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Obs: k-coloring is partitioning V/(G) into
sets V4, ..., Vi with mad(G[Vj]) < 1.

Q: What if we k-color with k < y(G)?
A: Can't get mad(G[Vj]) < 1; maybe
mad(G[V;]) < r; for given r;.

Q [Hendrey—Norin—Wood '19]:

Given a,b € Q, what is max g(a, b) so mad(G) < g(a, b) implies
V(G) has partition A, B with mad(G[A]) < a and mad(G[B]) < b?
What is g(1,b)? (Now A must be independent set.)

Obs: When b < 2, G[B] must be a forest. Tree T with k vertices

hasmad(T):%:Q(kik_l)zzf%

Defn: An (/, Fi)-coloring of G is partition of V/(G) into /, Fy
where [ is ind. set and G[F] is forest with each tree of order < k.
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Main Results

Main Theorem:
For each integer k > 2, let

3— =3 keven
. 3k—1
f(k)'{3—3k32 k odd

If mad(G) < f(k), then G has an (/, Fj)-coloring.
This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has
partition into ind. set and forest with each component of order
at most 3 (resp. 4, 6). Pf: 7(3) = 2, f(4) = 32, 7(6) = 5.

Rem: Also sharp if we only require that each component
of G[Fi] has order at most k (but we allow cycles).
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» Borodin—Kostochka—Yancey '13: g(5,5) =
» Borodin—Kostochka '11: g(1,%) = 3. (k 2 in Main Thm)
Various results subsumed by Main Theorem

» Borodin—lvanova—Montassier—Ochem—Raspaud ‘10 JGT

» Dross—Montassier—Pinlou '18 E-JC

» Choi—Dross—Ochem 20 DM
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Obs: mad(G) < 30/11 iff p*(R) >0 for all R C V(G).
By thm, mad(G) < 30/11 implies G has an (/, F4)-coloring.

Idea: Generalize | U F
to Precoloring. o—o0o—0 —

Let p4(R) - = 15|RU0‘ + 12‘RU1| + 9|RU2‘ + 6‘RU3| + 8|RF1‘
+5|Re,| + 3[Rr;| + ORk,| + 4[Ry| — 11[E(G[R])].

Defn: A precolored graph G is (/, Fi)-critical if G has no
(1, Fy)-coloring, but every subgraph does; and “weakening”
the precoloring in any way allows an (/, Fy)-coloring.

Real Main Theorem: If G is a precolored graph

and G is (I, Fy)-critical, then p*(V(G)) < —3.

Ex: p*(graph above) =4 4+ 9 +5 —2(11) = —4 < —3.
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Gadgets, Gaps, and Finishing Up
Q: Where do we get the coefficients in p*?

L(k—1)/2] [k/2]

v Il

Uj — U1 (always) Uo = F|(k43)/2] Uo %/ Uo — F
%Ful U # L(k+1)/2])

Q: Why is potential better than maximum average degree?

) 3k—
Gap Lem: If R C V(G) and E(GI[R]) # 0, then p*(G[R]) > 352,
Obs: So we can modify G[R] a lot before coloring by induction.

Q: How do we finish the proof?
A: With discharging, as usual.
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G[R] has coloring ¢ by criticality.
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Bonus: Weak Gap Lemma

Weak Gap Lemma: If R C V/(G) and R # (), then pX(R) > 1.
Pf: Choose R minimizing p*(R); further, maximize |R)|.

G[R] has coloring ¢ by criticality. If G’ has coloring ¢’, then ¢ U ¢
is coloring of G, contradiction. So G’ has critical subgraph G”; let
S=V(G"). Let S’ = (S\ X)UR. Note that S X # (). Now

pE(S') < P&(S) = p&(S N X) + p&(R)
< =3+ pE(R) < p&(R).

If "+ V(G), then S’ contradicts our choice of R.
If S' = V(G), then p(V(G)) < —3, contradiction.
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