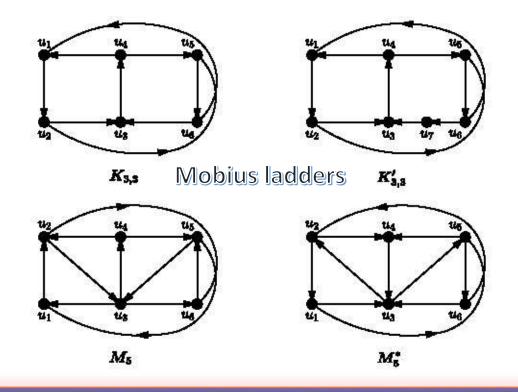


Motivations Results Proofs Conclusion

Characterization Structures

Characterization of CM tournaments

A tournament is called Möbius-free if it contains none of $K_{3,3}$, $K'_{3,3}$, M_5 , and M_5^* a subgraph.



Minimax Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

A tournament is CM iff it is Möbius-free.

Xujin Chen (Chinese Academy of Sciences)

Ranking Tournaments with No Errors

白アイヨアイヨア

푣

-040-

ヘロア ヘビア イビア イビア

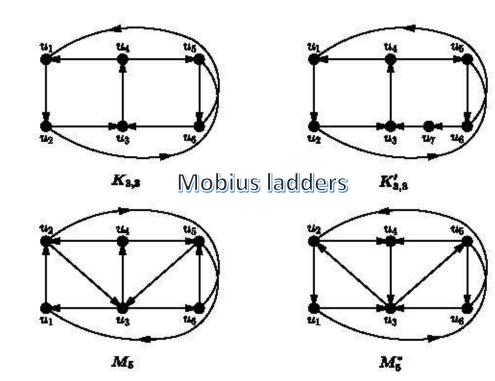
-

DAG

Necessity of Möbius-freeness

Lemma

A tournament is CM only if it is Möbius-free.



ヘロア ヘロア イビア イビア

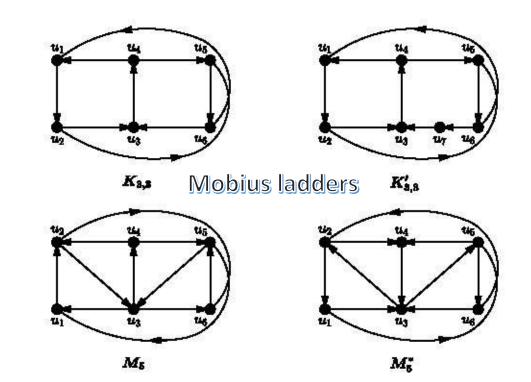
-

DQC

Necessity of Möbius-freeness

Lemma

A tournament is CM only if it is Möbius-free.

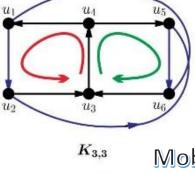


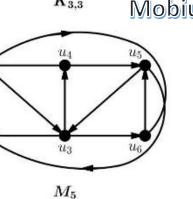
None of these Möbius ladders is CM.

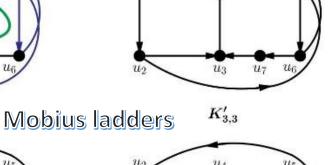
Necessity of Möbius-freeness

Observation

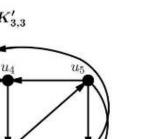
None of these Möbius ladders is CM.







U1

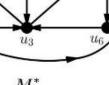


(ロマスピアスピアメロト

1

DQG

 $\nu = 1$



UI

(ロマスピアスピアムロト

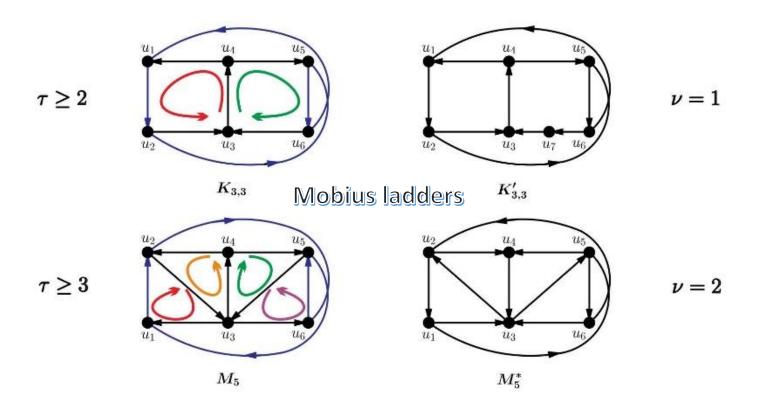
1

DQG

Necessity of Möbius-freeness

Observation

None of these Möbius ladders is CM.



▲ 御 ▶ ▲ 御 ▶

1

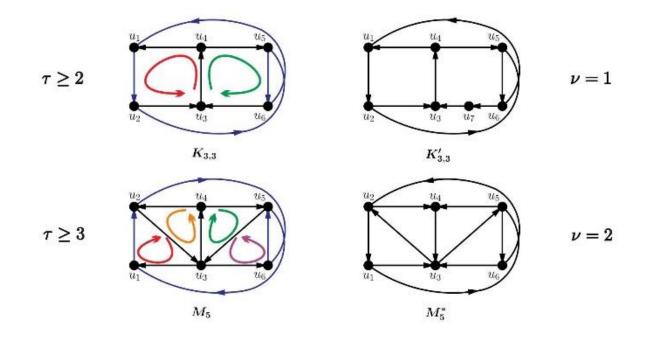
DQQ

Necessity of Möbius-freeness

Lemma

A tournament is CM only if it is Möbius-free.

Let *T* be a tournament containing $D \in \{K_{3,3}, K'_{3,3}, M_5, M_5^*\}$. Define w(e) = 1 if $e \in A(D)$ and w(e) = 0 otherwise.



1

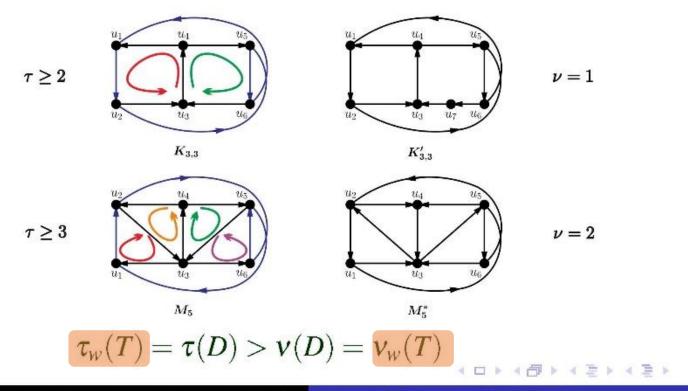
DQQ

Necessity of Möbius-freeness

Lemma

A tournament is CM only if it is Möbius-free.

Let *T* be a tournament containing $D \in \{K_{3,3}, K'_{3,3}, M_5, M_5^*\}$. Define w(e) = 1 if $e \in A(D)$ and w(e) = 0 otherwise.



日とくヨン・ヨン

-900-

Sufficiency of Möbius-freeness

Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

A tournament is CM if it is Möbius-free.

- structural description of all Möbius-free tournaments
- linear programming approach, combinatorial optimization ideas

Sufficiency of Möbius-freeness

Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

A tournament is CM if it is Möbius-free.

- structural description of all strong¹ Möbius-free tournaments
- linear programming approach, combinatorial optimization ideas
 ...

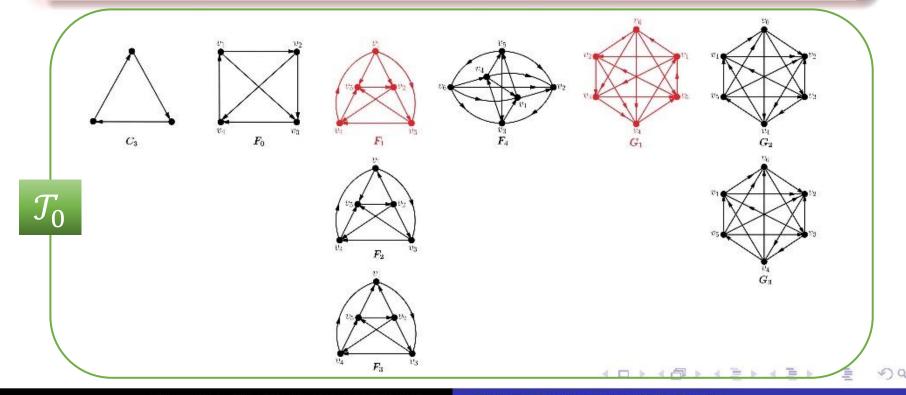
¹A digraph is strongly connected or strong if each vertex is reachable from each other vertex.

Möbius-free strong tournaments

Structure Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

Let *T* be a strong Möbius-free tournament with \geq 3 vertices. Then

- either $T \in \{F_1, G_1\}$
- or *T* can be obtained by repeatedly taking 1-sums starting from the tournaments in $\mathscr{T}_1 := \mathscr{T}_0 \setminus \{F_1, G_1\}$.



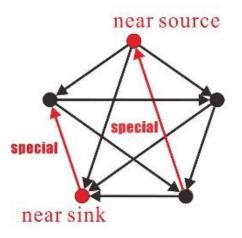
・ロット(型)・(型)・(型)・目

DQA

Near source, near sink, special arc

Let G = (V, A) be a digraph.

- Vertex v is a near-source of G if its in-degree $d_G^-(v) = 1$, and a near-sink if its out-degree $d_G^+(v) = 1$.
- Arc *e* = *uv* is called special if either *u* is a near-sink or *v* is a near-source of *G*.



ヘロア 人間 ア 人 画 ア 人

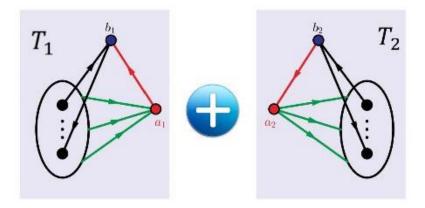
Ŧ

DQQ

1-sum

Let $T_1 = (V_1, A_1)$ and $T_2 = (V_2, A_2)$ be two tournaments. Suppose

- both T_1 and T_2 are strong, with $|V_i| \ge 3$ for i = 1, 2;
- (a_1, b_1) is a special arc of T_1 with $d_{T_1}^+(a_1) = 1$ (near-sink);
- (b_2, a_2) is a special arc of T_2 with $d_{T_2}(a_2) = 1$ (near-source).



ロトィアトィミトィアト

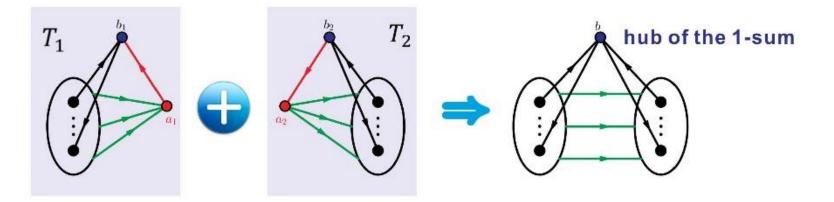
æ

DQQ

1-sum

Let $T_1 = (V_1, A_1)$ and $T_2 = (V_2, A_2)$ be two tournaments. Suppose

- both T_1 and T_2 are strong, with $|V_i| \ge 3$ for i = 1, 2;
- (a_1, b_1) is a special arc of T_1 with $d_{T_1}^+(a_1) = 1$ (near-sink);
- (b_2, a_2) is a special arc of T_2 with $d_{T_2}(a_2) = 1$ (near-source).



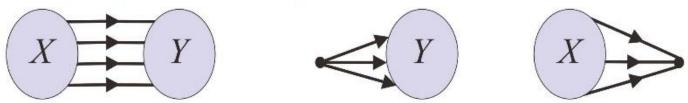
The **1-sum** of T_1 and T_2 over (a_1, b_1) and (b_2, a_2) is the tournament arising from the disjoint union of $T_1 \setminus a_1$ and $T_2 \setminus a_2$ by

- identifying b_1 with b_2 (to form a hub vertex b), and
- adding all arcs from $T_1 \setminus \{a_1, b_1\}$ to $T_2 \setminus \{a_2, b_2\}$.

Dicut

Let G = (V,A) be a digraph.

- A dicut of G is a partition (X, Y) of V such that **all** arcs between X and Y are directed to Y.
- A dicut (X, Y) is trivial if |X| = 1 or |Y| = 1.



▶ ∢ 聖 ▶

-

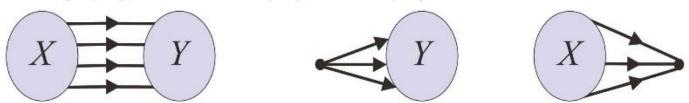
1

DQQ

Dicut

Let G = (V,A) be a digraph.

- A dicut of G is a partition (X, Y) of V such that **all** arcs between X and Y are directed to Y.
- A dicut (X, Y) is trivial if |X| = 1 or |Y| = 1.



• *G* is called weakly connected if its underlying undirected graph is connected, and is called strongly connected or strong if each vertex is reachable from each other vertex.

A weakly connected digraph G is strong iff G has no dicut.

くロ > (四 > (四 > (四 > (

1

DQA

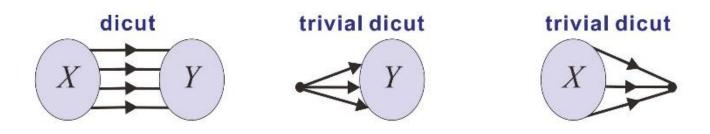
人間マス間マ

< 🗆 🕨

100

DQQ

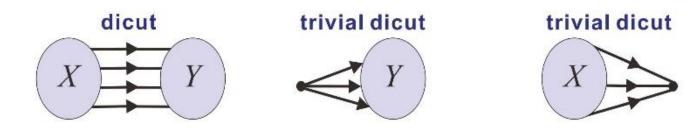
Internally strong, i2s digraphs



Let G be a weakly connected digraph.

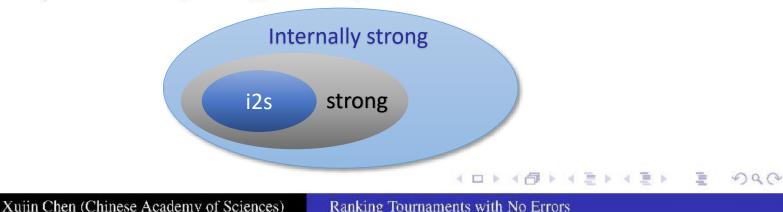
- G is strong if G has no dicut.
- G is internally strong if every dicut of G is trivial.

Internally strong, i2s digraphs



Let G be a weakly connected digraph.

- G is strong if G has no dicut.
- G is internally strong if every dicut of G is trivial.
- G is internally 2-strong (i2s) if
 - G is strong, and
 - $G \setminus v$ is internally strong for every vertex v.



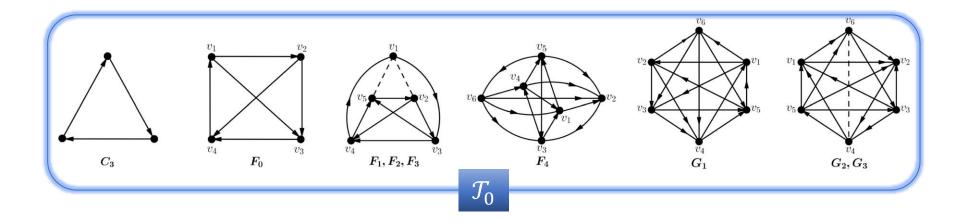
ヘロマ 人間マ 人間マー

DQC

Möbius-free i2s tournaments

Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

Let T be an i2s tournament with at least 3 vertices. Then T is *Möbius-free* iff $T \in \mathscr{T}_0 := \{C_3, F_0, F_1, F_2, F_3, F_4, G_1, G_2, G_3\}$.



ヘロア 人間 アメ 聞 ア 一間

DQC

Möbius-free i2s tournaments

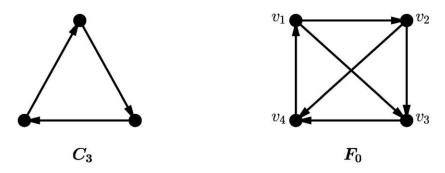


Figure: Strong tournaments with three or four vertices.

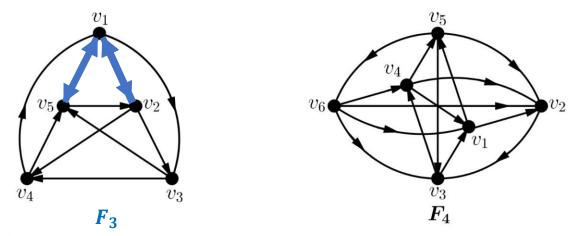


Figure: $v_1v_2, v_5v_1 \in F_1$; $v_2v_1, v_1v_5 \in F_2$; $v_2v_1, v_5v_1 \in F_3$.

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日

DQC

Möbius-free i2s tournaments

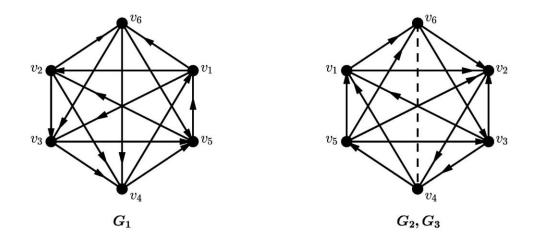


Figure: $v_6v_4 \in G_2$ and $v_4v_6 \in G_3$.

< ロ ト < 回 ト < ヨ ト < ヨ ト

1

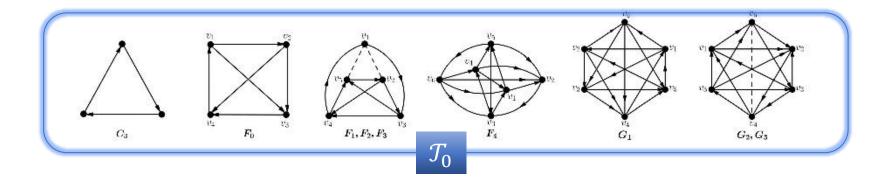
DQQ

Möbius-free strong tournaments

Structure Theorem

Let *T* be a strong Möbius-free tournament with \geq 3 vertices. Then

- either $T \in \{F_1, G_1\}$
- or *T* can be obtained by repeatedly taking 1-sums starting from the tournaments in $\mathscr{T}_1 := \mathscr{T}_0 \setminus \{F_1, G_1\}$.



Theorem

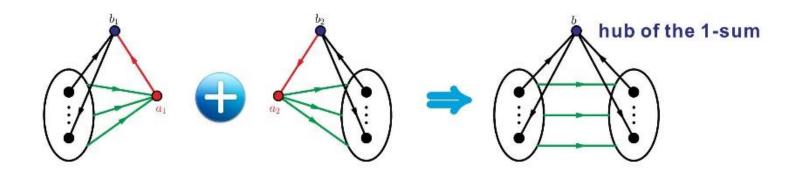
Let T be an i2s tournament with at least 3 vertices. Then T is *Möbius-free* iff $T \in \mathscr{T}_0 := \{C_3, F_0, F_1, F_2, F_3, F_4, G_1, G_2, G_3\}$.

Proofs

▲口▶▲圖▶▲圖▶▲圖▶ 圖

DQC

1-sums



(日)(四)(日)(日)(日)(日)

DQG

▲日マ 4 聞マ 4 聞マ 4 回マ

DQC

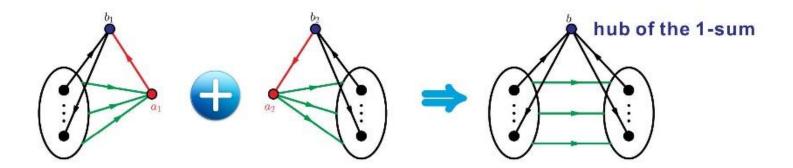
-

Properties of 1-sums

<u>Lemma</u>

Let T be a strong tournament. If T is not i2s, then T is the 1-sum of two smaller strong tournaments.

Since *T* is not *i*2*s*, it contains a vertex *b* such that $T \setminus b$ has a nontrivial dicut (X, Y)...



< ロ > < 団 > < 回 > < 回 > < 回 > <

And Personnel Street

DQQ

Properties of 1-sums

Lemma

Let T be the 1-sum of two tournaments T_1 and T_2 . Then T is Möbius-free **iff** both T_1 and T_2 are Möbius-free.

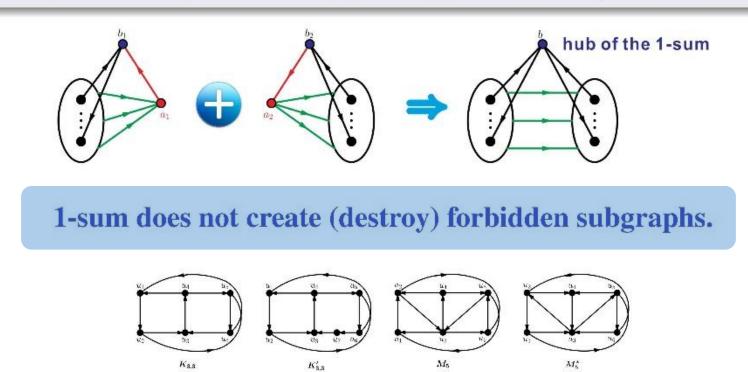


Figure: Forbidden subgraphs for Möbius-free tournaments.

(油) (油)

A quick proof for strong tournaments

Structure Theorem

Let *T* be a strong Möbius-free tournament with at least 3 vertices. Then either $T \in \{F_1, G_1\}$ or *T* can be obtained by repeatedly taking 1-sums starting from the tournaments in $\mathscr{T}_1 := \mathscr{T}_0 \setminus \{F_1, G_1\}$.

- If T isn't i2s, then T is 1-sum of 2 smaller strong tournaments.
- If T is the 1-sum of two tournaments T_1 and T_2 , then T is Möbius-free iff both T_1 and T_2 are Möbius-free.

ヘロア ヘロア イロア

A quick proof for strong tournaments

Structure Theorem

Let *T* be a strong Möbius-free tournament with at least 3 vertices. Then either $T \in \{F_1, G_1\}$ or *T* can be obtained by repeatedly taking 1-sums starting from the tournaments in $\mathscr{T}_1 := \mathscr{T}_0 \setminus \{F_1, G_1\}$.

- If T isn't i2s, then T is 1-sum of 2 smaller strong tournaments.
- If T is the 1-sum of two tournaments T_1 and T_2 , then T is Möbius-free iff both T_1 and T_2 are Möbius-free.

Observation

Either *T* is i2s tournament that is Möbius-free;

Or *T* can be obtained by repeatedly taking 1-sums starting from i2s tournaments that are Möbius-free.

ヘロア ヘビア ヘロア

1

-ACA

A quick proof for strong tournaments

Theorem

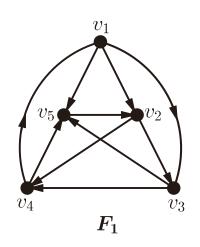
Let *T* be an *i*2*s* tournament with at least 3 vertices. Then *T* is Möbius-free iff $T \in \mathscr{T}_0 := \{C_3, F_0, F_1, F_2, F_3, F_4, G_1, G_2, G_3\}$.

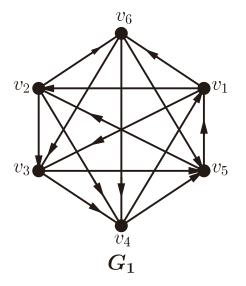
A quick proof for strong tournaments

Theorem

Let *T* be an *i*2*s* tournament with at least 3 vertices. Then *T* is Möbius-free iff $T \in \mathscr{T}_0 := \{C_3, F_0, F_1, F_2, F_3, F_4, G_1, G_2, G_3\}$.

• Neither F_1 nor G_1 contains a special arc.





イヨトイヨト

-900-

ヘロア ヘロア ヘロア

-

-900-

A quick proof for strong tournaments

Theorem

Let *T* be an *i*2*s* tournament with at least 3 vertices. Then *T* is Möbius-free iff $T \in \mathscr{T}_0 := \{C_3, F_0, F_1, F_2, F_3, F_4, G_1, G_2, G_3\}$.

- Neither F_1 nor G_1 contains a special arc.
- Each tournament in $\mathscr{T}_1 = \mathscr{T}_0 \setminus \{F_1, G_1\}$ is the 1-sum of triangle and itself.

ヘロア ヘビア ヘビア ヘロア

3

-99.0-

A quick proof for strong tournaments

Theorem

Let *T* be an *i*2*s* tournament with at least 3 vertices. Then *T* is Möbius-free iff $T \in \mathscr{T}_0 := \{C_3, F_0, F_1, F_2, F_3, F_4, G_1, G_2, G_3\}$.

- Neither F_1 nor G_1 contains a special arc.
- Each tournament in $\mathscr{T}_1 = \mathscr{T}_0 \setminus \{F_1, G_1\}$ is the 1-sum of triangle and itself.

Corollary

Let T be an i2s tournament with at least 3 vertices. Then T is Möbius-free if and only if either $T \in \{F_1, G_1\}$ or T can be obtained by repeatedly taking 1-sums starting from the tournaments in \mathcal{T}_1 .

ヘロア ヘビア イビア ヘビア

-900-

A quick proof for strong tournaments

Observation

Let T be a strong Möbius-free tournament with at least 3 vertices. Then either T is i2s tournament that is Möbius-free; or T can be obtained by repeatedly taking 1-sums starting from i2s tournaments that are Möbius-free.

+

Corollary

Let T be an i2s tournament with at least 3 vertices. Then T is Möbius-free if and only if either $T \in \{F_1, G_1\}$ or T can be obtained by repeatedly taking 1-sums starting from the tournaments in \mathcal{T}_1 .

ADA

A quick proof for strong tournaments

Observation

Let T be a strong Möbius-free tournament with at least 3 vertices. Then either T is i2s tournament that is Möbius-free; or T can be obtained by repeatedly taking 1-sums starting from i2s tournaments that are Möbius-free.

+

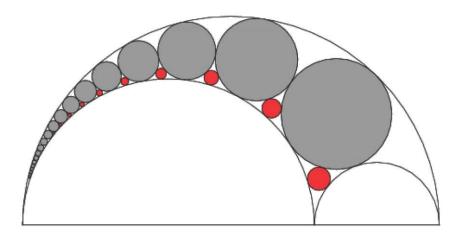
Corollary

Let T be an i2s tournament with at least 3 vertices. Then T is Möbius-free if and only if either $T \in \{F_1, G_1\}$ or T can be obtained by repeatedly taking 1-sums starting from the tournaments in \mathcal{T}_1 .

Structure Theorem

Let *T* be a strong Möbius-free tournament with at least 3 vertices. Then either $T \in \{F_1, G_1\}$ or *T* can be obtained by repeatedly taking 1-sums starting from the tournaments in $\mathscr{T}_1 := \mathscr{T}_0 \setminus \{F_1, G_1\}$.

Chain theorem



▲ロを▲聞を▲聞を▲聞を 一間

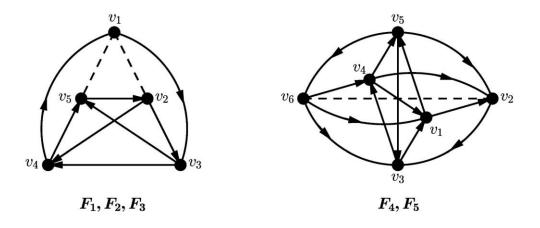
DQC

ヘロア 人間 アメ 回ア ト

SQR

A chain theorem

Every *i*2*s* tournament T = (V,A) with $|V| \ge 5$ can be constructed from $\{F_1, F_2, F_3, F_4, F_5\}$ by repeatedly adding vertices such that **all** the intermediate tournaments are also *i*2*s*.

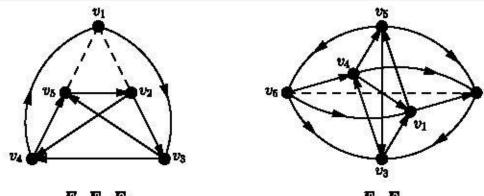


Chain theorem

Chain Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

Let T = (V,A) be an *i*2*s* tournament with $|V| \ge 3$. It holds that

- If |V| = 3, then $T = C_3$;
- If |V| = 4, then $T = F_0$;
- If |V| = 5, then $T \in \{F_1, F_2, F_3\}$;
- If |V| = 6, then either *T* has a vertex *z* with $T \setminus z \in \{F_1, F_2, F_3\}$ or $T \in \{F_4, F_5\}$;
- If $|V| \ge 7$, then T has a vertex z such that $T \setminus z$ remains to be *i*2s.



 F_1, F_2, F_8

 F_4, F_5

キロア・1日ア・日マ 所

DAG

▲日 > ▲国 > ▲ 国 > ▲

1

DQC

Small i2s tournaments

Lemm<u>a</u>

Let
$$T = (V,A)$$
 be a strong tournament with $|V| \in \{3,4\}$ *.*

• If
$$|V| = 3$$
, then T is C_3 ,

• If
$$|V| = 4$$
, then T is F_0 .

(So T is strong iff it is i2s.)

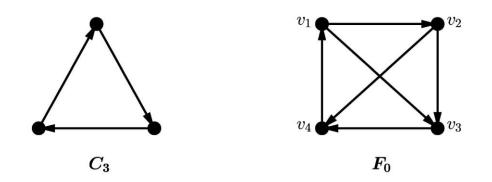


Figure: Strong (i2s) tournaments with three or four vertices.

ヘロア 人間 アメ 開マ 人 開マ

DQC

Small i2s tournaments

Lemma

Let T be an i2s tournament with 5 *vertices. Then* $T \in \{F_1, F_2, F_3\}$ *.*

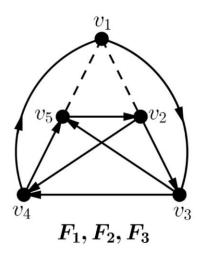


Figure: $v_1v_2, v_5v_1 \in F_1$; $v_2v_1, v_1v_5 \in F_2$; $v_2v_1, v_5v_1 \in F_3$.

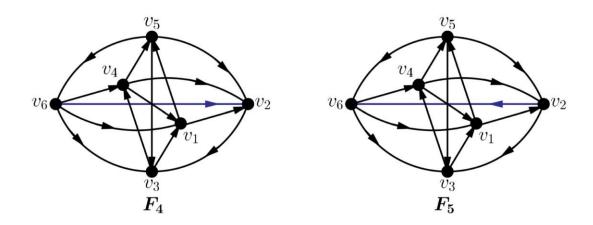
▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲

DQC

Bigger i2s tournaments

Lemma

Let T = (V,A) be an i2s tournament with $|V| \ge 6$ and $T \notin \{F_4, F_5\}$. Then T contains a vertex z such that $T \setminus z$ remains to be i2s.



・ロット 4回ット 4回ット 日日

DQQ

Bigger i2s tournaments

Lemma

Let T = (V,A) be an i2s tournament with $|V| \ge 6$ and $T \notin \{F_4, F_5\}$. Then T contains a vertex z such that $T \setminus z$ remains to be i2s.

By contradiction, let (T; x, y) with $x, y \in V(T)$ be a **counterexample** such that

- (1) $T \setminus x$ is strong while $T \setminus \{x, y\}$ is not internally strong;
- (2) subject to (1), letting $(A_1, A_2, ..., A_p)$ be the strong partition of $T \setminus \{x, y\}, A_1$ contains an out-neighbor x' of x; and

$$A_1$$
 A_2 A_p $p^{7.2}$

(3) subject to (1) and (2), the tuple $(|A_1|, |A_2|, ..., |A_p|)$ is minimized lexicographically.

ヘロア 人間 ア 人間 ア 人 回 ア

E

Dac

Bigger i2s tournaments

i2s tournament \Rightarrow strong tournament \Rightarrow Hamilton cycle

ヘロア ヘロア ヘビア ヘビア

SQR

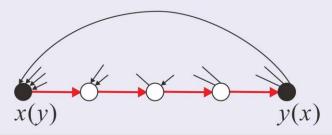
Bigger i2s tournaments

i2s tournament \Rightarrow strong tournament \Rightarrow Hamilton cycle

Lemma

Let T = (V,A) be a strong tournament and let $x, y \in V$ be distinct. Then at least one of the following holds.

- There exits $z \in V \setminus \{x, y\}$ such that $T \setminus z$ is still strong,
- *T* has a *Hamilton path* between *x* and *y* such that the remaining arcs are all backward.



ヘロマ ヘロマ ヘロマ

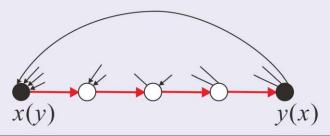
DQQ

Bigger i2s tournaments

Lemma

Let T = (V,A) be a strong tournament and let $x, y \in V$ be distinct. Then at least one of the following holds.

- There exits $z \in V \setminus \{x, y\}$ such that $T \setminus z$ is still strong,
- *T* has a *Hamilton path* between *x* and *y* such that the remaining arcs are all backward.



Corollary

Let T = (V,A) *be a strong tournament with* $|V| \ge 4$ *and let x be a vertex in T. Then there exists a vertex* $z \ne x$ *such that* $T \setminus z$ *is strong.*

▲ロ > ▲ 国 > ▲ 国 > ▲ 国 > ― 国

SQR

Bigger i2s tournaments

Lemma

Let T = (V,A) be an i2s tournament with $|V| \ge 6$ and $T \notin \{F_4, F_5\}$. Then T contains a vertex z such that $T \setminus z$ remains to be i2s.

By contradiction, let (T; x, y) with $x, y \in V(T)$ be a counterexample such that

(1) $T \setminus x$ is strong while $T \setminus \{x, y\}$ is not internally strong;

・ロット 1 日マ 1 日マ 1 日マー 日

DQC

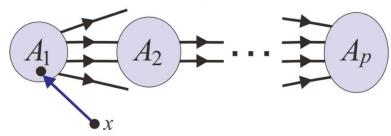
Bigger i2s tournaments

Lemma

Let T = (V,A) be an i2s tournament with $|V| \ge 6$ and $T \notin \{F_4, F_5\}$. Then T contains a vertex z such that $T \setminus z$ remains to be i2s.

By contradiction, let (T; x, y) with $x, y \in V(T)$ be a counterexample such that

- (1) $T \setminus x$ is strong while $T \setminus \{x, y\}$ is not internally strong;
- (2) subject to (1), letting (A₁,A₂,...,A_p) be the strong partition of *T*\{*x*,*y*}, A₁ contains an out-neighbor *x'* of *x*; and



(3) ...

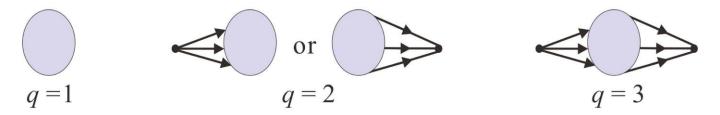
▲口 > ▲国 > ▲国 > ▲ 国 >

E

DQQ

Bigger i2s tournaments

 $T \setminus y$ is internally strong \Rightarrow its strong partition (B_1, \ldots, B_q) satisfies $q \leq 3$ and



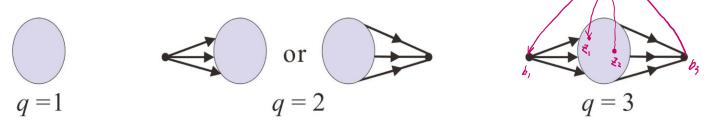
< E ▶ < E ▶

1

DQC

Bigger i2s tournaments

 $T \setminus y$ is internally strong \Rightarrow its strong partition (B_1, \ldots, B_q) satisfies $q \leq 3$ and

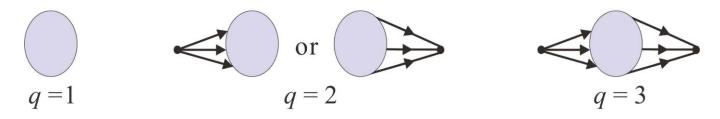


ヘロマ ヘロマ ヘビマー

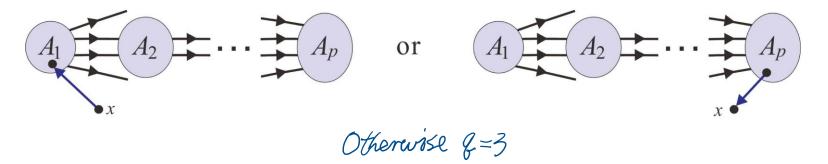
DQC

Bigger i2s tournaments

 $T \setminus y$ is internally strong \Rightarrow its strong partition (B_1, \ldots, B_q) satisfies $q \leq 3$ and



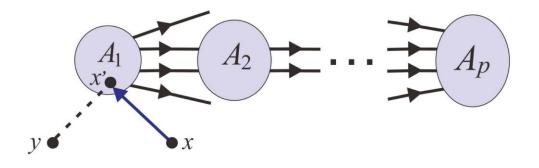
If q = 3, then *T* contains a vertex *z* such that $T \setminus z$ remains i2s. So $q \le 2$, and



▲ロ > ▲ 国 > ▲ 国 > ▲ 国 >

DQC

Bigger i2s tournaments



Claim

 $|A_1| = 1.$

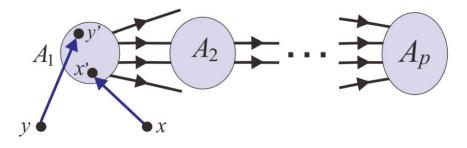
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

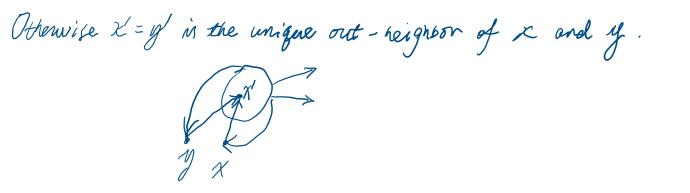
-

500

Proof of $|A_1| = 1$

If $|A_1| \ge 3$ (i.e., $|A_1| \ne 1$), then, since T is i2s,

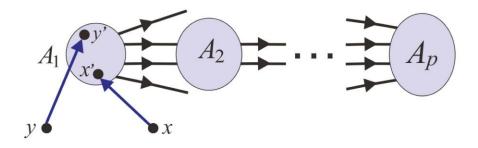




Since $T \propto is internally strong & A_1 \times has no incoming area, it must be the case$ $thed <math>|A_1 \setminus X'| \leq 1 \Longrightarrow |A_1| \leq 2$, a contradiction

Proof of $|A_1| = 1$

If $|A_1| \ge 3$ (i.e., $|A_1| \ne 1$), then, since *T* is i2s,



As $G[A_1]$ is strong,

for any distinct $x', y' \in A_1$, at least one of the following holds:

- There exits $z \in A_1 \setminus \{x', y'\}$ such that $G[A_1] \setminus z$ is still strong,
- ► *G*[*A*₁] has a Hamilton path between *x*′ and *y*′ such that the remaining arcs are all backward.

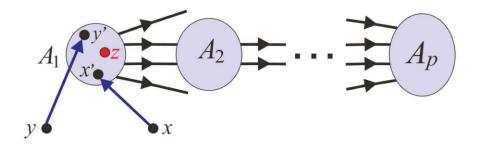
ヘロア 人間 ア 人間 ア

1

SQR

Proof of $|A_1| = 1$

If $|A_1| \ge 3$ (i.e., $|A_1| \ne 1$), then, since *T* is i2s,



As $G[A_1]$ is strong,

for any distinct $x', y' \in A_1$, at least one of the following holds:

- There exits $z \in A_1 \setminus \{x', y'\}$ such that $G[A_1] \setminus z$ is still strong,
- ► *G*[*A*₁] has a Hamilton path between *x*′ and *y*′ such that the remaining arcs are all backward.

We can find $z \in A_1 \setminus \{x', y'\}$ such that $T \setminus z$ is strong.

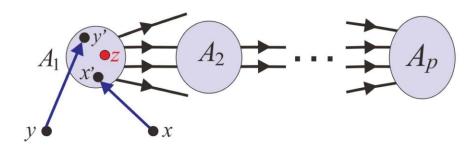
ヘロア 人間 ア 人間 ア 一

1

SQR

Proof of $|A_1| = 1$

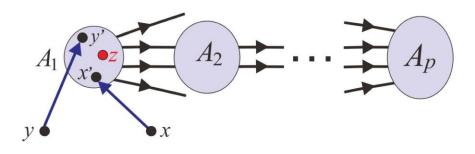
If $|A_1| \ge 3$ (i.e., $|A_1| \ne 1$), we can find $z \in A_1 \setminus \{x', y'\}$ such that $T \setminus z$ is strong.



$T \setminus z$ is i2s.	
	AURADRESSER E 99

Proof of $|A_1| = 1$

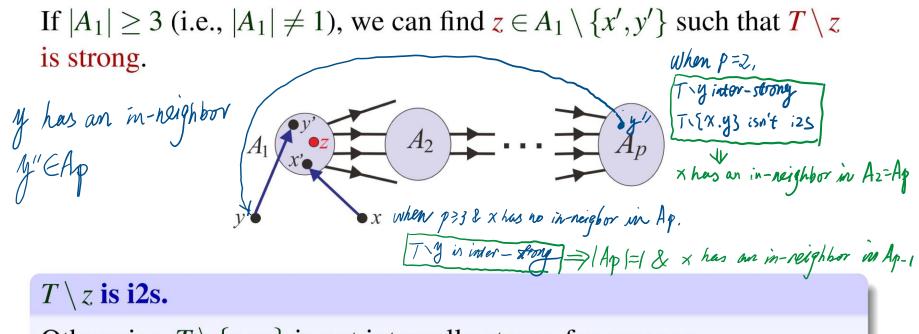
If $|A_1| \ge 3$ (i.e., $|A_1| \ne 1$), we can find $z \in A_1 \setminus \{x', y'\}$ such that $T \setminus z$ is strong.



 $T \setminus z$ is i2s. Otherwise, $T \setminus \{z, w\}$ is not internally strong for some *w*. DQQ

DQQ

Proof of $|A_1| = 1$



Otherwise, $T \setminus \{z, w\}$ is not internally strong for some *w*. It follows that

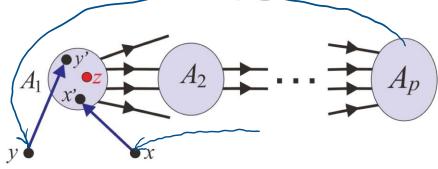
• either
$$w \in A_p$$

• or $w \in A_1 \setminus \{z\}$ $\forall w' \in \left(\bigcup_{i=2}^{p-i} A_p\right) \cup \{\chi, y\}, T \setminus \{z, w'\}, M$ inter-strong

DQQ

Proof of $|A_1| = 1$

If $|A_1| \ge 3$ (i.e., $|A_1| \ne 1$), we can find $z \in A_1 \setminus \{x', y'\}$ such that $T \setminus z$ is strong.



$T \setminus z$ is i2s.

Otherwise, $T \setminus \{z, w\}$ is not internally strong for some *w*. It follows that

- either $w \in A_p$
- or $w \in A_1 \setminus \{z\}$

In either case, $T \setminus \{z, w\}$ contradicts the lexicographical minimality of $(|A_1|, |A_2|, ..., |A_p|)$.

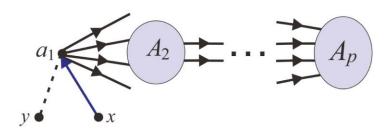
▲ロ > ▲ 国 > ▲ 国 > ▲ 国 >

DQC

$|A_1| = |A_2| = 1$

Claim

 $A_1 = \{a_1\}$



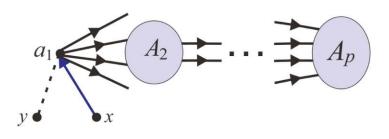
▲日▼▲雪▼▲喧▼ ■

DQC

$|A_1| = |A_2| = 1$

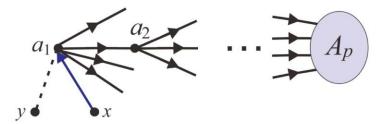
Claim

 $A_1 = \{a_1\}$



Claim

$$A_2 = \{a_2\}$$



< E > < E >

< □ > < 凸 >

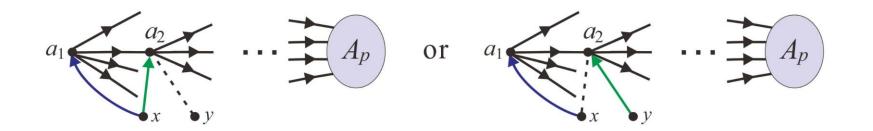
Ξ

DQC

In-neighbors of *a*₂

Claim

At least one of (x, a_2) and (y, a_2) is an arc in *T*.



< 口 > < 凸 >

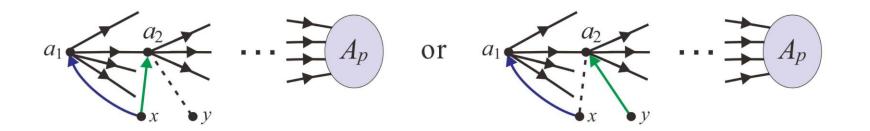
Ξ

DQC

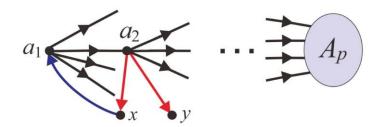
In-neighbors of *a*₂

Claim

At least one of (x, a_2) and (y, a_2) is an arc in *T*.



Otherwise



ヘロア 人間 ア 人間 ア 人間 ア

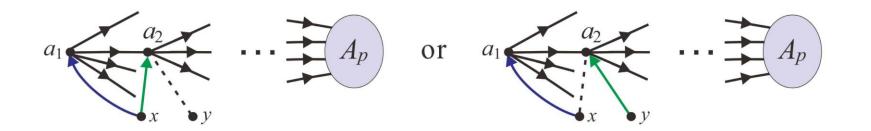
Ξ

DQC

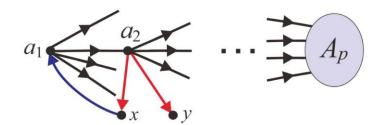
In-neighbors of *a*₂

Claim

At least one of (x, a_2) and (y, a_2) is an arc in T.



Otherwise



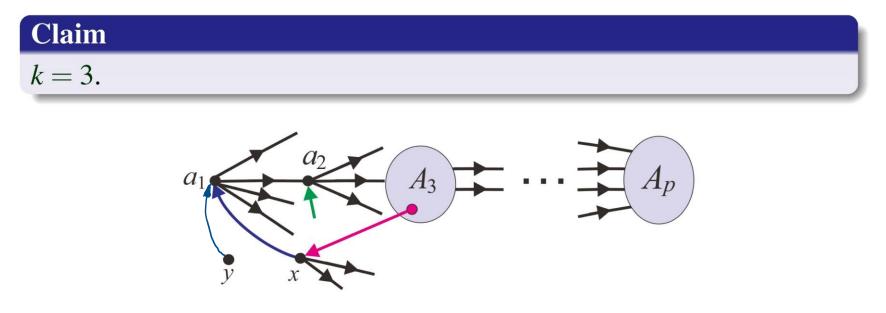
Contradiction: $T \setminus a_2$ is i2s.

Ξ

DQC

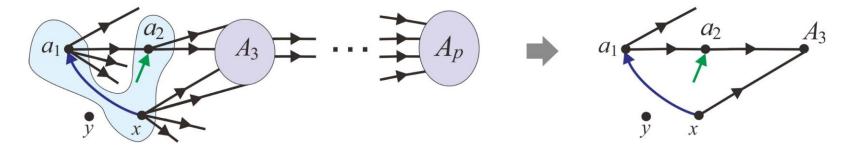
In-neighbors of x

Let k be the largest subscript such that A_k contains an in-neighbor of x



Proof of k = 3

Assume: $k \neq 3$. If $k \leq 2$, then, since $T \setminus y$ is internally strong,



 $\Rightarrow p=3$, $|A_3|=1 \Rightarrow |V|=5$, a contradiction.

▲口 > ▲国 > ▲ 国 > ▲

E

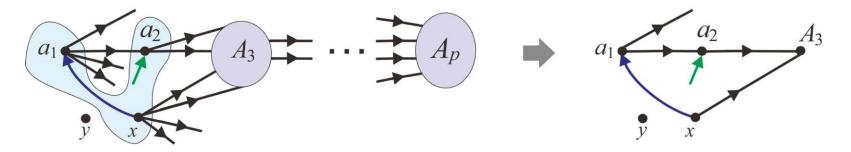
▲ロア ▲国 ア ▲ 国 ア

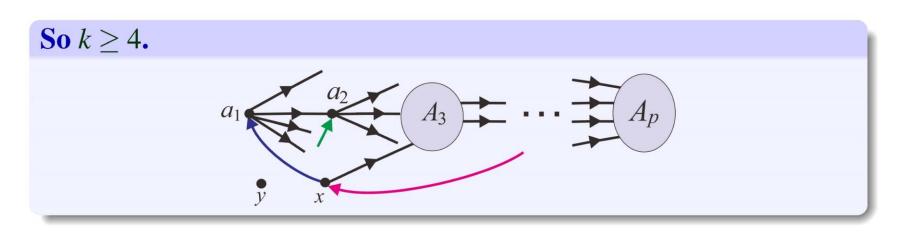
Ξ

DQC

Proof of k = 3

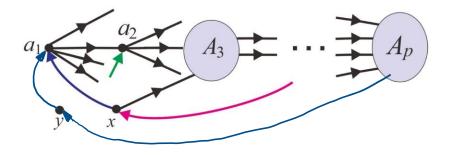
Assume: $k \neq 3$. If $k \leq 2$, then, since $T \setminus y$ is internally strong,





Proof of k = 3

Assume: $k \neq 3$.



$T \setminus z$ is i2s for some z

- When $|A_p| \ge 3$, arbitrary $z \in A_3$;
- When $|A_p| = 1$ and $p \ge 5$, if A_3 contains an out-neighbor of y, then $z = a_2$, otherwise arbitrary $z \in A_3$;
- ▶ When $|A_p| = 1$ and p = 4, if $|A_3| \ge 3$, then $z \in A_3$ (s.t. $A_3 \setminus \{z\}$ contains some in-neighbor of *x* or *y*), otherwise $T \cong F_5$.

ヘロマ ヘロマ ヘロマー

1

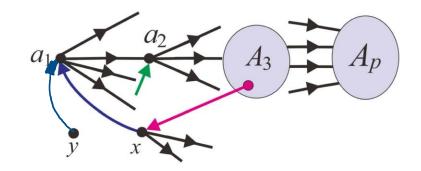
SQR

ヘロマ 人間マ 人間マ 人口マ

E

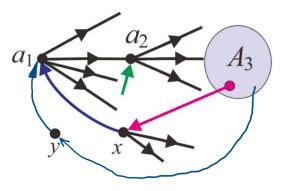
DQC

Size of the partition



when p=3 & x has no in-neighor in Ap. Ty is inder- thong => | Ap |=1 & x has an in-neighbor in Ap-1 => p=4

Assume: $p \neq 4$. Then p = 3

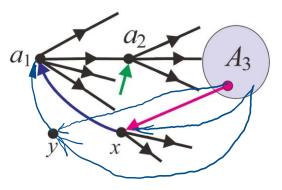


▲日 > ▲ 雪 > ▲ 画 > ▲

1

Proof of p = 4

Assume: $p \neq 4$. Then p = 3



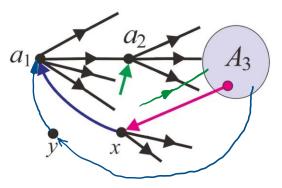
If all vertices in A₃ are in-neighbors of both x and y, then T\z is i2s for any z ∈ A₃

▲日 > ▲ 国 > ▲ 国 > ▲

Ξ

Proof of p = 4

Assume: $p \neq 4$. Then p = 3



- If all vertices in A₃ are in-neighbors of both x and y, then T\z is *i*2s for any z ∈ A₃
- Otherwise, $T \setminus a_2$ is i2s.

▲□▶▲□▶▲□▶▲□▶

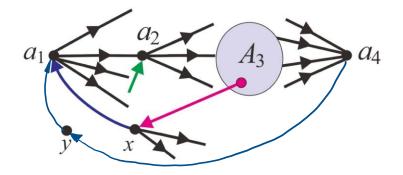
Ξ

▲ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲

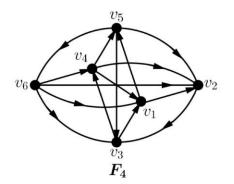
E

DQC

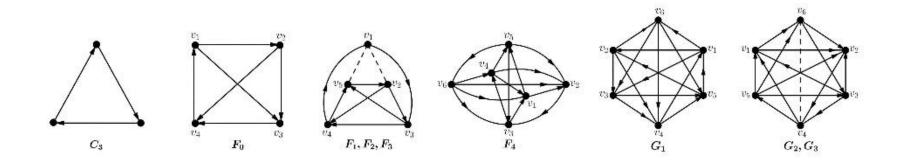
Contradiction



- If $|A_3| \ge 3$, then $T \setminus z$ is i2s for some $z \in A_3$;
- Otherwise (i.e., $|A_3| = 1$), $T \cong F_4$.



Structures of i2s Möbius-free tournaments



< E >

< 🗆 🕨

1

DQQ

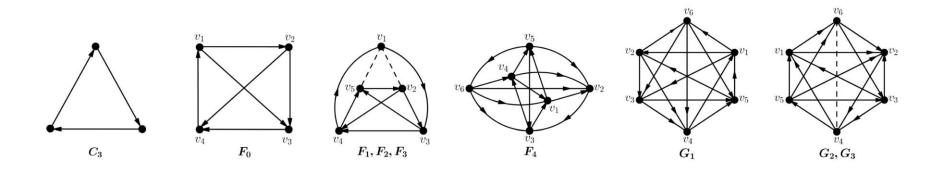
< E > < E >

SQR

Proof for i2s Möbius-free tournaments

Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

Let T = (V,A) be an *i*2s tournament with at least 3 vertices. Then T is *Möbius-free iff* $T \in \mathscr{T}_0 := \{C_3, F_0, F_1, F_2, F_3, F_4, G_1, G_2, G_3\}.$



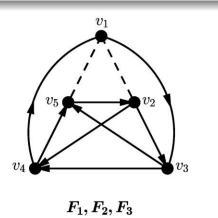
"if" part: Every tournament in \mathcal{T}_0 is i2s and Möbius-free. "only if" part: By the chain theorem, ...

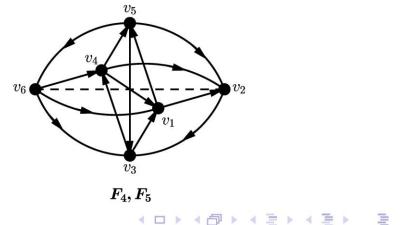
Proof for i2s Möbius-free tournaments

Theorem (Chain theorem)

Let T = (V, A) *be an i2s tournament with* $|V| \ge 3$ *. It holds that*

- If |V| = 3, then $T = C_3$;
- If |V| = 4, then $T = F_0$;
- If |V| = 5, then $T \in \{F_1, F_2, F_3\}$;
- If |V| = 6, then either *T* has a vertex *z* with $T \setminus z \in \{F_1, F_2, F_3\}$ or $T \in \{F_4, F_5\}$;
- If $|V| \ge 7$, then T has a vertex z such that $T \setminus z$ remains to be i2s.





DQQ

ヘロア ヘロア ヘビア ヘビア

SQA

Proof for i2s Möbius-free tournaments

Theorem (Chain theorem)

Let T = (V, A) *be an i2s tournament with* $|V| \ge 3$ *. It holds that*

• If
$$|V| = 3$$
, then $T = C_3$;

• If
$$|V| = 4$$
, then $T = F_0$;

• If
$$|V| = 5$$
, then $T \in \{F_1, F_2, F_3\}$;

- If |V| = 6, then either *T* has a vertex *z* with $T \setminus z \in \{F_1, F_2, F_3\}$ or $T \in \{F_4, F_5\}$;
- If $|V| \ge 7$, then T has a vertex z such that $T \setminus z$ remains to be i2s.

Claim

F₅ is not Möbius-free.

・ロア・1日マ・日マ・日マ

SQR

Proof for i2s Möbius-free tournaments

Let *T* be an i2s Möbius-free tournament. An valid extension of *T* is an i2s Möbius-free tournament T' s.t. $T' \setminus v \cong T$ for some vertex *v* of T'

Initially, we only need consider valid extensions of F_1, F_2, F_3, F_4 .

・ロット 1 日マ 1 日マ 1 日マ 1 日マ 1 日マ

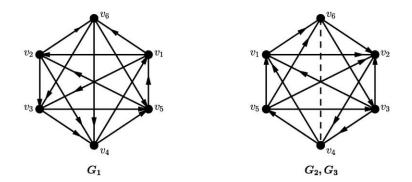
DQC

Proof for i2s Möbius-free tournaments

Let *T* be an i2s Möbius-free tournament. An valid extension of *T* is an i2s Möbius-free tournament T' s.t. $T' \setminus v \cong T$ for some vertex *v* of T'

Initially, we only need consider valid extensions of F_1, F_2, F_3, F_4 .

- F_1 has only one valid extension, i.e., G_1 ;
- *F*² has no valid extension;
- F_3 has only two valid extensions, i.e., G_2 and G_3 ;
- F_4 has no valid extension.



ヘロア 人間 ア 人間 ア 人目 ア

DQQ

Proof for i2s Möbius-free tournaments

Let *T* be an i2s Möbius-free tournament. An valid extension of *T* is an i2s Möbius-free tournament T' s.t. $T' \setminus v \cong T$ for some vertex *v* of T'

Initially, we only need consider valid extensions of F_1, F_2, F_3, F_4 .

- F_1 has only one valid extension, i.e., G_1 ;
- *F*² has no valid extension;
- F_3 has only two valid extensions, i.e., G_2 and G_3 ;
- F_4 has no valid extension.

Next, we only need consider valid extensions of G_1, G_2, G_3 .

< 四 > < 回 > < 回 > < 回 > < 回 > < 回 >

DQQ

Proof for i2s Möbius-free tournaments

Let *T* be an i2s Möbius-free tournament. An valid extension of *T* is an i2s Möbius-free tournament T' s.t. $T' \setminus v \cong T$ for some vertex *v* of T'

Initially, we only need consider valid extensions of F_1, F_2, F_3, F_4 .

- F_1 has only one valid extension, i.e., G_1 ;
- *F*² has no valid extension;
- F_3 has only two valid extensions, i.e., G_2 and G_3 ;
- F_4 has no valid extension.

Next, we only need consider valid extensions of G_1, G_2, G_3 .

Claim

```
None of G_1, G_2, G_3 is Möbius-free.
```

STOP :-)

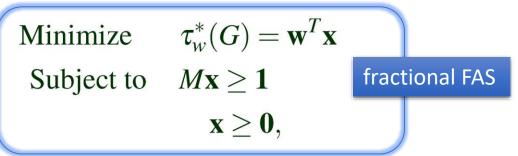
Min-max relation

◆□▶▲□▶▲□▶▲□▼ ● ●

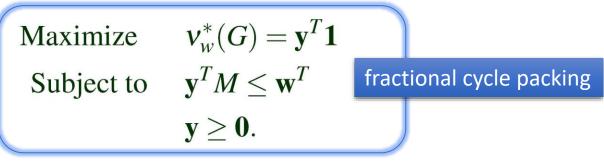
LP-relaxation

Let G = (V, A) be a digraph with arc weight $\mathbf{w} = (w(e) : e \in A)$, and M be the **cycle-arc incidence matrix** of G.

Let $\mathbb{P}(G, \mathbf{w})$ stand for the LP-relaxation of the **FAS problem**



and let $\mathbb{D}(G, \mathbf{w})$ denote its dual, i.e., the LP-relaxation of the cycle packing problem

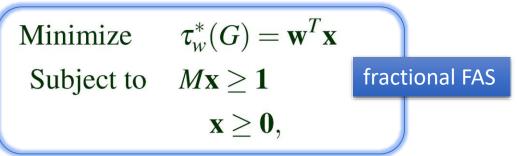


◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□

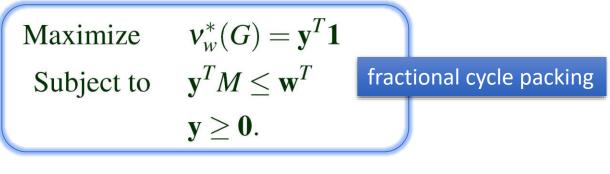
LP-relaxation

Let G = (V, A) be a digraph with arc weight $\mathbf{w} = (w(e) : e \in A)$, and M be the **cycle-arc incidence matrix** of G.

Let $\mathbb{P}(G, \mathbf{w})$ stand for the LP-relaxation of the **FAS problem**



and let $\mathbb{D}(G, \mathbf{w})$ denote its dual, i.e., the LP-relaxation of the cycle packing problem



 $\mathbf{v}_w(G) \leq \mathbf{v}_w^*(G) = \mathbf{\tau}_w^*(G) \leq \mathbf{\tau}_w(G).$

◆□▶▲□▶▲□▶▲□▼ ● ●

Min-max relation

Digraph *G* is cycle ideal (CI), i.e., $\{x : Mx \ge 1, x \ge 0\}$ is the convex hull of all integral vectors contained in it

iff $\mathbb{P}(G, \mathbf{w})$ has an integral optimal solution for any integral $\mathbf{w} \ge \mathbf{0}$; iff $\tau_w^*(G) = \tau_w(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$.

$$v_w(G) \leq v_w^*(G) = au_w^*(G) \leq au_w(G)$$

Digraph *G* is **cycle Mengerian** (**CM**)

iff $\mathbb{D}(G, \mathbf{w})$ has an integral optimal solution for any integral $\mathbf{w} \ge \mathbf{0}$; iff $\mathbf{v}_w^*(G) = \mathbf{v}_w(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$; iff $\mathbf{v}_w(G) = \tau_w(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$.

Min-max relation

Digraph *G* is **cycle ideal** (**CI**)

iff $\mathbb{P}(G, \mathbf{w})$ has an integral optimal solution for any integral $\mathbf{w} \ge \mathbf{0}$; iff $\tau_w^*(G) = \tau_w(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$.

$$v_w(G) \leq v_w^*(G) = \tau_w^*(G) \leq \tau_w(G).$$

Every CM digraph is CI, but not vice versa in general!

Digraph *G* is **cycle Mengerian** (**CM**) **iff** $\mathbb{D}(G, \mathbf{w})$ has an integral optimal solution for any integral $\mathbf{w} \ge \mathbf{0}$; **iff** $\mathbf{v}_{w}^{*}(G) = \mathbf{v}_{w}(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$; **iff** $\mathbf{v}_{w}(G) = \mathbf{\tau}_{w}(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$.

ヘロア 人間 ア 人間 ア 人間 ア

E

DQC

Min-max relation

Digraph G is cycle ideal (CI)

 $\Leftrightarrow \mathbb{P}(G, \mathbf{w})$ has an integral optimal solution for any integral $\mathbf{w} \ge \mathbf{0}$

 $\Leftrightarrow \tau_w^*(G) = \tau_w(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$.

Digraph G is cycle Mengerian (CM)

 $\Leftrightarrow v_w(G) = \tau_w(G)$ for any integral $\mathbf{w} \ge \mathbf{0}$

 $\Leftrightarrow \mathbb{D}(G, \mathbf{w})$ has an integral optimal solution for any integral $\mathbf{w} \ge \mathbf{0}$.

Every CM digraph is CI, but not vice versa in general!

Theorem (C, DING, ZANG, ZHAO, JCTB 2020)

For a tournament T, the following statements are equivalent:

- (i) T is Möbius-free;
- (ii) T is CI; and
- (iii) T is CM.

(日) (国) (部) (部)

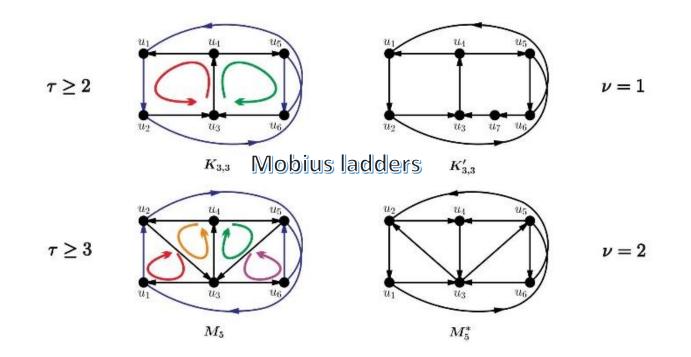
-

DQC

$\mathbf{CM} \Rightarrow \mathbf{M\ddot{o}bius}$ -freeness

Lemma

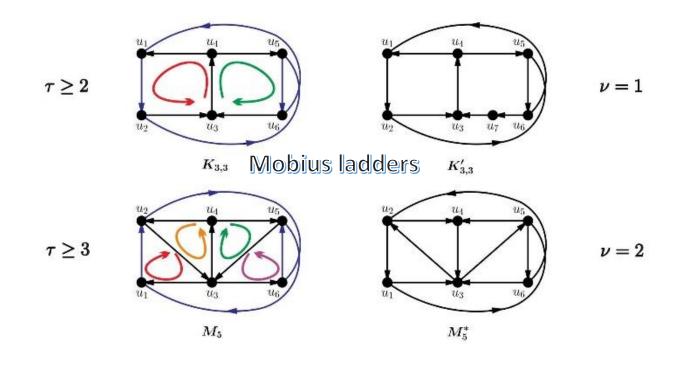
Every CM tournament is Möbius-free.



$\mathbf{CM} \Rightarrow \mathbf{M\ddot{o}bius}$ -freeness

Lemma

Every CM tournament is Möbius-free.



Every CM digraph is CI.

1

DQC

(日) (国) (国) (国)

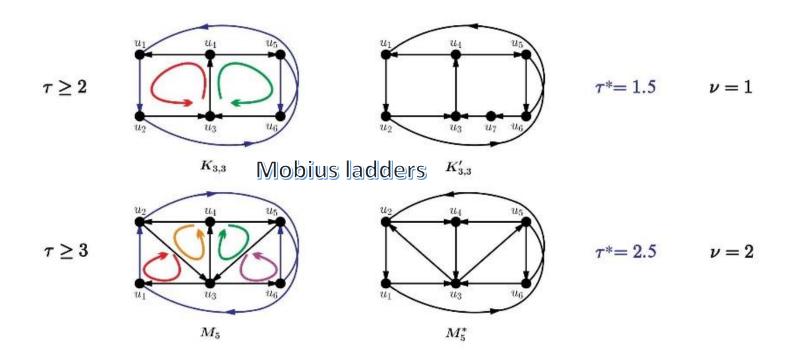
1

DQC

$\mathbf{CI} \Rightarrow \mathbf{M\ddot{o}bius}$ -freeness

Lemma

Every CI tournament is Möbius-free.



None of these Möbius ladders is CI.

3

-99.0-

Sufficiency of Möbius-freeness

Minimax Theorem

For a tournament T, the following statements are equivalent:

- (i) T is Möbius-free;
- (ii) T is CI; and
- (iii) T is CM.

We have shown that $(i) \Leftarrow (ii) \Leftarrow (iii)$

ヘロア ヘロア ヘビア ヘビア

-900-

Sufficiency of Möbius-freeness

Minimax Theorem

For a tournament T, the following statements are equivalent:

- (i) T is Möbius-free;
- (ii) T is CI; and
- (iii) T is CM.

We have shown that $(i) \Leftarrow (ii) \Leftarrow (iii)$

An instance (T, \mathbf{w}) consists of a Möbius-free tournament T = (V, A) together with a weight function $\mathbf{w} \in \mathbb{Z}_+^A$.

キロマスロマス 日本 日本

-090-

Sufficiency of Möbius-freeness

Minimax Theorem

For a tournament T, the following statements are equivalent:

- (i) T is Möbius-free;
- (ii) T is CI; and
- (iii) T is CM.

We have shown that $(i) \Leftarrow (ii) \Leftarrow (iii)$

An instance (T, \mathbf{w}) consists of a Möbius-free tournament T = (V, A) together with a weight function $\mathbf{w} \in \mathbb{Z}_+^A$.

Instance (T', \mathbf{w}') with T' = (V', A') is smaller than (T, \mathbf{w}) if

• |V'| < |V|, or

•
$$|V'| = |V|$$
 and $w(A') < w(A)$

ヘロア ヘビア ヘビア

-900

An inductive proof

Theorem (C, DING, ZANG, ZHAO, **JCTB 2020**)

Let (T, \mathbf{w}) be an instance, such that $\mathbb{D}(T', \mathbf{w}')$ has an integral optimal solution for any smaller instance (T', \mathbf{w}') than (T, \mathbf{w}) . Then $\mathbb{D}(T, \mathbf{w})$ also has an integral optimal solution.

An algorithmic proof: Given any instance (T, \mathbf{w}) ,

- either we find an integral optimal solution of $\mathbb{D}(T, \mathbf{w})$;
- or we reduce the problem to finding an integral optimal solution for an instance smaller than (T, \mathbf{w}) .

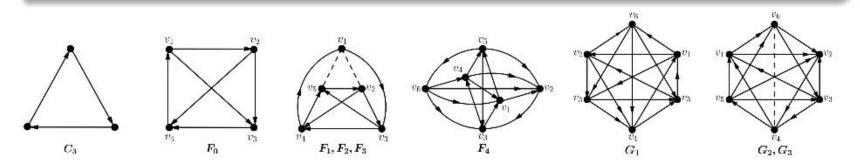
∃ ≥

DQQ

Möbius-freeness \Rightarrow **CM**

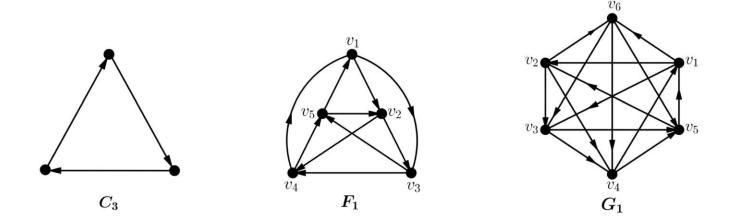
Structure Theorem

Let *T* be a strong Möbius-free tournament with at least 3 vertices. Then **either** $T \in \{F_1, G_1\}$ or *T* can be obtained by repeatedly taking 1-sums starting from the tournaments in $\mathscr{T}_1 := \mathscr{T}_0 \setminus \{F_1, G_1\}$.



Base case

- C_3 is CM.
- G_1 is CM (by a computer-assisted proof).
- $F_1 \cong G_1 \setminus v_6$ is CM.



▲日▼▲国▼▲国▼

E

DQC

ヘロア 人間 ア 人間 ア 人間 ア

DQC

Möbius-freeness \Rightarrow **CM**

For $T \notin \{C_3, F_1, G_1\}$, we may assume that *T* is strong and $\tau_w(T) > 0$.

Xujin Chen (Chinese Academy of Sciences) Ranking Tournaments with No Errors

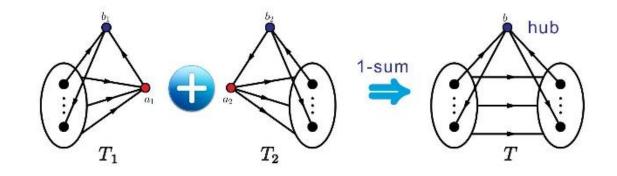
原トイ原ト

DQC

Möbius-freeness \Rightarrow **CM**

For $T \notin \{C_3, F_1, G_1\}$, we may assume that *T* is strong and $\tau_w(T) > 0$.

T can be expressed as a 1-sum of two strong Möbius-free tournaments T_1 and T_2 over two special arcs (a_1, b_1) and (b_2, a_2) ,



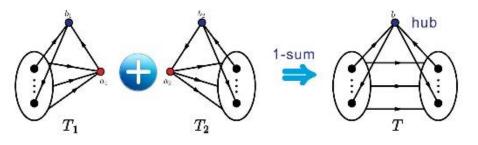
such that one of the following three cases occurs:

・ロト ・ 日 ・ イ 田 ト ・ 日 ト

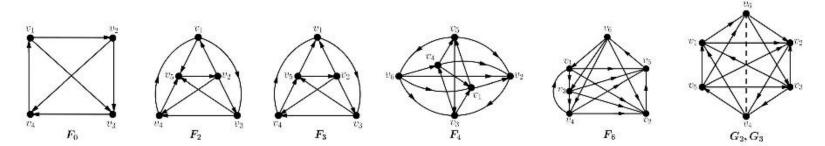
DQQ

Case (1)

 $T \notin \{C_3, F_1, G_1\}$, and $\tau_w(T) > 0$.



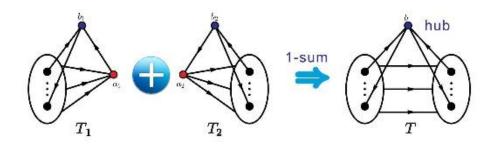
Case (1): $\tau_w(T_2 \setminus a_2) > 0$ and $T_2 \in \mathscr{T}_2 = (\mathscr{T}_1 \setminus \{C_3\}) \cup \{F_6\}$



・ロト・日本・日本・日本 田本

DQC

Case (1)



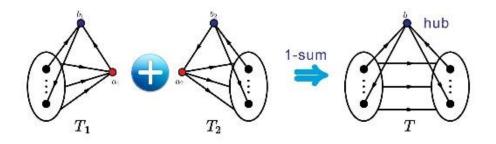
Case (1): $\tau_w(T_2 \setminus a_2) > 0$ and $T_2 \in \mathscr{T}_2 = (\mathscr{T}_1 \setminus \{C_3\}) \cup \{F_6\}$

- $\mathbb{D}(T, \mathbf{w})$ has an optimal solution y such that y(C) is a positive integer for some cycle C contained in $T_2 \setminus a_2$ performing various reductions.
- Define w'(e) = w(e) if e ∉ C and w'(e) = w(e) y(C) for each e ∈ C.
- By hypothesis, D(T', w') has an integral optimal solution y'. We obtain an integral optimal solution to D(T, w) by combining y' with y(C) − reducing the problem to smaller instance D(T', w').

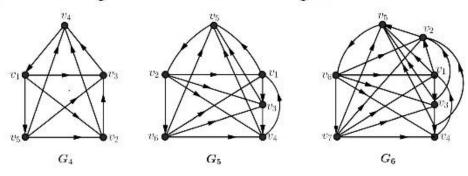
▲ 田 ▶ ▲ 田 ▶

1000

DQC



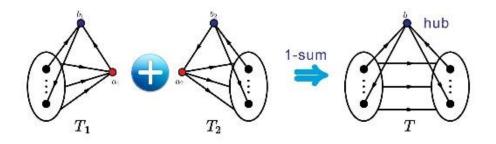
Case (2): $\tau_w(T_2 \setminus a_2) > 0$ and there exists $S \subseteq V(T_2) \setminus \{a_2, b_2\}$ with $|S| \ge 2$, s.t. T[S] is acyclic, $T_2/S \in \mathscr{T}_3 = (\mathscr{T}_2 \setminus \{F_2\}) \cup \{G_4, G_5, G_6\}$, and the vertex s^* arising from contracting S is a near-sink in T/S;



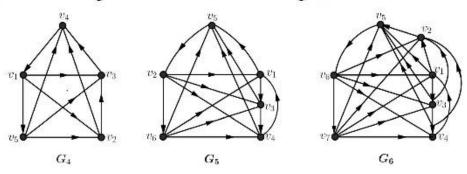
ヘロア 人間 ア 人間 ア 人 同 ア

-

DQC



Case (2): $\tau_w(T_2 \setminus a_2) > 0$ and there exists $S \subseteq V(T_2) \setminus \{a_2, b_2\}$ with $|S| \ge 2$, s.t. T[S] is acyclic, $T_2/S \in \mathscr{T}_3 = (\mathscr{T}_2 \setminus \{F_2\}) \cup \{G_4, G_5, G_6\}$, and the vertex s^* arising from contracting S is a near-sink in T/S;



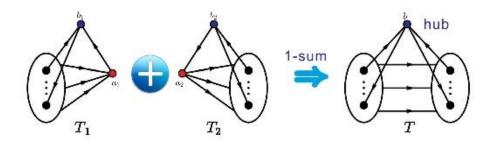
Similar to Case (1), we reduce the problem on (T, \mathbf{w}) to smaller instance $\mathbb{D}(T', \mathbf{w}')$.

≪ 臣 ▶

-

< • • • •

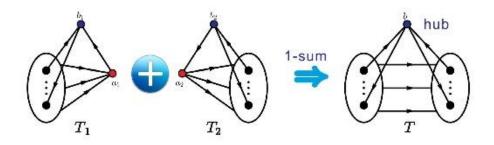
DQC



Case (3): Every positive cycle in *T* contains arcs in both T_1 and T_2 , where a cycle *C* is called "positive" if w(e) > 0 for each arc *e* on *C*.

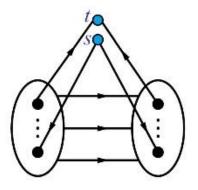
1 ×

DQ (V



Case (3): Every positive cycle in *T* contains arcs in both T_1 and T_2 , where a cycle *C* is called "positive" if w(e) > 0 for each arc *e* on *C*.

By splitting the hub b into two vertices s and t, we can apply the max-flow min-cut theorem to show that T is CM.



Concluding remarks

▲口 > ▲国 > ▲ 国 > ▲

Ŧ

DQQ

Future work

Our characterization yields a polynomial-time algorithm for the minimum-weight feedback arc set problem on CM tournaments. But this algorithm is based on the ellipsoid method for linear programming, ...

Question

Can it be replaced by a **strongly polynomial-time algorithm** of a transparent combinatorial nature?

ヘロア 人間 アメ 開マー

SQA

In combinatorial optimization, there are some other min-max results that are obtained using the "structure-driven" approach.

Despite availability of structural descriptions, **combinatorial polynomial-time algorithms** for the corresponding optimization problems have yet to be found, e.g., those on matroids with the max-flow min-cut property

- Seymour (1977]: characterization;
- Truemper (1987): efficient algorithms based on the ellipsoid method.

•••••

キロアスロアメデアメロト

-DQA

xchen@amss.ac.cn http://people.ucas.ac.cn/~xchen

-9 Q P

- D. Applegate, W. Cook, and S. McCormick, Integral infeasibility and testing total dual integrality, *Oper. Res. Lett.* **10** (1991), 37-41.
- F. Barahona, J. Fonlupt, and A. Mahjoub, Compositions of graphs and polyhedra IV: Acyclic spanning subgraphs, *SIAM J. Discrete Math.* **7** (1994), 390-402.
- Bhattacharya, Kulkarni, Mirrokni, Coordination mechanisms for selfish routing over time on a tree, ICALP 2014, LNCS, 8572, 186-197.
- M. Cai, X. Deng, and W. Zang, A TDI system and its Application to approximation algorithms, in: *Proc.* 39th *IEEE Symposium on Foundations of Computer Science* (FOCS), Palo Alto, CA, 1998, pp. 227-233.

ヘロマ 人間マ 人間マー

SQR

- M. Cai, X. Deng, and W. Zang, An approximation algorithm for feedback vertex sets in tournaments, *SIAM J. Comput.* **30** (2001), 1993-2007.
- G. Ding and P. Iverson, Internally 4-connected projective-planar graphs, *J. Combin. Theory Ser. B* **108** (2014), 123-138.
- G. Ding, L. Tan, and W. Zang, When is the matching polytope box-totally dual integral? *Math. Oper. Res.* **43** (2018), 64-99.
- G. Ding, Z. Xu, and W. Zang, Packing cycles in graphs, II, *J. Combin. Theory Ser. B* 87 (2003), 244-253.
- G. Ding and W. Zang, Packing cycles in graphs, *J. Combin. Theory Ser. B* **86** (2002), 381-407.

ヘロマ ヘロマ ヘロマー

SQR

- J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, in: *Ann. Discrete Math.* **1**, North-Holland, Amsterdam, 1977, pp. 185-204.
- J. Geelen and B. Guenin, Packing odd circuits in Eulerian graphs, J. Combin. Theory Ser. B 86 (2002), 280-295.
- M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, *Combinatorica* **1** (1981), 169-197.
- B. Guenin, Circuit Mengerian directed graphs, in: *Integer Programming and Combinatorial Optimization* (Utrecht, 2001), Lecture Notes in Comput. Sci. 2081, pp. 185-195.

ヘロア 人間 アメ 師 ア 人 間 ア

1

Dar

- B. Guenin, A short proof of Seymour's characterization of the matroids with the max-flow min-cut property, *J. Combin. Theory Ser. B* 86 (2002), 273-279.
- B. Guenin and R. Thomas, Packing directed circuits exactly, *Combinatorica* **31** (2011), 397-421.
- C. Lucchesi and D. Younger, A minimax theorem for directed graphs, *J. London Math. Soc.* **17** (1978), 369-374.
- A. Schrijver, *Theory of Linear and Integer Programming*, John Wiley & Sons, New York, 1986.
- A. Schrijver, *Combinatorial Optimization Polyhedra and Efficiency*, Springer-Verlag, Berlin, 2003.

ヘロマ 人間マ 人間マー

SQR

- P. Seymour, The matroids with the max-flow min-cut property, J. *Combin. Theory Ser. B* 23 (1977), 189-222.
- P. Seymour, Packing circuits in eulerian digraphs, *Combinatorica* 16 (1996), 223-231.
- A. Truemper, Max-flow min-cut motroids: polynomial testing and polynomial algorithms for maximum flow and shortest routes, *Math. Oper. Res.* **12** (1987), 72-96.

ヘロアス 印マス ほどん ほどう

SOR