Vertex Partitions into an Independent Set and a Forest with Each Component Small

Daniel W. Cranston
Virginia Commonwealth University dcranston@vcu.edu
Joint with Matthew Yancey
SCMS Combinatorics Seminar (virtual)
15 October 2020

Maximum Average Degree

Maximum Average Degree

Q: How do we measure a graph's sparsity?

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

$\circ 00000$

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest
- $\operatorname{mad}(G)<4$ if G is planar bip.

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest
- $\operatorname{mad}(G)<4$ if G is planar bip.

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest
- $\operatorname{mad}(G)<4$ if G is planar bip.
- $\operatorname{mad}(G)<6$ if G is planar

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest
- $\operatorname{mad}(G)<4$ if G is planar bip.
- $\operatorname{mad}(G)<6$ if G is planar

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest
- $\operatorname{mad}(G)<4$ if G is planar bip.
- $\operatorname{mad}(G)<6$ if G is planar
- $\operatorname{mad}(G)<\frac{2 g}{g-2}$ if G is planar with girth $\geq g$

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest
- $\operatorname{mad}(G)<4$ if G is planar bip.
- $\operatorname{mad}(G)<6$ if G is planar
- $\operatorname{mad}(G)<\frac{2 g}{g-2}$ if G is planar with girth $\geq g$

Maximum Average Degree

Q: How do we measure a graph's sparsity?
A: Maximum average degree of G, denoted $\operatorname{mad}(G)$, is defined as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \frac{2|E(H)|}{|V(H)|}
$$

- $\operatorname{mad}(G)<1$ iff G is edgeless
- $\operatorname{mad}(G)<2$ iff G is a forest
- $\operatorname{mad}(G)<4$ if G is planar bip.
- $\operatorname{mad}(G)<6$ if G is planar
- $\operatorname{mad}(G)<\frac{2 g}{g-2}$ if G is planar with girth $\geq g$

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$?

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$?

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$?
A: Can't get $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$? A: Can't get $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$; maybe $\operatorname{mad}\left(G\left[V_{i}\right]\right)<r_{i}$ for given r_{i}.

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$? A: Can't get $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$; maybe $\operatorname{mad}\left(G\left[V_{i}\right]\right)<r_{i}$ for given r_{i}.

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$? A: Can't get $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$; maybe $\operatorname{mad}\left(G\left[V_{i}\right]\right)<r_{i}$ for given r_{i}.

Q [Hendrey-Norin-Wood '19]:
Given $a, b \in \mathbb{Q}^{+}$, what is $\max g(a, b)$ so $\operatorname{mad}(G)<g(a, b)$ implies $V(G)$ has partition A, B with $\operatorname{mad}(G[A])<a$ and $\operatorname{mad}(G[B])<b$?

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$? A: Can't get $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$; maybe $\operatorname{mad}\left(G\left[V_{i}\right]\right)<r_{i}$ for given r_{i}.

Q [Hendrey-Norin-Wood '19]:
Given $a, b \in \mathbb{Q}^{+}$, what is $\max g(a, b)$ so $\operatorname{mad}(G)<g(a, b)$ implies $V(G)$ has partition A, B with $\operatorname{mad}(G[A])<a$ and $\operatorname{mad}(G[B])<b$? What is $g(1, b)$? (Now A must be independent set.)

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$? A: Can't get $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$; maybe $\operatorname{mad}\left(G\left[V_{i}\right]\right)<r_{i}$ for given r_{i}.

Q [Hendrey-Norin-Wood '19]:
Given $a, b \in \mathbb{Q}^{+}$, what is $\max g(a, b)$ so $\operatorname{mad}(G)<g(a, b)$ implies $V(G)$ has partition A, B with $\operatorname{mad}(G[A])<a$ and $\operatorname{mad}(G[B])<b$? What is $g(1, b)$? (Now A must be independent set.)

Obs: When $b<2, G[B]$ must be a forest. Tree T with k vertices has $\operatorname{mad}(T)=\frac{2|E(T)|}{|V(T)|}=\frac{2(k-1)}{k}=2-\frac{2}{k}$.

Graph Coloring, More Generally

Obs: k-coloring is partitioning $V(G)$ into sets V_{1}, \ldots, V_{k} with $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$.

Q: What if we k-color with $k<\chi(G)$? A: Can't get $\operatorname{mad}\left(G\left[V_{i}\right]\right)<1$; maybe $\operatorname{mad}\left(G\left[V_{i}\right]\right)<r_{i}$ for given r_{i}.

Q [Hendrey-Norin-Wood '19]:
Given $a, b \in \mathbb{Q}^{+}$, what is $\max g(a, b)$ so $\operatorname{mad}(G)<g(a, b)$ implies $V(G)$ has partition A, B with $\operatorname{mad}(G[A])<a$ and $\operatorname{mad}(G[B])<b$? What is $g(1, b)$? (Now A must be independent set.)

Obs: When $b<2, G[B]$ must be a forest. Tree T with k vertices has $\operatorname{mad}(T)=\frac{2|E(T)|}{|V(T)|}=\frac{2(k-1)}{k}=2-\frac{2}{k}$.

Defn: An $\left(I, F_{k}\right)$-coloring of G is partition of $V(G)$ into I, F_{k} where I is ind. set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$.

Main Results

Main Theorem:
For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring.

Main Results

Main Theorem:

For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring.

Main Results

Main Theorem:
For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring.

Main Results

Main Theorem:
For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring.
This theorem is sharp infinitely often for each k.

Main Results

Main Theorem:

For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring. This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6).

Main Results

Main Theorem:

For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring. This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6). Pf: $f(3)=\frac{18}{7}$

Main Results

Main Theorem:

For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring. This theorem is sharp infinitely often for each k.

Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6). Pf: $f(3)=\frac{18}{7}, f(4)=\frac{30}{11}, f(6)=\frac{48}{17}$.

Main Results

Main Theorem:
For each integer $k \geq 2$, let

$$
f(k):= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}
$$

If $\operatorname{mad}(G) \leq f(k)$, then G has an $\left(I, F_{k}\right)$-coloring.
This theorem is sharp infinitely often for each k.
Cor: If G is planar with girth at least 9 (resp. 8, 7), then G has partition into ind. set and forest with each component of order at most 3 (resp. 4, 6). Pf: $f(3)=\frac{18}{7}, f(4)=\frac{30}{11}, f(6)=\frac{48}{17}$.

Rem: Also sharp if we only require that each component of $G\left[F_{k}\right]$ has order at most k (but we allow cycles).

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set $/$.

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set l.

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set l.

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set I. If G has a cycle, then $\operatorname{mad}(G-V(F)) \leq \operatorname{mad}(G)-2$ for some induced forest F.

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set I. If G has a cycle, then $\operatorname{mad}(G-V(F)) \leq \operatorname{mad}(G)-2$ for some induced forest F. So, for all $b \in \mathbb{Q}^{+}$,
 $g(1, b) \geq b+1$ and $g(2, b) \geq b+2$.

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set I. If G has a cycle, then $\operatorname{mad}(G-V(F)) \leq \operatorname{mad}(G)-2$ for some induced forest F. So, for all $b \in \mathbb{Q}^{+}$,
 $g(1, b) \geq b+1$ and $g(2, b) \geq b+2$.
- Borodin-Kostochka-Yancey '13: $g\left(\frac{4}{3}, \frac{4}{3}\right)=\frac{14}{5}$.

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set I. If G has a cycle, then $\operatorname{mad}(G-V(F)) \leq \operatorname{mad}(G)-2$ for some induced forest F. So, for all $b \in \mathbb{Q}^{+}$,
 $g(1, b) \geq b+1$ and $g(2, b) \geq b+2$.
- Borodin-Kostochka-Yancey '13: $g\left(\frac{4}{3}, \frac{4}{3}\right)=\frac{14}{5}$.
- Borodin-Kostochka '11: $g\left(1, \frac{4}{3}\right)=\frac{12}{5}$.

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set I. If G has a cycle, then $\operatorname{mad}(G-V(F)) \leq \operatorname{mad}(G)-2$ for some induced forest F. So, for all $b \in \mathbb{Q}^{+}$,
 $g(1, b) \geq b+1$ and $g(2, b) \geq b+2$.
- Borodin-Kostochka-Yancey '13: $g\left(\frac{4}{3}, \frac{4}{3}\right)=\frac{14}{5}$.
- Borodin-Kostochka '11: $g\left(1, \frac{4}{3}\right)=\frac{12}{5} .(k=2$ in Main Thm $)$

Previous Work

- Nadara-Smulewicz '19+: If G has an edge, then $\operatorname{mad}(G-I) \leq \operatorname{mad}(G)-1$ for some independent set l. If G has a cycle, then $\operatorname{mad}(G-V(F)) \leq \operatorname{mad}(G)-2$ for some induced forest F. So, for all $b \in \mathbb{Q}^{+}$,
 $g(1, b) \geq b+1$ and $g(2, b) \geq b+2$.
- Borodin-Kostochka-Yancey '13: $g\left(\frac{4}{3}, \frac{4}{3}\right)=\frac{14}{5}$.
- Borodin-Kostochka '11: $g\left(1, \frac{4}{3}\right)=\frac{12}{5} .(k=2$ in Main Thm $)$

Various results subsumed by Main Theorem

- Borodin-Ivanova-Montassier-Ochem-Raspaud '10 JGT
- Dross-Montassier-Pinlou '18 E-JC
- Choi-Dross-Ochem '20 DM

Sharpness Examples

Defn: A graph G is $\left(I, F_{k}\right)$-critical if G does not have an (I, F_{k})-coloring, but $G-e$ does for every $e \in E(G)$.

Sharpness Examples

Defn: A graph G is $\left(I, F_{k}\right)$-critical if G does not have an (I, F_{k})-coloring, but $G-e$ does for every $e \in E(G)$.
Prop: The graph below is $\left(I, F_{k}\right)$-critical, and illustrates an infinite family of (I, F_{k})-critical graphs (for each $k \geq 2$).

Sharpness Examples

Defn: A graph G is $\left(I, F_{k}\right)$-critical if G does not have an (I, F_{k})-coloring, but $G-e$ does for every $e \in E(G)$.
Prop: The graph below is $\left(I, F_{k}\right)$-critical, and illustrates an infinite family of (I, F_{k})-critical graphs (for each $k \geq 2$).

$$
n:=2(\lfloor k / 2\rfloor+\lfloor(k-1) / 2\rfloor+\lfloor(k-2) / 2\rfloor)+3
$$

Sharpness Examples

Defn: A graph G is $\left(I, F_{k}\right)$-critical if G does not have an (I, F_{k})-coloring, but $G-e$ does for every $e \in E(G)$.
Prop: The graph below is $\left(I, F_{k}\right)$-critical, and illustrates an infinite family of (I, F_{k})-critical graphs (for each $k \geq 2$).

$n:=2(\lfloor k / 2\rfloor+\lfloor(k-1) / 2\rfloor+\lfloor(k-2) / 2\rfloor)+3= \begin{cases}3 k-1 & \text { even } \\ 3 k-2 & \text { odd }\end{cases}$

Sharpness Examples

Defn: A graph G is $\left(I, F_{k}\right)$-critical if G does not have an (I, F_{k})-coloring, but $G-e$ does for every $e \in E(G)$.
Prop: The graph below is $\left(I, F_{k}\right)$-critical, and illustrates an infinite family of (I, F_{k})-critical graphs (for each $k \geq 2$).

$n:=2(\lfloor k / 2\rfloor+\lfloor(k-1) / 2\rfloor+\lfloor(k-2) / 2\rfloor)+3= \begin{cases}3 k-1 & \text { even } \\ 3 k-2 & \text { odd }\end{cases}$
$m:=\frac{3}{2}(n-3)+3=\frac{3 n-3}{2}$

Sharpness Examples

Defn: A graph G is $\left(I, F_{k}\right)$-critical if G does not have an (I, F_{k})-coloring, but $G-e$ does for every $e \in E(G)$.
Prop: The graph below is $\left(I, F_{k}\right)$-critical, and illustrates an infinite family of (I, F_{k})-critical graphs (for each $k \geq 2$).

$n:=2(\lfloor k / 2\rfloor+\lfloor(k-1) / 2\rfloor+\lfloor(k-2) / 2\rfloor)+3= \begin{cases}3 k-1 & \text { even } \\ 3 k-2 & \text { odd }\end{cases}$ $m:=\frac{3}{2}(n-3)+3=\frac{3 n-3}{2} \quad \frac{2 m}{n}=\frac{2 \frac{3 n-3}{2}}{n}= \begin{cases}3-\frac{3}{3 k-1} & k \text { even } \\ 3-\frac{3}{3 k-2} & k \text { odd }\end{cases}$

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$. If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$. If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$. If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$. If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize
to Precoloring.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$. If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$. If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$. If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

$$
\text { Let } \begin{aligned}
\rho^{4}(R): & =15\left|R_{U_{0}}\right|+12\left|R_{U_{1}}\right|+9\left|R_{U_{2}}\right|+6\left|R_{U_{3}}\right|+8\left|R_{F_{1}}\right| \\
& +5\left|R_{F_{2}}\right|+3\left|R_{F_{3}}\right|+0\left|R_{F_{4}}\right|+4\left|R_{l}\right|-11 \mid E(G[R]) .
\end{aligned}
$$

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$.
If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

$$
\text { Let } \begin{aligned}
\rho^{4}(R): & =15\left|R_{U_{0}}\right|+12\left|R_{U_{1}}\right|+9\left|R_{U_{2}}\right|+6\left|R_{U_{3}}\right|+8\left|R_{F_{1}}\right| \\
& +5\left|R_{F_{2}}\right|+3\left|R_{F_{3}}\right|+0\left|R_{F_{4}}\right|+4\left|R_{I}\right|-11|E(G[R])| .
\end{aligned}
$$

Defn: A precolored graph G is $\left(I, F_{k}\right)$-critical if G has no $\left(I, F_{k}\right)$-coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_{k})-coloring.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$.
If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

$$
\text { Let } \begin{aligned}
\rho^{4}(R): & =15\left|R_{U_{0}}\right|+12\left|R_{U_{1}}\right|+9\left|R_{U_{2}}\right|+6\left|R_{U_{3}}\right|+8\left|R_{F_{1}}\right| \\
& +5\left|R_{F_{2}}\right|+3\left|R_{F_{3}}\right|+0\left|R_{F_{4}}\right|+4\left|R_{I}\right|-11|E(G[R])| .
\end{aligned}
$$

Defn: A precolored graph G is $\left(I, F_{k}\right)$-critical if G has no $\left(I, F_{k}\right)$-coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_{k})-coloring.
Real Main Theorem: If G is a precolored graph and G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$.
If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

$$
\text { Let } \begin{aligned}
\rho^{4}(R): & =15\left|R_{U_{0}}\right|+12\left|R_{U_{1}}\right|+9\left|R_{U_{2}}\right|+6\left|R_{U_{3}}\right|+8\left|R_{F_{1}}\right| \\
& +5\left|R_{F_{2}}\right|+3\left|R_{F_{3}}\right|+0\left|R_{F_{4}}\right|+4\left|R_{I}\right|-11|E(G[R])| .
\end{aligned}
$$

Defn: A precolored graph G is $\left(I, F_{k}\right)$-critical if G has no $\left(I, F_{k}\right)$-coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_{k})-coloring.
Real Main Theorem: If G is a precolored graph and G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Ex: ρ^{4} (graph above)

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$.
If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

$$
\text { Let } \begin{aligned}
\rho^{4}(R): & =15\left|R_{U_{0}}\right|+12\left|R_{U_{1}}\right|+9\left|R_{U_{2}}\right|+6\left|R_{U_{3}}\right|+8\left|R_{F_{1}}\right| \\
& +5\left|R_{F_{2}}\right|+3\left|R_{F_{3}}\right|+0\left|R_{F_{4}}\right|+4\left|R_{I}\right|-11|E(G[R])| .
\end{aligned}
$$

Defn: A precolored graph G is $\left(I, F_{k}\right)$-critical if G has no $\left(I, F_{k}\right)$-coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_{k})-coloring.
Real Main Theorem: If G is a precolored graph and G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Ex: $\rho^{4}($ graph above $)=4+9+5-2(11)$

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$.
If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

$$
\text { Let } \begin{aligned}
\rho^{4}(R): & =15\left|R_{U_{0}}\right|+12\left|R_{U_{1}}\right|+9\left|R_{U_{2}}\right|+6\left|R_{U_{3}}\right|+8\left|R_{F_{1}}\right| \\
& +5\left|R_{F_{2}}\right|+3\left|R_{F_{3}}\right|+0\left|R_{F_{4}}\right|+4\left|R_{I}\right|-11|E(G[R])| .
\end{aligned}
$$

Defn: A precolored graph G is $\left(I, F_{k}\right)$-critical if G has no $\left(I, F_{k}\right)$-coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_{k})-coloring.
Real Main Theorem: If G is a precolored graph and G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Ex: $\rho^{4}($ graph above $)=4+9+5-2(11)=-4$

Proving Something More General

Thm: Let $\rho^{4}(R):=15|R|-11|E(G[R])|$ for each $R \subseteq V(G)$.
If G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Obs: $\operatorname{mad}(G) \leq 30 / 11$ iff $\rho^{4}(R) \geq 0$ for all $R \subseteq V(G)$. By thm, $\operatorname{mad}(G) \leq 30 / 11$ implies G has an $\left(I, F_{4}\right)$-coloring.

Idea: Generalize to Precoloring.

$$
\text { Let } \begin{aligned}
\rho^{4}(R): & =15\left|R_{U_{0}}\right|+12\left|R_{U_{1}}\right|+9\left|R_{U_{2}}\right|+6\left|R_{U_{3}}\right|+8\left|R_{F_{1}}\right| \\
& +5\left|R_{F_{2}}\right|+3\left|R_{F_{3}}\right|+0\left|R_{F_{4}}\right|+4\left|R_{I}\right|-11|E(G[R])| .
\end{aligned}
$$

Defn: A precolored graph G is $\left(I, F_{k}\right)$-critical if G has no $\left(I, F_{k}\right)$-coloring, but every subgraph does; and "weakening" the precoloring in any way allows an (I, F_{k})-coloring.
Real Main Theorem: If G is a precolored graph and G is $\left(I, F_{4}\right)$-critical, then $\rho^{4}(V(G)) \leq-3$.
Ex: $\rho^{4}($ graph above $)=4+9+5-2(11)=-4 \leq-3$.

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

$$
\begin{aligned}
& U_{j} \rightarrow U_{j+1} \text { (always) } \\
F_{j} \rightarrow F_{j+1} & (j \neq\lfloor(k+1) / 2\rfloor)
\end{aligned}
$$

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Q: Why is potential better than maximum average degree?

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Q: Why is potential better than maximum average degree?
Gap Lem: If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^{k}(G[R]) \geq \frac{3 k-5}{2}$.

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Q: Why is potential better than maximum average degree?
Gap Lem: If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^{k}(G[R]) \geq \frac{3 k-5}{2}$.
Obs: So we can modify $G[R]$ a lot before coloring by induction.

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Q: Why is potential better than maximum average degree?
Gap Lem: If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^{k}(G[R]) \geq \frac{3 k-5}{2}$.
Obs: So we can modify $G[R]$ a lot before coloring by induction.
Q: How do we finish the proof?

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

Q: Why is potential better than maximum average degree?
Gap Lem: If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^{k}(G[R]) \geq \frac{3 k-5}{2}$.
Obs: So we can modify $G[R]$ a lot before coloring by induction.
Q: How do we finish the proof?
A: With discharging

Gadgets, Gaps, and Finishing Up

Q: Where do we get the coefficients in ρ^{k} ?

$U_{j} \rightarrow U_{j+1}$ (always)
$F_{j} \rightarrow F_{j+1}(j \neq\lfloor(k+1) / 2\rfloor)$

Q: Why is potential better than maximum average degree?
Gap Lem: If $R \subsetneq V(G)$ and $E(G[R]) \neq \emptyset$, then $\rho^{k}(G[R]) \geq \frac{3 k-5}{2}$.
Obs: So we can modify $G[R]$ a lot before coloring by induction.
Q: How do we finish the proof?
A: With discharging, as usual.

Summary

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$
- Generalize to precoloring: I, U_{j}, F_{ℓ}

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$
- Generalize to precoloring: I, U_{j}, F_{ℓ}
- Gadgets tell us coefficients in ρ

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$
- Generalize to precoloring: I, U_{j}, F_{ℓ}
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$
- Generalize to precoloring: I, U_{j}, F_{ℓ}
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility
- Finish with discharging

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$
- Generalize to precoloring: I, U_{j}, F_{ℓ}
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility
- Finish with discharging

- Read more at: https://arxiv.org/abs/2006.11445

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$
- Generalize to precoloring: I, U_{j}, F_{ℓ}
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility
- Finish with discharging

- Read more at: https://arxiv.org/abs/2006.11445

Summary

- $\left(I, F_{k}\right)$-coloring partitions $V(G)$ so I is independent set and $G\left[F_{k}\right]$ is forest with each tree of order $\leq k$
- Sufficient conditions for $\left(I, F_{k}\right)$-coloring in terms of $\operatorname{mad}(G)$
- Sharp infinitely often for every k
- Still sharp if we only require each component of order $\leq k$
- Partially answers question of Hendrey-Norine-Wood
- Improves on many previous results
- Potential method, $\rho($ not $\operatorname{mad}(G))$
- Generalize to precoloring: I, U_{j}, F_{ℓ}
- Gadgets tell us coefficients in ρ
- Gap Lem gives power for reducibility
- Finish with discharging

- Read more at: https://arxiv.org/abs/2006.11445

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$. Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$. Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$. Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.
Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality. If G^{\prime} has coloring φ^{\prime}, then $\varphi^{\prime} \cup \varphi$ is coloring of G, contradiction.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.
Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality. If G^{\prime} has coloring φ^{\prime}, then $\varphi^{\prime} \cup \varphi$ is coloring of G, contradiction. So G^{\prime} has critical subgraph $G^{\prime \prime}$; let $S=V\left(G^{\prime \prime}\right)$.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.
Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality. If G^{\prime} has coloring φ^{\prime}, then $\varphi^{\prime} \cup \varphi$ is coloring of G, contradiction. So G^{\prime} has critical subgraph $G^{\prime \prime}$; let $S=V\left(G^{\prime \prime}\right)$. Let $S^{\prime}=(S \backslash X) \cup R$.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.
Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality. If G^{\prime} has coloring φ^{\prime}, then $\varphi^{\prime} \cup \varphi$ is coloring of G, contradiction. So G^{\prime} has critical subgraph $G^{\prime \prime}$; let $S=V\left(G^{\prime \prime}\right)$. Let $S^{\prime}=(S \backslash X) \cup R$. Note that $S \cap X \neq \emptyset$.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.
Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality. If G^{\prime} has coloring φ^{\prime}, then $\varphi^{\prime} \cup \varphi$ is coloring of G, contradiction. So G^{\prime} has critical subgraph $G^{\prime \prime}$; let $S=V\left(G^{\prime \prime}\right)$. Let $S^{\prime}=(S \backslash X) \cup R$. Note that $S \cap X \neq \emptyset$. Now

$$
\begin{aligned}
\rho_{G}^{k}\left(S^{\prime}\right) & \leq \rho_{G^{\prime}}^{k}(S)-\rho_{G^{\prime}}^{k}(S \cap X)+\rho_{G}^{k}(R) \\
& \leq-3+\rho_{G}^{k}(R)<\rho_{G}^{k}(R) .
\end{aligned}
$$

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.
Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality. If G^{\prime} has coloring φ^{\prime}, then $\varphi^{\prime} \cup \varphi$ is coloring of G, contradiction. So G^{\prime} has critical subgraph $G^{\prime \prime}$; let $S=V\left(G^{\prime \prime}\right)$. Let $S^{\prime}=(S \backslash X) \cup R$. Note that $S \cap X \neq \emptyset$. Now

$$
\begin{aligned}
\rho_{G}^{k}\left(S^{\prime}\right) & \leq \rho_{G^{\prime}}^{k}(S)-\rho_{G^{\prime}}^{k}(S \cap X)+\rho_{G}^{k}(R) \\
& \leq-3+\rho_{G}^{k}(R)<\rho_{G}^{k}(R) .
\end{aligned}
$$

If $S^{\prime} \neq V(G)$, then S^{\prime} contradicts our choice of R.

Bonus: Weak Gap Lemma

Weak Gap Lemma: If $R \subsetneq V(G)$ and $R \neq \emptyset$, then $\rho^{k}(R) \geq 1$.
Pf: Choose R minimizing $\rho^{k}(R)$; further, maximize $|R|$.

$G[R]$ has coloring φ by criticality. If G^{\prime} has coloring φ^{\prime}, then $\varphi^{\prime} \cup \varphi$ is coloring of G, contradiction. So G^{\prime} has critical subgraph $G^{\prime \prime}$; let $S=V\left(G^{\prime \prime}\right)$. Let $S^{\prime}=(S \backslash X) \cup R$. Note that $S \cap X \neq \emptyset$. Now

$$
\begin{aligned}
\rho_{G}^{k}\left(S^{\prime}\right) & \leq \rho_{G^{\prime}}^{k}(S)-\rho_{G^{\prime}}^{k}(S \cap X)+\rho_{G}^{k}(R) \\
& \leq-3+\rho_{G}^{k}(R)<\rho_{G}^{k}(R) .
\end{aligned}
$$

If $S^{\prime} \neq V(G)$, then S^{\prime} contradicts our choice of R.
If $S^{\prime}=V(G)$, then $\rho^{k}(V(G)) \leq-3$, contradiction.

