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Maximum Average Degree

Q: How do we measure a graph’s sparsity?
A: Maximum average degree of G , denoted mad(G ), is defined as

mad(G ) := max
H⊆G

2|E (H)|
|V (H)|

.
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I mad(G ) < 1 iff G is edgeless

I mad(G ) < 2 iff G is a forest

I mad(G ) < 4 if G is planar bip.

I mad(G ) < 6 if G is planar

I mad(G ) < 2g
g−2 if G is planar

with girth ≥ g
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Graph Coloring, More Generally

Obs: k-coloring is partitioning V (G ) into
sets V1, . . . ,Vk with mad(G [Vi ]) < 1.

Q: What if we k-color with k < χ(G )?
A: Can’t get mad(G [Vi ]) < 1; maybe
mad(G [Vi ]) < ri for given ri .

Q [Hendrey–Norin–Wood ’19]:
Given a, b ∈ Q+, what is max g(a, b) so mad(G ) < g(a, b) implies
V (G ) has partition A,B with mad(G [A]) < a and mad(G [B]) < b?
What is g(1, b)? (Now A must be independent set.)

Obs: When b < 2, G [B] must be a forest. Tree T with k vertices

has mad(T ) = 2|E(T )|
|V (T )| = 2(k−1)

k = 2− 2
k .

Defn: An (I ,Fk)-coloring of G is partition of V (G ) into I ,Fk
where I is ind. set and G [Fk ] is forest with each tree of order ≤ k.
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Main Results

Main Theorem:
For each integer k ≥ 2, let

f (k) :=

{
3− 3

3k−1 k even

3− 3
3k−2 k odd

If mad(G ) ≤ f (k), then G has an (I ,Fk)-coloring.

This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has
partition into ind. set and forest with each component of order
at most 3 (resp. 4, 6). Pf: f (3) = 18

7 , f (4) = 30
11 , f (6) = 48

17 .

Rem: Also sharp if we only require that each component
of G [Fk ] has order at most k (but we allow cycles).
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Previous Work

I Nadara–Smulewicz ’19+: If G has an edge,
then mad(G − I ) ≤ mad(G )− 1 for some
independent set I .

If G has a cycle, then
mad(G − V (F )) ≤ mad(G )− 2 for some
induced forest F . So, for all b ∈ Q+,
g(1, b) ≥ b + 1 and g(2, b) ≥ b + 2.

I Borodin–Kostochka–Yancey ’13: g(43 ,
4
3) = 14

5 .

I Borodin–Kostochka ’11: g(1, 43) = 12
5 . (k = 2 in Main Thm)

Various results subsumed by Main Theorem

I Borodin–Ivanova–Montassier–Ochem–Raspaud ‘10 JGT

I Dross–Montassier–Pinlou ’18 E-JC

I Choi–Dross–Ochem ’20 DM
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Sharpness Examples

Defn: A graph G is (I ,Fk)-critical if G does not have an
(I ,Fk)-coloring, but G − e does for every e ∈ E (G ).

Prop: The graph below is (I ,Fk)-critical, and illustrates an
infinite family of (I ,Fk)-critical graphs (for each k ≥ 2).
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Proving Something More General
Thm: Let ρ4(R) := 15|R| − 11|E (G [R])| for each R ⊆ V (G ).
If G is (I ,F4)-critical, then ρ4(V (G )) ≤ −3.

Obs: mad(G ) ≤ 30/11 iff ρ4(R) ≥ 0 for all R ⊆ V (G ).
By thm, mad(G ) ≤ 30/11 implies G has an (I ,F4)-coloring.

Idea: Generalize
to Precoloring.

I U2 F2
→

Let ρ4(R) : = 15|RU0 |+ 12|RU1 |+ 9|RU2 |+ 6|RU3 |+ 8|RF1 |
+ 5|RF2 |+ 3|RF3 |+ 0|RF4 |+ 4|RI | − 11|E (G [R])|.

Defn: A precolored graph G is (I ,Fk)-critical if G has no
(I ,Fk)-coloring, but every subgraph does; and “weakening”
the precoloring in any way allows an (I ,Fk)-coloring.

Real Main Theorem: If G is a precolored graph
and G is (I ,F4)-critical, then ρ4(V (G )) ≤ −3.

Ex: ρ4(graph above) = 4 + 9 + 5− 2(11) = −4 ≤ −3.
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Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρk?

v
Uj → Uj+1 (always)

Fj → Fj+1 (j 6= b(k + 1)/2c)

v
U0 → Fb(k+3)/2c

b(k − 1)/2c bk/2c

v

Fk

U0 → I

v

I

U0 → F1

Q: Why is potential better than maximum average degree?

Gap Lem: If R ( V (G ) and E (G [R]) 6= ∅, then ρk(G [R]) ≥ 3k−5
2 .

Obs: So we can modify G [R] a lot before coloring by induction.

Q: How do we finish the proof?

A: With discharging, as usual.
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Summary

I (I ,Fk)-coloring partitions V (G ) so I is independent set and
G [Fk ] is forest with each tree of order ≤ k

I Sufficient conditions for (I ,Fk)-coloring in terms of mad(G )

I Sharp infinitely often for every k

I Still sharp if we only require each component of order ≤ k

I Partially answers question of Hendrey–Norine–Wood

I Improves on many previous results

I Potential method, ρ (not mad(G ))

I Generalize to precoloring: I , Uj , F`
I Gadgets tell us coefficients in ρ

I Gap Lem gives power for reducibility

I Finish with discharging

I Read more at: https://arxiv.org/abs/2006.11445
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Bonus: Weak Gap Lemma

Weak Gap Lemma: If R ( V (G ) and R 6= ∅, then ρk(R) ≥ 1.

Pf: Choose R minimizing ρk(R); further, maximize |R|.

G R

→
G ′ X

I
Fk

G [R] has coloring ϕ by criticality.

If G ′ has coloring ϕ′, then ϕ′ ∪ϕ
is coloring of G , contradiction. So G ′ has critical subgraph G ′′; let
S = V (G ′′). Let S ′ = (S \ X ) ∪ R. Note that S ∩ X 6= ∅. Now

ρkG (S ′) ≤ ρkG ′(S)− ρkG ′(S ∩ X ) + ρkG (R)

≤ −3 + ρkG (R) < ρkG (R).

If S ′ 6= V (G ), then S ′ contradicts our choice of R.
If S ′ = V (G ), then ρk(V (G )) ≤ −3, contradiction.
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